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A CATEGORICAL SETTING FOR DETERMINANTS
AND TRACES

Helmut Roéhrl?

The aim of this paper is to investigate some applications of a certain
universal problem. The universal problem deals with categories € which
for every object A have some ‘‘structure’” on the set C(4, A) of endomorph-
isms of A and calls for a universal solution, relative to this structure, that
is associated with C(A4, A) and centralizes the set of automorphisms of A.
The commutative version of this universal problem asks for a universal
solution, relative to the said structure, that abelianizes the canonical monoid
structure of C(4, A).

In §1 the general case is discussed. A number of existence theorems,
all versions of the Special Adjoint Functor Theorem (see [11]) are stated
and various structure theorems concerning the universal solution are proved.
§2 deals with presheaves and the corresponding universal problem. It is
shown that the universal problem for presheaves may be solved pointwise and
that, under fairly weak assumptions, the stalk functor commutes with the
universal solution. It is also asserted that under appropriate hypotheses any
recollatement of a sheaf leaves the universal solution unchanged. In §3 the
trace for endomorphisms in an R-additive category is defined as a special
instance of the universal problem of §1. Here, the previously mentioned
structure is that of a left R-module. The existence of the trace (for the
endomorphisms) of any object A is easily obtained. It turns out to be the
canonical morphism from End A to H, (Aut A, End A) with Aut A ope-
rating on End A by conjugation. Moreover it is shown that the trace of
an endomorphism of a finite direct sum ““is the sum of the diagonal entries”
in the matrix description of that endomorphism. In §4 we restrict ourselves
to the study of the trace for endomorphisms of unital R-modules, R being
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an associative, commutative ring, though many of the results of this section
remain valid for R-additive categories with multiplication. The topics dis-
cussed are the behavior of the trace under forming the transpose, under
tensoring, under change of rings, and under restriction of scalars. However,
the most important aspect of this section is the following localization prin-
ciple: If the R-module M is finitely presentable then for every prime ideal
p of R the commutative trace of M, equals the localization at p of the
commutative trace of M. Hence the notion of trace as defined here per-
forms well on the category of finitely presentable module, a category which
dominates the theory of coherent sheaves. The localization principle is used
in order to prove that for finitely generated projective R-modules our notion
of commutative trace coincides with the classical one (see [5]). §5 is con-
cerned with another special instance of the universal problem of §1, namely
the notion of predeterminant for endomorphisms in an R-monoidal category.
Here, the previously mentioned structure is that of a left R-monoid. The
structure of an R-monoid being more cumbersome and intricate than the
structure of an R-module indicates that fewer results will be available on
predeterminants than on traces. Again the existence of the predeterminant
is easily established. It is shown that elementary automorphisms of a finite
direct sum EkBA,k>2, are mapped into the unit element by the predetermi-
nant map; if End A contains “good” wunits then the restriction k¥>2 be-
comes unnecessary. One of the consequences of these properties is that for
a possibly non-commutative field R the predeterminant for endomorphisms
of Gk»)R, k>2, is the classical (Dieudonné-) determinant; if R is different
from Z, then the restriction k> 2 becomes unnecessary. A similar result is
valid for R a commutative principal ideal domain having 1 as a stable
range. Hence we obtain in these cases a characterization of the determi-
nant by general (universality) properties rather than by properties explicitly
referring to the particular nature, that is square-matrix-shape, of the endo-
morphisms involved (see e.g. [14] and [19]). For euclidean domains this
characterization was obtained in [18]. §6 continues the discussion of §5 for
the R-monoidal category associated with the category of unital R-modules,
being an associative, commutative ring. It is shown that an endomorphism
of a finitely generated projective R-module M is an isomorphism if and only
if its image under the predeterminant map is a unit; this implies that for
such a module the group of units of the predeterminant monoid is isomor-
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phic to the factor commutator group of AutzM. As in §4 the localization
principle is established for finitely presentable R-modules. In the final sec-
tion we outline additional applications. We also indicate a characterization
of the determinant over a large class of commutative unital rings as the
solution of a universal problem closely related to the one dealt with in §1.

§1. The Universal Problem.

Let € be a category. For a given object A of C we shall denote the
set C(4,A) by C(4). The invertible elements of C(A) form a group C*(4),
the composition in C*(A4) being the obvious one. C*(A) operates on C(A) by
conjugation, that is by the assignment

C*A) X C(A) 2 (a, p)—> apa™ € C(A).

This operation and its orbit set C(A)/C*(A) shall be used in the sequel with-
out any further reference.

Consider the following universal problem whose data are -a category C,
a category L, a map [: Ob € —> Ob L, and a faithful, set-valued covariant
functor | |: Z—> S subject to the condition

C(A) = |1(A)] for all objects A of C,

the universal problem being to find for a given object A of € an object
U, of L and a morphism u4 from [(A) to U, such that

(1) luyl factors through €C(A4)— C(A)/C* A)
(ii) for any morphism v with domain [(A) such that |v| factors through
C(A)—> C(A)[C*(A) there exists uniquely a morphism & from U,

to the codomain of v satisfying v =6 u.,.
In case of existence the universal problem furnishes a unique factorization

cla—"

c(A)/Cc*(4)

and we obtain trivially

(1.1) CoRoOLLARY. In case of existence the pair (u4,Uys) is unique up to isomor-
phism.

(1. 2) CorOLLARY. In case of existence ¢ = |o] o A4 where |v] = poq.
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In order to facilitate the statement of the following existence theorem
we denote for any object A of C the class

{v: dom (v) = I(A) & |v| factors through C(A)—> C(A)/C*(A)}
by 44. Then we have (see [11], p. 84)
(1. 3) THEOREM. Suppose that

() | | preserves products and monomorphisms

(i) L is well-powered and complete

(i) for the object A of C there is a set Sy of objects of L such that for
any v € 44 there exists a v’ € 44 and a morphism codom (v') —> codom (v) such that

codom(v'Y€ S, and  I(A) <7 ! commutes.

Then the universal problem for A possesses a solution.

Proof. TFor the sake of completeness we repeat the proof given in [11],
p. 84-85. Form the product

2= II{codom (v"): v" € 4, & codom (v') € S,}.

Its existence is guaranteed by the assumption that Z is complete. Denot-
ing by p, the v’. projection L, —> codom (v') there exists uniquely a w: /(A)
—> L, such that py-w=0v" for all v’ e 4, satisfying codom (v') € S,.
Since | | preserves products an easy argument shows that w e 4, holds.
L being well-powered and complete implies further that there is a minimal
subobject U 5L, of Ly through which w factors. This factorization shall
be written as w = m,-u,. We claim that the pair (u4,U,) is a solution of
the universal problem for A. First we observe that |u,| factors through
C(A)—> C(A)/C*A) since w does and since [my,]| is a monomorphism in §
(i.e. an injection). Next, given v € 4, the condition (iii) of (1. 3) furnishes
a commutative diagram as indicated there whence

UA A
uy T w Py,
1(A) ’ codom (v")

\ lodom (v)
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commutes, establishing the existence of the desired factorization. Unique-
ness of this factorization is then an immediate consequence of the minimality
of Uy.

Browsing through [11], p. 87-89, and adopting the statements and reason-
ings to our situation we find the following results:

(1. 4) ProposITION. Suppose that

(1) | | preserves products and monomorphisms
(i) € us complete, cocomplete, well-powered, and cowell-powered

(iil) L is a full, replete subcategory of C that is closed under the formation of
- products and subobjects.
Then the universal problem possesses a solution for every object of C.

(1. 5) ProrosiTioN. Suppose that

(i) | | preserves products and monomorphisms
(ii) L is well-powered and complete

(iii)  every object of L generates through the identity functor of L at most a set
of non-isomorphic objects of L.

Then the universal problem possesses a solution for every object of C.

(1. 6) ProposrTION.  Suppose that

(i) | | preserves products and monomorphisms

(i) L s well-powered and complete and possesses a cogenerator.

Then the universal problem possesses a solution for every object of C.

(1. 7) CororLrARY. Under the assumptions of either (1.3), (1.5), or (1.6) the

morphism wu, is an epimorphism.

That much for general existence theorems.

For the sake of convenience we shall denote by I' the quadruple
(C,L,1,] |) of the data described previously and subject to the above re-
quirements. Let I and I be two such quadruples and let ¥ = (&, &, 57)
be a triple of covariant functors (with appropriate domain and codomain)
such that
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! |1
ObC —L—S
%l gl %l
l/ I l/
ObC'—>L'—>S
commutes and that for every object A of C—notice that SZC(A)= C'(F A)

holds—there is a (necessarily unique) factorization

C'(FA) 97(C(A)CHA)) .
SselFACH T Ay,

One checks immediately that these triples ¥ form a category, the composi-
tion of such triples being the obvious one. It should also be remarked that
the last factorization implies that for every object A of C, & maps 4, into

4. gra-

(1. 8) THEOREM. Let W:I'—I" be a morphism and suppose that for the object A
of C both (us,U,) and (u gra,U o4) exist. Then there exists a unique factorization
Gua= Qa+tga, and for the resulting morphism g4 the relation (FF24) o ¥, =
1gal © 2 g4 is valid.

Proof. Straight forward.

(1.9) ProrosiTioN. Let W:I'— 1" be a morphism and suppose that for the object
Aof C

(1) the universal problem for A possesses a solution (u.4,U )
(1)  wuy ts an epimorphism and & preserves epimorphisms

(i) <& is a surjection from A4, onto 4 g 4.
Then (Fuq €Uy ts a solution of the universal problem for 7 A.

Proof. The existence of the required factorization follows easily from

(iii) by pulling back. Uniqueness of the required factorization is an im-
mediate consequence of (ii).

(1. 10) ProposiTiON. Let U:I'—>I" be a morphism and suppose that for the
object A of C

(i) the universal problem for 7 A possesses a solution (u gra,U o a)
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(1)  there is a covariant functor &' L' — L such that &' o & is the identity
on L and that & o &' 1is isomorphic to the identity on L' via an iso-
morphism m satisfying my gay= 1'(F A)

(iii)  |ugal” factors through C'(F A)— ZZ(C(A)|C*A))

(iv) 27 s full and faithful.

Then the universal problem for A has (&' ga, € U gra) as a solution.

Proof. Let v be in 4,. Then &v is in 4 5, and therefore there exists
a factorization &v = 6"-u 4. The first condition of (ii) implies then that
v=Z"" - Z'uga In case v belongs to 4, and v =06-Z u 5, we obtain
Cv=F0-FZ u g4 whence the second part of (ii) establishes the unique-
ness of 5. The first condition of (ii) then establishes the uniqueness of
6. In order to show that &’u 5, € 44 holds we observe that there is a

factorization & & u -4 = w+ u o, whence we have a commutative diagram

2Lt ral)
seca)y T TN (12U gl
I Ty
lal”
27 (CA))— Ul
l -

%<C<A>/c*<A>>/

Therefore the fullness of 27 asserts the existence of a diagram

|G uga|
C(4) — = | LU g4l

l -
C<A>/C*<A>/
Its commutativity follows from the commutativity of the previous diagram

and the faithfulness of 27.
It is clear from the proof of (1.10) that, simultaneously, the second

condition of (ii) can be weakened to:

there is an isomorphism w such that @& u gy = w-u g4
and condition (iv) can be weakened to:

&7 is a bijection from S(C(A)/C*(A),|Z u_g4l) to S(ZZ{(C(A)|C* A)),
G u gral))

https://doi.org/10.1017/50027763000024442 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024442

42 HELMUT ROHRL

Next we shall give several statements relating the solutions of the uni-
versal problem for various objects.

(1. 11) ProrosrTioN. Let A and A’ be objects of C for both of which the univer-
sal problem has a solution. Suppose that there is a morphism t from I(A) to I(A")

such that
c(4) I (A
clayeHa) — s craniena)

commutes. Then there exists uniquely a morphism u, from Uy to U,y rendering

t

I(A) - > I(A")
u,{l 3 luA/
Ui Uy

commutative. If, in addition, t is an isomorphism and < is a bijection, then u, is
an isomorphism.

Proof. Since |uy ] factors through C(A")—> C(A")/C* A") our hypothesis
shows that |uy -¢| factors through C(4)— C(A4)/C*(A). Hence the univer-
sality property of u, furnishes the desired morphism #,. The remainder
follows quickly from the uniqueness part of the universality property.

Suppose that for the objects 4, and A, of C the product A4,T A, exists.
Then we have canonical maps

C(A;)) X C(A))—> C(A, T Ay A;) X C(A, T Ay, Ay) —> C(A T A,)
the composition of which sends (#,, #,) into the unique morphism w satisfy-
ing
DaW = Py, and DaW = UsD gy

P4, being the projection onto A;,. An easy computation shows that this
map is a homomorphism of monoids. Since the images of C(4;) X {4,} and
{A;} X C(4,) in C(A,TA,) commute we obtain a commutative diagram

C(A) X C(A,))—> C(A,T A,)

C(A)[C*A)) X C(A,)|CHAy) —> C(A, T Ay)|CH AT Ay).

(1. 12)
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(1. 13) ProrosiTiON. Let Ay, A, be objects of C for both of which one universal
problem admits a solution. Assume that

(i) the products A, T A, and I(A,)T1(A,), and the coproducts 1(A,)1L1(A,) and
Ua LU, exist

(ii) there ts a morphism m: (A, I(Ay) —> (A, T A,) that, via | |, lies above
the canonical map C(A;) X C(A,)—> C(A, T A,)

(iii)  there is a morphism k: 1(A;) 1L 1(Ay)—>1(A,) T 1(A,) which renders the diagrams

ca) 25 iy iy 2 ey x c(ay

l !

C(A)ICH(A) ——> C(A,)|C*(Ay) X C(A,)|C*(Ay)

commutative, where j;: 1(A;)—> I(A;)ILI(A,) are the canonical injections

(iv)  the universal problem for A, A, possesses a solution.

Then there exists uniquely a morphism g: U, WU 4y —> U 4,14, Such that

U LA~ 1 A) T 1{A) —> (A, T Ay)

uAI.U_Agl v luAﬂTAz

Ua LUy, >U a4,

commules.

Proof. (1. 12) together with the hypotheses implies that w.,ya,mks; belongs

to 44,. Hence there exists a factorization
uA;‘lTAgmkji = 0ilUl 4, 1=1,2,

the morphisms g, having U, r4 as common codomain. g, and g,
therefore determine canonically a morphism ¢ from U, 11Uy, to Uy s, which

has the desired properties, as is checked easily.

(1. 14) ProposiTioN. Let A’ and A be objects of C for both of which the uni-
versal problem possesses a solution. Let furthermore k: 1(A") —> 1(A) be a morphism

such that for some map « the diagram

cuan, o

Lo

C(ANCHA") —> C(A)C*A)
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commutes. Assume that

(1) | | reflects epimorphisms (resp. monomorphisms resp. isomorphisms)

(ii) & is a surjection (resp. injection resp. bijection)

(iii) C(A)CH*A)—> U4l is a surjection (resp. C(A")CHA)—> Uyl is a
surjection and C(A)/C* A)—> |U4| is an injection resp. C(A")/C*A"
—> Uy | is a surjection and C(A)|C*(A)—> |U,| s a bijection).

Then there is a natural epimorphism (resp. monomorphism resp. isomorphism) U o —>U 4.

Proof. From the commutative diagram in (1. 14) we take that wu,k be-
longs to 4,+. Hence there is a unique factorization u,k = du,. Consider
the commutative diagram

ANjcHA") C(A)|C*(A)

\ k] /
CAy—— C(A)
/“AI 191 IuA\

[Uxl [Ual

From it we conclude that under the various hypotheses (ii) and (iii), |6] is
a surjection (resp. injection resp. bijection) whence (i) finishes the proof.

There is a “commutative companion” to the universal problem posed
at the beginning of this section. It is gotten by sharpening the condition
(i), namely that |us|(ap)= |us|(za) for all automorphisms a of A and all
endomorphisms g of A, to

1) lugl(eary) = |usl (o) for all endomorphisms f,, ¢, of A

and by replacing (ii) by the correspondingly altered condition (ii°). Clearly
we have

(1.15) ProposiTioN. If for some object A of C both, u, and uj, exist then there
is a unique factorization u§ = ws- .

Existence of a solution of this altered universal problem can be esta-
blished under the conditions of either (1. 3)—with the solution set condition
(iii) appropriately modified—or (1. 4) resp. (1. 5) resp. (1. 6). And, as before
we obtain

(1. 16) CoRroLLARY. Under the assumptions of either (1.3) with the modified
solution set condition, or of (1.5) resp. (1. 6) the morphism w, is an epimorphism.
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It should be observed that all results of this section that were stated for
the “non-commutative” universal problem hold, mutatis mutandis, also for

the “commutative” universal problem.

§2. The Universal Problem for Presheaves.

Let P(X,C) be the category of presheaves over X with values in the
category €. For each inclusion W GV of open subsets of X we obtain a
canonical covariant functor from P(V,C) to P(W,C) which sends every
presheaf &7 over V into the restriction &7 |W. It gives canonically rise to
natural maps

(2.1) [ZV]—[F W],

[Z |V] being the set of endomorphisms of |V in P(V,C). Clearly these
maps constitute a set-valued presheaf [#| 1. Since (2.1) is a homomor-
phism with respect to the canonical monoid structures there are induced

natural maps between orbit sets

FIWVIZ IV — [FIWILF IWT,

the operations being the ones discussed in §1. Again we obtain a set-valued
presheaf [#| J[.Z| T, and the maps which assign to each point its orbit
constitute a natural transformation from [ ]| 1 to [ZZ] 1/[ZIT*. One
checks easily that both [#Z| ]and [[%?| J[.2| I* are sheaves whenever &
itself is a sheaf.

Assume that the following data are given: a category C, a category
L, a map [: Ob P(X,C)—>Ob P(X,L), and a faithful, set-valued co-
variant functor | [: L —> S that reflects identities. Suppose that

PX,| NN(L)=[L]| ] for all presheaves .

Again we can pose the universal problem asking for the existence of a
presheaf 7/ over X with values in L and a morphism of presheaves «
from I(F) to Z/s such that

(i) P(X,| |)egs factors through [#| 1—>[F| MNL| T

(ii,) for any morphism .. of presheaves with domain /(%) such that
P(X,| |). factors through [[Z| 1—>[. 2| .97 | 1* there exists
uniquely a morphism 2 from %/ to the codomain of . satisfy-

ing 2 =4’).Mﬁ.
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(2. 2) TueoreMm. Let P be a presheaf over X with values in C and assume that
Sor every open subset V of X the pair (uy,Uy) solves the universal problem for all
morphisms v in L with domain (P )V) such that |v| factors through [ |V]]
L V1. Then the previous universal problem for F admits a solution (« s, %)

satisfying « goy = uy and 7/ (V) = Uy for all open sets V.

Proof. Straight forward (see e.g. [16], p. 64).

Clearly we obtain

(2. 3) CoroLLARY. The hypothesis of (2. 2) is satisfied for every presheaf F
provided that the assumption of either (1. 3)—with (iii) replaced by an appropriate
solution set condition—or (1. 4) resp. (1. 5) resp. (1. 6) are valid. Under the assump-
tions of either (1. 3)—with (ill) modified as stated—or (1. 5) resp. (1. 6) « s is point-
wise an epimorphism. _

Before we go on a remark is in order. Via the canonical imbedding
C< P(X,C) the map [ assigns to each object A of C a presheaf [(A) with
values in L. By assumption we have P(X,| [)lI(A)=[A] 1. Since [4] ]
is a constant functor the requirement that | | reflects identites implies that
I(A) is a constant presheaf. Hence ! gives rise to a canonical map from
Ob € to Ob L which shall again be denoted by /. This map evidently
satisfies |I(A)| = C(A) which is just the relation imposed in §1 on the data
of the universal problem. '

Next we shall discuss the connection between the universal problem for
presheaves and the universal problem of §1 when stated for individual stalks
of those presheaves. This, of course, will only be possible under the as-
sumption that both € and L are cocomplete.

We require now of all presheaves & that for every x € X and all open
sets V containing x there is a morphism A(. ) I(F)V)—> I(F,) that is
natural in V. Hitting this morphism with | | we obtain a map [A(F)|:
[FZ|V]— C(,). We require, in addition, that the maps (. F); are
homomorphisms of the canonical monoid structures. Then they give rise to
commutative diagrams

ZIV]————C(F)

(2. 4) l l

[ZIVILL |V ——— C( L) CH F) -
Suppose that one of the alternate conditions of (2. 3) is satisfied. Then the
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universal problem for &7, formulated in §1 has a solution (#s,U o»,) and the
above commutative diagram shows that |ugs - (P )il=]uce |- |2(F )]
factors through [ |V |V]*. Hence (2. 2) furnishes a unique factorization

Ugp,* AP )i = 0oy - Ugpy.

Passage to the direct limit furnishes then a commutative diagram

”@m
(P, s Xon,
AP | - Lo
U,
UF) e U,

(2. 5) ProposiTiON, Assume that both C and L are cocomplete, that one of the
alternate conditions of (2. 3) is satisfied, and that the natural morphisms A( Py render
homomorphisms |2 PVe| of the canonical monoid structures. Assume furthermore that
|| preserves direct limits. Then A F), being an isomorphism implies that 6 e,

is an isomorphism.

Proof. First we observe that the direct limit «g,: (P ), —> X, is

characterized by the following universality property. Given any family of
commutative diagrams

U p
()W) L 2
(2. 6) l l
L M

that is natural in V there exists uniquely a pair of morphisms /(. &), —> L
and Z/s,—> M rendering all diagrams

W) V)
/
o) l Zo

commutative. Since (), I(F), —> I(F,) is an isomorphism by assump-
A

tion the morphisms l(,g‘)(V)—»l(ﬁ)z——(—@—)l(ﬁx) constitute a direct
limit-diagram. The hypothesis on | | then implies that [ |V]—> C(,)
is also a direct limit-diagram. Thus (2. 4) shows that [ |VI[Z |[V]F—>
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C(F,)CH. P, is a direct limit-diagram too. Hence (2. 4) and (2. 6) give
rise to the commutative diagram

[P V] ——[LIVILL IV — | Z (V)]
\ P
C( ) M/cj&%)

L= -

—|M]|

and our last remark shows the existence of a map C(%,)/CH F,)—> | M|
rendering the right upper corner commutative. This means that the two
possible compositions from [ |V] to | M| “passing through C(.Z7,)” coincide.
C(Z,) being a direct limit implies therefore that the bottom diagram com-
mutes, ie. that C(Z,)—> |L|—> |M| factors through C(Z,)/C*(F,).
Hence the universality property of « s : I(F,) —> Z/ furnishes a unique
morphism %/ — M such that

| |

L — M

commutes. The remaining required commutativity relations now follow
trivially.

The assumptions of (2. 5) are tailored so as to fit the case of & being
a coherent sheaf and / being the map that assigns to & the sheaf of endo-
morphisms of &. The meaning of (2.5) is, of course, that the stalks of
the universal solution for the presheaf can be computed stalkwise.

There is another result that is of interest for sheaves. For the purpose
of formulating it we recall that a presheaf &’ over X is a recollatement
of the presheaf &7 if there exists an open covering {V};c; of X and iso-
morphisms a;: F'|V,—> #|V,. These isomorphisms canonically induce
natural bijections B : [ F'|V]I—>[ZL|V] (for V cV,) by the rule gu(p") =
(as]V)+ ¢’ +(a;]V)™", and these bijections are homomorphisms of the canonical
monoid structures. Altogether we obtain the isomorphisms of presheaves

B (Vi) 1T— U1Vl 1

(2. 7) ProposiTiON. Basic assumptions as in (2. 2).  Suppose, in addition, that
P’ is a recollatement of F and that I(F') is a recollatement of (. FP) with local
isomorphisms ;2 WPV, —> 1(P)|V, whose images under P(V,,| |) are the
induced isomorphisms B;: (F'\V) 1—>U LV 1. Suppose furthermore that
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both I(P') and Z/ are sheaves. Then the universal problem for the presheaf F'
admits a solution (« s, Z/ ) and there is an isomorphism Z/ o = U p Such

that for every i € I the diagram

“ﬁ/lvi
UPV, Y|V,
i ~
L
UK NS > %@'Vi

commutes.

Proof. Due to our assumptions «: [(FP')|V,—> & factors through
(ZNV)l 1— U2 V)] (P V)| T* if and only if ..- 27 factors through
(ZIV)l 1—UZIV)l LIV 1*. Since (2.2) implies that (« gz v,
U pw,) = eV Up|V:) we conclude that ((«s|Vy)+2, Z»|V:) solves
the universal problem for all morphisms .. in P(V,, L) with domain /(. Z")|V;
such that P(Vy, | |)= factors through [(Z7'|Vy)] 1—> U’V WLF" IVl T*.
For V cV; NnV; we have the commutative diagram

L V1= P V] — > LF VILF VT
e L e |
[P |V]— > [P | V] — > [P VILF VT
where
Biv(e) = (@, | V)« (| V) 1) e pr s ((@,| V) (a;|V)1)? for all e[ Z|V].

Clearly the g, are functorial in V. Hence the commutativity of (2. 8)
implies the commutativity of

(”ﬁlvi)‘lilviﬂvj
HF)NV:NnV; > WsViNVy

29 " (e Vi) 24| ViNV; “
PNV NV; > WBViNV; .

Since both (') and Z/z were assumed to be sheaves (2. 9) shows that
the local morphisms (wﬁlV@')‘xi'z W P")Vi—> Z|V; match up to a mor-
phism « s : (") —> Z/g which evidently solves the universal problem

for .2’ and renders the required diagrams commutative.
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(2. 7) states that “compatible” recollatements on the level of & and
1(&?) have the ‘“‘same” universal solution. Applying this to the situation
indicated at the end of the proof of (2.5) we conclude that, for example,
the universal solution for an arbitrary vector bundle coincides with the one
for a trivial vector bundle.

(2. 10) Remark. The definitions and remarks preceding (2. 2) as well as (2. 2)
and (2. 3) when appropriately modified carry over to arbitrary functor cate-
gories (replacing P(X,C) and P(X, L)). The same holds true for (2. 5) when

b

“passage to the stalk at x” is replaced by ““passage to a certain colimit”.

§3. Traces for Endomorphisms in R-additive categories.

ILet R be an associative ring. As usual we mean by an R-additive
category A a category with finite direct sums together with a covariant
“structural” Hom-functor Hom: 4°” x A——> Mod; rendering

MOdR
Hom
.
Al )
A?X A S
commutative where | |: Modz —> S is the standard forgetful functor from

the category Mody of left R-modules to the category S of sets.

In order to set up the universal problems dealt with in §1 we choose
for € the R-additive category A4, for L the category Modg, for ! the map
given by

[(A) = End A(= Hom(4, 4)),

and for | | the above forgetful functor | |: Modr —> S. For notational
purposes we denote by Aut A the group 4*(A) when viewed as a subset of
End A.

(38.1) ProposiTioN. Let A be an R-additive category. Then both the universal
problem of §1 and its commutative version admit a solution for every object of A.

Proof. (1. 5).

Given the object A of A4 we shall denote the solution (#4,U,) of the
universal problem of §1 (resp. the solution (#5,Uj) of its commutative ver-
sion) by (4-tr,, A-Tr,) (resp. (A-tr§, A-Trg)) and call it the trace (resp. the
commutative trace) on :A. Whenever the reference to the R-additive cate-
gory A is clear the prefix A4- shall be dropped. ‘
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(3.2) CororLLARY. For every object A of A the morphisms try, tri, and wy:
Tra—>Tr§ are surjections.

Proof. (1.7).

(3. 3) ProrositioN. Suppose that p is contained in the submodule of End A that
s generated by Aut A.  Then for every element v of End A,

tl’A([lv) = trA(Uﬂ).
Proof. 1If p = >Wa; where the e; are suitable elements of Aut A then
tI‘A(u‘u) = Zritr(uai) = EritI‘A(azlaiuai) = EritrA(aiu) = tI’A(pu).

(8.4) CororLARY. Let A be a finite direct sum of at least two copies of some
object A", Then wy: Tro—>Tri s an isomorphism (i.e. the trace on A equals
the commutative trace on A).

Proof. A simple matrix computation reveals that End A is generated
by Aut A. Hence (3. 3) implies that the trace is commutative. An obvious
universality argument then shows that w, is an isomorphism.

(3.5) ProrosiTiON. Let A=A @ --- @ A, be a finite direct sum with ir:
A, —> A the canonical injections and p.: A—> A, the canonical projections. Then
Jor every element p of End A,

trA(ﬂ) = E{t;’A(iICpIC#itplc): g=1, -, k}
tri(ﬂ) = E{trﬁ(ixpx.uixpx): K= 19 ct k} .
Proof. Since tr, is a homomorphism from End A to Tr, we obtain
tralp) = S{tralipapicde): 1,2 =1, « - -, k}.

Let v, € Hom(A4,, 4,), x <2, and denote by v the (unique) endomorphism
of A satisfying

Devie = 1d(A,), Dwie =v,;, and p iy =0 otherwise,
and by a the (unique) automorphism of A satisfying
Peraiy = 1d(A,) for all «, pai, = ve,, and p,aiy =0 otherwise.
One checks easily that
e wai, = 1d(4,), Pravai, =0 otherwise,

Hence we have
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tra(iepe) = tralava) = try(v) = try(iepe) + tra(iwea Do)
and therefore

tra(ive®e) =0 for ¢t <2.

Since we could equally well assume #> 1, the first formula of (3. 5) follows
from the first formula appearing in this proof. A similar argument establishes
the second formula.

(3. 5) generalizes the well-known fact (or definition if one so wishes) that
the trace of a square matrix is the sum of the diagonal entries. More

specifically we refer to (3. 8).

(3. 6) ProposiTiON. For every object A we have
Try= End Al{pg —ape™: p€ End A & o € Aut A}®
Try = End A|R{p,pty — totty: 1, 22y € End A}

with tr, and tri being the obvious quotient homomorphisms. In particular, Tr,=
Hy(Aut A, End A ).

Proof. Every R-homomorphism End A — L that factors through A(A4)/
A*A) has a kernel containing every element of the form g — apa™,
r€End A & a< Aut A, and hence the submodule generated by these
elements. Since try,: End A—Tr, is an epimorphism due to (3.2) our
claim concerning Tr, follows. A similar argument applies to Trj.
The fact that Tr, is the indicated homology group is trivial since
Hy(Aut A, End A)= End A/I-End A where I is the augmentation ideal
of the group algebra R(Aut A) with respect to the unit augmentation (see

[8], p. 183).

(8. 7) CoroLLARY. Suppose that the objects A,, - -+, Ay satisfy Hom (A, A))=0
Jor all k= 2. Then there is a commutative diagram

@“’A,c

@ End A‘ @ TrA'c
=l trea, l=
End@® A, > Trpay

the isomorphisms in it being canonical. Similarly for the commutative trace.

D By R{---} is meant the R-submodule generated by «--
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Proof. Straight forward using (3. 6).

(3.8) THEOREM. Suppose that R possesses a unit. Let A be an object for which
End A is a monogenic R-module and thus isomorphic to Rla for some left ideal a of
R. Then for every natural number k there exists a commutative diagram

. try "
)
End DA > Tr;
| =
~ o
(R|a)®® > Rla + R{r,r, — ryry: 11,7, € R}

where (Rla)%® stands for the algebra of k-by-k matrices over Rla and sp stands for
the canonical image of the sum of the diagonal entries.

Proof. For k=1 this is an immediate consequence of (3. 6). For k>1
k
we obtain due to (3.5), putting B=® A4,

tr;(;z) = Z{trﬁ(,u,c): k=1, ¢+, k}

where g, is the (unique) endomorphism of B given by the relations

Dellelr = Deftle, Derleiy =0  otherwise.

Our assumption implies that id, generates End A as an R-module. Hence
an easy computation shows that for some 7, € R, #, = 7,40, holds. The
equivalence class of 7, in R/a is uniquely determined by the relation
cl(ry) = pepin(cl(1)). Using permutation-of-summands automorphisms of B
one checks easily that all i,p, define the same equivalence class in A(A)/A*(A)
whence we finally obtain

tri(p) =2Mreie=1, <+, kY- tr§(ip,).

This together with (3. 2) shows that Tr§ is a monogenic R-module and there-
fore isomorphic to R/a’ where a' is some left ideal. Clearly we have the
inclusion

(3.9 a+ R{ryr,—ryr:ir,r, € R} Ca'.

k
Since the canonical bijection End ® A — (R/a)®#® is an isomorphism of the
canonical monoid structures and since the map sp is ‘“commutative” the
universality of trj furnishes a unique homomorphism rendering the diagram
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in (3. 8) commutative. It remains to be shown that this homomorphism is
in fact an isomorphism. Since i;p, corresponds under the canonical bijection
to the matrix with cl(1) in the left upper corner and all other entries zero
we conclude that the image of tri(i,p,) equals cl(1). This in conjunction
with (3. 9) shows that we have indeed equality in (3. 9), that is that the
previous homomorphism is an isomorphism.

The bottom arrow in (3. 8) is, of course, the usual definition of the
trace for an endomorphism of a finite free module (see [13], p. 113 for the
non-commutative case).

At this point we should like to offer some examples without giving
proofs. Since the trace depends on End A and the properties of the cate-
gory Mody rather than on the properties of the category 4 we shall choose
for A the category Mod itself, R now being assumed a commutative, unital
ring, and for Hom the functor Homg.

(3.10) Examprrs. a) For any infinitely generated free R-module M, Try,=0.
b) In case R = Z we have

Tre}{zp: p all primes} = @{Zp: Y all primes}-

c) Let M be a reduced p-primary (p >2) Z-module that is a direct sum
of countable Z-modules. Then wy: Try——>Try is an isomorphism due
to (3. 3) as in this case every endomorphism of M is the sum of two auto-
morphisms ([9]).

d) ®Let M be a finitely generated Z-module. Denote for every prime p
the p-primary part of M by M, and the free part of M by M.. Using
a few elementary matrix operations and the universality of the trace we see
that there is a communtative diagram

Endz (M. O ® M, ——— EndzM. ® Endz(® M,)

ter y ltrM“® e,
Tr, —— Try, ® Treux,
7

with ¥ and 5 isomorphisms. By (3. 7) we have
Trﬂayp = @ TrMp.

In order to determine Try,, let N be a finitely geerated p-primary Z-module.
The we have the a canonical decomposition

2) This example is due to Mr. E. L. Lady of UCSD.
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N = @{nkquk: k=1, + -, n}.

We may assume ¢, < :-:<g,. Denote n,Z,&« by N,. For 7 EndzN,
let ¢, = try,(pe+7+ i) € Z,a, computed in accordance with (3.8). Then a

matrix computation leads to
Try=Z,0®DZy:@ « + + D Zyrey ¥ = Qi — Gy

and tra) = (ew e -+, ca)

were, by abuse of nofation, we have written ¢, for the image of ¢; under the
canonical homorphism Z,s. — Z,», j <k, as appropriate.

An analogous discription can be found for finitely generated modules
over a principal ideal domain or a Dedekind domain R.

§4. Traces for Endomorphisms of R-modules.

In this section we shall deal with a special case of §3: We assume
that R is a commutative unital ring, A4 is the category Mod; of unital R-
modules, and Hom is the usual Hom-functor Homz. Some of the const-
ructions and results of this section carry over to more general situations
(e.g. R-additive categories with multiplication) as can be seen easily.

Let M be an R-module and denote by M* its dual. Then there is a
canonical homomorphism EndzM—> End,M* that sends each endomorphism
¢ into its transpose ‘z.  One checks quickly that the composition EndzM
—> EndpM* —> Try» factors through EndzM/AutzM. Hence there exists
uniquely a homomorphism d,: Try—> Try* rendering

)

End.M > EndzM*
(4. 1) ter i ltrM*
Try ——————————> T

commutative. Similarly for the commutative trace.

(4. 2) ProrosiTiOoN. Let M be‘ a rqﬂexiqe R-module.  Then the homomorphism dy
is an isomorphism.

Proof. Stick (4. 1) together with the analogous diagram for M* and
M** and identify M** canonically with M. Then the universality property
of the trace implies that dy+d, is the identity. Since M* is reflexive dyp+dy+
is also the identity. Hence dy*, and therefore dy, is an isomorphism.
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(4. 3) CoroLLARY. Let M be a finitely generated projective R-module. Then dy
is an isomorphism.

Proof. Any finitely generated projective R-module is reflexive (see [5],
p. 72).

Let M and N be R-modules. Clearly there is a commutative diagram
of R-homomorphisms

®
End,M®z EndzN £ s Endz(M®xN)
tX‘M®RtI‘N l ‘ l tr]ll‘gRN
Tru®zTry kil > Tru@uy

where #, 5 has all the expected functorial properties.

(4. 4) ProrosiTioN. Let M be a finitely generated projective R-module. Then ty,y
s an epimorphism.

Proof. If M is a finitely generated projective then EndzM®z End.N
—> Endz(M ®zN) is an isomorphism (see [5], p. 113). Hence (3. 2) implies
our claim.

Additional results concerning the trace on tensor products will come up
in connection with localization. Before, however, we shall deal briefly with
change of rings.

Let p: R—> S be a unital homomorphism of commutative rings. For
every R-module M we can form the S-module p*M = S&®;M. One checks
easily that there is a commutative diagram

) o

l trp*y

try Ty
! le
Try ~—> 0, Tro%y

where 7 is defined by 7(#) =1® g, o is the canonical homomorphism, & is
the canonical Z-homomorphism, and the bottom homomorphism is defined
by the universality of the trace. This bottom homomorphism gives rise to
the composite S-homomorphism (see [5], p. 121)

p*e(p)
e(p): p¥Try——— p*0, Trory

— Trp*M
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describing the influence of change of rings on the trace. Similar definitions
hold for the commutative trace, in which case the corresponding composite

S-homomorphism shall be denoted by ¢°(p).

(4. 5) ProrosiTION. Suppose that either S is a finilely generated projective R-module
or that M is a finitely generated projective R-module.
an epimorphism.

Then e(p) as well as e'(p) is

Proof. One checks easily that the following diagram commutes

p*tI‘Ml l tro*y
e(p)
p*TI‘M > Trp*M

Since © is an isomorphism under the stated assumptions (see [5], p. 124)
and since try+, is an epimorphism due to (3. 2) our claim concerning e(p)
follows. Similarly for e°(p).

It is of interest to know how to compute e(sp) where p: R—> S and
o:S—> T are unital homomorphisms.
(60)*N —> 6*0*N by ry we obtain

Denoting the canonical isomorphism

(4. 6) ProposttioN. Let p: R—>S and o¢: S——>T be unital homomorphisms

Then

of commutative rings.

elap) = Ty - eo) - a*elp) * T1,, and

e (0p) = 13’ - (o) - 6¥€°(p) * T1rg s
Tt being the canonical isomorphism Trsrosy —> Tr@oyy (and similarly 757).

Progf. We have the following commutative diagram

TEnd, M )
(op)*EndzgM ————— ¢*p*End g M ————— ¢*End g0 M ——
(ap)*ter o‘*p*ter O'*trp*Ml
Trry a*e(p)
(o‘p)*TI’M —_—> o'*P*TI‘M d O'*Trg*M
) HOmT(TM T;ll)
— > Endye*p*M 5 Endg(op)*M
tra*p*Ml tr(a'ﬂ)*Ml
e(o) T
—_— Tra*p*ﬂ > Tr("l’)*M
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in which, due to functoriality, the top row equals the canonical homomor-
phism (g0)*Endz M —> End(sp)*M.

A few words concerning restriction of scalars. Let again p: R—> S be
a unital homomorphism of rings. For every S-module N we can form the
R-module p,N obtained from N by restriction of scalars to R. Again there
is a commutative diagram

§
p*EndsN —_— EndR PN

Pty l l trosy
7(0)
o Tty ——> Trpn

where & is the canonical Z-homomorphism and the bottom homomorphism
r(p) is defined by the universality of the trace. Similarly for the com
mutative trace, in which case the bottom homomorphism shall be denoted
by #°(0). Here we have

(4. 7) ProrosiTION. Suppose that p: R—> S is an epimorphism. Then both 7(p)
and v°(p) are isomorphisms.

(4. 8) ProrositioN. Let p: R—> S and o: S—>T be unital homomorphisms of
commutative rings. Then '

r(op) = Fu - 7(p) * ps#(0) * 7r-, and

=c/

r(00) = 73+ 7°(0) + P47(0) * Frrg,

with the adorned 7's defined in a fashion analogous to (4. 6).
Next we shall deal with the behavior of trace under localization. Let
S be a multiplicatively closed subset of R. Then the universality property
of the trace as well as of the localization at S furnishes a unique S™'R-
homomorphism /g, ,: S7*Try —> Trg-1; rendering
End.M

e

S'EndyxM ——T——~-—> Endg-1S'M
Try

/ s \

STty Trs1y

Stry tro1y

commutative in which all undesignated homomorphisms are canonical. A

https://doi.org/10.1017/5S0027763000024442 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024442

DETERMINANTS AND TRACES 59

similar definition holds for the commutative trace, in which case the bottom
homomorphism shall be denoted by §,.

(4.9) TuEOREM. Suppose that the canonical homomorphism ¢: S'End,M—>
Ends-1:S'M is an isomorphism. Then 1%, is also’ an isomorphism. In particular
this is true of M 1is finitely presentable.

Proof. From (3.2) and the above commutative diagram we take that
1%y is an epimorphism whenever ¢ is an epimorphism. Hence it remains
to be shown that 7§, is a monomorphism. Let m be in the kernel of /§,
and choose —% € S7'EndzM such that m= (S“trfu)(”T). Then we have

tr§~1Mgo<%> = 0 whence there are endomorphisms #4, #7 of S™'M such that
o £) = SUm — Fi).
By assumption these endomorphisms can be written in the form

m=o( 1) and = 1)

7
$3

with #¢f, #7 suitable elements of EndzM and s/,s? suitable elements of S.
Since ¢ is an isomorphism we obtain

L?E{#i' [ #2}
s s4 s s7 s}

and thus

. tr (o el — e
m = (sltrm(fsf_): E_L»A&%M:O,
Y

which proves the assertion in the general case. However, if M is finitely

presentable then ¢ is known to be an isomorphism (see [6], p. 98).

(4. 10) CoROLLARY. Suppose that the R-module M is finitely presentable. If the
prime ideal p of R is not in the support of M then (Triy), = 0.

Proof. Since M, =0 and since try,: Endz M, —> Trj is an epimorph-
ism we conclude that Trj, is the null module. Hence (4.9) finishes the
proof.

(4. 11) PropostTioN. Let M be a finitely generated projective R-module. Then
try equals the composition
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-1

¢ e
EndpM——"—5 M*® M ——— im ey

where ey is the evaluation map and ¢y is the canonical isomorphism.  Moreover,
(Try), is isomorphic to R, for every prime ideal p contained in the support of M.

Proof. Since M is a finitely generated projective module there exists an R-
module M’ satisfying M® M’ = éR. There is a canonical homomorphism

Endz;M—> End; éR which sends every endomorphism g of M into p®O0,. .
Using (3. 8) we then obtain a commutative diagram

@O0

EndzM —> EndnéR
try, l trgB r
Tré, > R

If p is in the support of M then M, is a free (see [6], p. 143) R,-module of
positive rank. Since a finitely generated projective module is finitely pre-
sentable (see [6], p. 36) we obtain, using (4. 9), the commutativity of the

diagram
~ @0 q ~ q
Endz, M, —— (Endz M), ——— (Endz®R), ——> Endz,®R,
¢ c ¢ trs
trM,l ~ (trM)pl (trg}R)p l o q%R,l
R,—— > (Try), —> R, —> R,

One checks easily that the composition of the homomorphisms on top equals
(—BO%. Since M, is free and a non-trivial direct summand of EqDR,, we
conclude from (3. 8) that there is an element in Endp M, that via the ‘“‘up-
per dogleg” of the last diagram hits the unit element of R,. Hence the
upper dogleg is an epimorphism, and so is (Trj), —> R,. However, (Trj),
is isomorphic to the canonical R,-module R,, a claim that is incorporated
in the last diagram. Hence a straight forward argument shows that
(Try), —> R, is indeed an isomorphism, which proves one of our claims.
In order to complete our proof consider the commutative diagram

-1
M

EndM —> M*QpM
tr, €
.| L e
Trﬁ, —> 1M ey
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By localizing it at the prime ideal p we obtain the commutative diagram

-1
Mp

Endz,M, —> M5Qz,M,
(trM)pl Zp . l &,
(Trgl)p —> 1m €Mp

If p is not in the support of M then (4. 10) implies that 2, is an isomorph-
ism. If pis in the support of M then our previous argument asserts that
(Tr%), is isomorphic to R, as is imey, Since the upper dogleg is again
an epimorphism it follows that 2, is an epimorphism. Hence, as before,
we conclude that 2, is in fact an isomorphism. Therefore a well known
globalization theorem (see [6], p. 114) implies that 2 itself is an isomorphism.

(4. 11) states that our definition of trace coincides with the customary
one for finitely generated projective modules (see [5]). In this connection
it should be recalled that a finitely generated module M is faithful if and
only if ¢, is an epimorphism (cf. [2], p. 133).

Note that the upper dogleg in the first diagram of the proof of (4. 11)
coincides with the definition of trace used in [17]. Since the proof of (4. 11)
implies that the bottom homomorphism in this diagram is an isomorphism
we conclude that our notion of commutative trace is equivalent to the one
used in [17].

(4. 12) PROPOSITION. Suppose that M is a finitely presentable R-module and that
N is a finitely generated projective R-module. Then

taon: Try QrTry —> Try@en
is an isomorphism.

Proof. Obviously ¢4,y is an isomorphism whenever N is a free R-module
of rank<1. For N a free R-module of rank >1 our claim is implicit in
(3.5) and (3.8). In the general case consider the pertinent commutative

diagram
®r
EndRM®R EndRN — EndR(M®RN)
tri Qe trs l " l U@z
Tri®:Trs e —> Tri@en

Since the tensor product of finitely presentable modules is finitely present-
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able (4. 9) implies for every prime ideal p of R the commutativity of the
following diagram

= (@)
Endy M,®x Endp N, —> (End, M®zEndzN), — > (Endx M®zN),
l = l (tan)p l
Tri,Qr, Tr5, —> (Try®eTry), ————— (Tri@en)p
5 Endp, M,®z,N,
j-) Tr;{,@R,Nﬂ

The composition of the top homomorphisms equals ®g, as is seen easily. Hence
the composition of the bottom homomorphisms equals ¢y, y,. Now, if p is
not in the support of N then clearly (Zy y), has domain and codomain the
null module and is thus an isomorphism. If p is in the support of M then
N, is a finitely generated free R,-module of positive rank and our previous
remarks concerning the free case imply that (,,y), is again an isomorphism.
Hence a well known globalization theorem shows that #y, is indeed an
1somorphism.

(4. 13) CoroLLARY. Suppose that M is a finitely presentable R-module and that
N is a fimtely generated, faithful projective R-module. Then there exists an
isomorphism t: Trly —> Triy@.y Such that the diagram

Ridy
EndzM —> Endr(M@zN)
trs 17 5 ®n
”l trelidy)- t l e
Tf)cu _—)Trfl@)RN

commules.

Proof. (4.11) and the remark following the proof of (4. 11) imply that
for N a finitely generated, faithful projective R-module tr§ equals the com-
position

~1

&3 €
EndpN — 5 N*QaN — — > R .

It is then clear that ¢=t,y makes the above diagram commutative.
Hence (4. 12) proves our claim.
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(4. 14) ProrosiTION. Let M be a finitely generated projective R-module. Then
Sor any homomorphism o: R—> S of unital rings e*(p): p¥Try —> Trowy is an iso-
morphism.

The proof of this last statement follows the pattern of previous proofs
using (4. 9) and shall therefore be omitted.

In view of (4. 9) it would be quite interesting to determine the trace
modules Trj for finitely presentable modules M over local rings. However,
only partial results are available here.

(4. 15) TuroreMm. Let R be a (not necessarily noetherian) local ring with maximal
tdeal m. Let M=:0 be a finitely generated R-module such that char (Rim) does not
divide the minmimal number of generators of M.  Then there is a canonical epi-
morphism Try—> Rlm.

Proof. The canonical homomorphism EndzM—> Endg/M/mM gives
rise to a commutative diagram

End,M — Tr§,

! |

EndgiwMmM —> Triyny

where the map on the right hand side is an R-homomorphism with respect
to the obvious structures. M/mM is ‘a free R/m-module of rank equal the
minimal number » of generators of M. Since Trjy;,.» is isomorphic to
R/m due to (3.8) it remains to be shown that the lower dogleg in the
above diagram is an epimorphism. Let s&€ R/m = TrY,,». By assumption
we can form n7's. Evidently the trace of the homothety of M/mM by n-ls
equals s. This homothety, however, is the image of the homothety of M

by any element » of R satisfying cl(r) = n~'s. Hence our claim.

(4. 16) CorovrLLARY. Let M be a finitely representable R-module such that for some
prime ideal p of R in the support of M, char (R,/pR,) does not divide the minimal
number of generators of M,. Then Trj is not the null module.

Proof. (4.9) and (4. 15).

§5. Predeterminants for Endomorphisms in R-monoidal Categories.
By a monoid with zero is meant an associative, unital multiplicative
system M in which there exists a (then unique) element 0 such that 0.m
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=m-0=0 holds for all elements m of M. If R is an associative unital
ring then the multiplicative structure of R furnishes an example of a monoid
R* with zero. By a homomorphism between monoids with zero is meant a
map that preserves all products as well as the zero and the unit element.
Let R be an associative unital ring. Then we shall speak of a left R-
monoid M if M is endowed with the structure of a monoid with zero and
with a left operation w:R X M—> M satisfying—with 7m standing for

olr, m)—

(rpo)m = rirem) ,  rlmm,) = (rm)ms = m(rmy)

Im=m , Om=70=0

If A is an associative left R-algebra with unit then the multiplicative struc-
ture of A furnishes an example of a left R-monoid A*. A left monoid
with zero is in the obvious manner a Z,-monoid.

By an R-monoidal category is meant a category C together with a
covariant “‘structural” Hom-functor Hom: C°” xC —> Mon,, Mon; being
the category of left R-monoids and their obvious homomorphisms, rendering

Mon,,
Hom ‘
[l

ct,) v

C"XC——> 8
commutative where | |: Mon, —> S is the standard forgetful functor. The
prime example for such categories are furnishes by partially forgetting the
structure of R-additive categories A: in this case End A carries the structure
of an associative unital left R-algebra whence (End A)* is a left R-monoid.
We can now formulate the universal problem, and its commutative

companion, by substituting Mony for Mod; in the definition given in §3.

(5. 1) Provrosition. Let C be an R-monoidal category. Then both the universal
problem of §1 and its commutative version admit a solution for every object of C.

Progf. An easy argument involving R* shows that every monomorph-
ism in Mong is an injection. Since Mon, obviously satisfies the additional
assumptions of (1. 5) our claim is verified.

Given the object A of € we shall denote the solution (u,,U,) of this
universal problem (resp. the solution (uj,Uj) of its commutative version) by
(C-pdt,, C-pDt,) (resp. (C-pdt;, C-pDtS)) and call it the predeterminant (resp.
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the commutative predeterminant) on A. Whenever the reference to the R-
monoidal category C is clear the prefix C- shall be dropped.

(5. 2) CororrLary. For every object A the morphisms pdt,, pdt;, and wg:
pDt, —> pDt; are surjections.

Proof. (1. 7) together with the fact that epimorphisms in Mony are sur-
jections (an assertion that can be obtained in the same manner as in the
category of groups).

At this point a word of justification for the term “predeterminant”.
For R a commutative unital ring, M a finitely generated, projective, unital
R-module, and g an endomorphism of M the determinant detp € R has
been defined in [12]. The resulting map det: (EndzM)*—— R has the
properties set forth in condition (ii°) for the commutative version of the
universal problem in §1. Hence, if Det, stands for the R-monoid det(EndzM)*
there exists a unique epimorphism (and thus surjection) of R-monoids
pi: pDtyy —> Dety rendering

. pdt;
(End M) " pDiS

det P
Det,,
commutative. Hence pdit, as well as pdty furnishes a description of the
multiplicative structure of EndzM that is at least as discerning as the one
furnished by det. In general p§ cannot be expected to be an isomorphism:
If R=2, and M= Z,® Z, then Det, = Z, while pDt$ consists of three ele-
ments, say, 0, 1, and 2 with 0 being the zero, 1 being the unit, and 2
satisfying 2-2=2 (note that precisely the elementary automorphisms are
mapped to 2 by pdi).
In analogy to (3.7) we have here

(5. 3) PropOsITION.  Suppose that the objects Ay, + « +, Avof C satisfy Hom(A,, A;)
=0 for all k2. Then there is a commutative diagram

IIpdt,,
I End A, > 11 pDt,,
Zl pdtea, l=
End® A, ———————— > pDiga,
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the isomorphisms in it being canonical. Stmilarly for the commutative predeterminant.
Proof. Straight forward.

(5. 4) PrOPOSITION. Suppose that a is an automorphism of A.  Then pdt,a
as well as pdtia is a unit (note that in a monoid with zero a unit is different from
0 ¢f and only if 130 holds).

Proof. Since pdt, is a surjection by (5. 2), pdit,(id,) is the unit element
in pDt,. Hence our claim follows routinely.

(5. 5) COROLLARY. Suppose that the automorphism a of A is in the commutator sub-
group of Aut A.  Then pdt,a as well as pdtsa is the unit element in pDt, resp.
pDtg.

Progf. Immediate from (5. 4).

(5. 6) CoroLLARY. Suppose that every endomorphism of A that is different from 0
is in fact an automorphism. Then w,: pDt,—> pDt5 is an isomorphism and
pDt, — {0} is canonically isomorphic to the factor commutator group of End A—{0}.

Proof. Immediate from (5. 4).

k
We shall now deal with finite direct sums of the type @ A. Let us
denote the canonical injection (resp. canonical projection) of the x. sum-

k k
mand into @A (resp. of @A onto the x. summand) by i, (resp. p.).
k
Then an element ¢ End® A is called elementary if there exist indices
Ky Ao With x, = 2, such that
Pepet, =1idy for all k=1, -+, k
Dty =0 for all k=xry, 22y, £%21 .

k
Clearly an elementary endomorphism of @ A is indeed an automorphism.
We shall now list a few results concerning elementary automorphisms.

(5. 7) ProrosiTiON. Let A be an object of the R-additive category A. Then for

k
every elementary automorphism e of @ A with k> 2,pdtiac is the unit element.

Proof. [3], Corollary (1.5), (i), together with (5. 5).

The restriction £>2 in (5.7) is necessary as can be seen from the
example following (5. 2). Yet in special cases the assertion of (5. 7) remains
valid for % = 2:
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(5. 8) PropostTioN. Let A be an object in the R-additive category A.  Assume
that the R-algebra End A contains units w,, us,v1,v, such that the ideal generated by
wy + u, and v, + vy equals End A. Then for every elementary automorphism e of
A4+ A, pdtsgae is the unit element.

Proof. If 1= a(u, + u,) + b(v; + v,) in End A then

o o=

r<u1 rbu;‘v;‘) (vl —rau??ﬁlﬂ
0 u, | \0 Vs )

For this proof see also [3], Lemma (1. 6).

We shall now slightly modify a definition given in [3]. Let R be a
(not necessarily commutative) unital ring. Then the positive integer n, is
said to define a right-stable range for R (in [3]: for GL(R)) if for every n>n,
and all », « .-, 7, € R satisfying Rr,+ + -+ + Rr, = R there exist s, -,
Sp-1 € R such that R(r, 4+ s7,)+ * + + + R(#p-y + Sp—17,) = R holds. Similarly
one defines a left-stable range for R. Finally, #, is said to be a stable
range for R if it is both a left-stable as well as a right-stable range for R.
It is pointed out in [3] that for a semi-local (not necessarily noetherian)
ring n,=1 is a stable range; that for a Dedekind ring »,= 2 is a stable
range; that for a coordinate ring of a d-dimensional affine algebraic variety
ny=d +1 is a stable range (see also [3], Theorem (11. 1)).

Let A be an object in the R-additive category A. Just as in the case
of the trace there is for every »n>m a canonical morphism of R-monoids

pDt% 4 —> pDEE 4 rendering the diagram

m pdt'"
(End @ A)* L pDiZa
@Z—DidAl l
n pdté;A
(End ® A)* — > pDida

commutative. Similarly for the commutative predeterminant.

(5. 9) ProposiTiON. Let A be an object in the R-additive category A.  Assume
that n, is a stable range for the ring End A and that End A is a principal ideal
domain.  Then for every n > max(2,n,) the canonical morphism pDt7, —>

pDtrs, is an  epimorphism (and thus a surjection). Similarly for the commutative
predeterminant.
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Proof. Denote End Aby B. Then an endomorphism of (:)A isanxn
matrix z with entries in B. Since, by assumption, B is a principal ideal
domain Bb, + - - -+ Bb,= Bb together with b, = b/b implies Bb; + - - - + Bb;,
= B. Hence the procedure in [3], proof of Theorem (4. 2), a), shows the
existence of a product ¢ of elementary automorphisms such that

X | 0
ep = | ————- |LC _______ 6_.___
no+1
However, ¥ E °+“\\ cn

]

X o X o 1 0
————— Fm—————————— = e e AN

Y iCmoti 0 Y {Cno+1 o N

"'Z T, bz & 0 1

Again by the same technique there exists an elementary automorphism ¢’

such that X ! o ¢ 0
A e 12
X : O , Y, Ecno+\\ 0 E O
__-_1.(_: --------- 6 - el = : 7t N i
Yy (o S L Coct___.
 Z Cn-1] o | o i1

Hence (5.7) together with an obvious induction argument implies that
pdtdap equals

X ~
(5. 10) pdi <“-O”§“1"_>.pdt c,.o+\,\ ceceepdt .

Since every permutation matrix is a product of elementary matrices another
application of (5. 7) leads to
1. [0) Cy 1 0]
pdt Cy. = pdt? S~
o 1 0 1

which together with (5. 10) proves our assertion.

(5.11) CoroLLARY. Let either R be a (possibly skew) field and n=2 or R
(possibly a skew) field other than Z, and n arbitrary. Then, with A = Mody and
Hom the obvious functor from A® XA to Ab, pdtia 1is the usual determinant (see
[1], [10]) and wgg: th%A—_)théR is an isomorphism.
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Proof. First we observe that under the present assumptions the require-
ment » > max(2,#,) in (5. 9) can be replaced by z>1 as n>2 was only
needed for invoking (5. 7) which under our alternate assumptions may be
replaced by (5.8). Hence (5.9) implies that every non-zero element of
pDtz , is the image of some matrix of the form

r O
(5. 12) 1

o 1
with 2 0. Since every non-zero element of R is a unit it is clear that
pdty . is in fact commutative and hence wz, is an isomorphism.  More-

over the classical determinant assumes the same value on two matrices of
the form (5. 12) if and only if the entries in the upper left corner are conju-
gate to each other. Thus two such matrices are mapped by pdiz, into
the same element if and only if the entries in the upper left corner are
conjugate to each other. This implies that the car;onical morphism pz .t
pDtp . —> Detz, is an injection. Since detz.: (End @ R)*—> Detz, is also
a surjection our assertion is proved.

(5. 13) CoroLrLARY. Let R be a commutative principal ideal domain having 1 as
a stable range. If w2 or if n is arbitrary while R satisfies the assumptions of
(5. 8) (imposed there on End A) then the conclusions of (5. 11) are valid.

Proof. Same as the proof of (5. 11).
In connection with (5. 13) see also [3], §5, Remark 3; and [7]; and also
[15]. For R a euclidean domain (5. 13) has been proved in [18].

(5. 14) ProrosiTION. Let R be a commutative unital ring. If n=2 or if n is
arbitrary while R satisfies the assumptions of (5. 8) (imposed there on End A) then
the canonical morphism p2 . pDty,—> Detz, = R is an injection on the set of

those elements which are images of triangular matrices.

Proof. Using Lemma 1 of [18] the reasoning of the proof of (5. 10) shows
that with z a triangular matrix

pdtn,c = pdt&R(

holds. Hence our claim follows immediately.
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§6. Predeterminants for endomorphisms of R-modules.

As in §4 we assume that R is a commutative unital ring. We then
deal with the special case of §5 in which C is the category Mod; and Hom
is the usual Hom-functor Homyp,.

(6. 1) ProposiTiON. Suppose that M is a finitely generated projective R-module.
Then the endomorphism g of M is an automorphism if and only if pdty(p) (resp.
pditi(p)) is a unit.

Proof. It is an easy consequence of [12], Proposition 1. 3, that both the
set of automorphisms of M and the set of non-automorphisms of M are
submonoids of EndzM. Hence the map from EndzM to the augmented
group® of the factor commutator group of AutpM that assigns to each auto-
morphism of M its canonical image in the factor commutator group of
AutzM and to each non-automorphism the zero element is in fact a homo-
morphism ¢ of monoids with zero. The ring R operates on this augmented
group through the canonical homomorphism R — EndzM, and with respect
to this structure 4 is a homomorphism of R-monoids. Therefore we have
a canonical homomorphism of R-monoids from pD#, (resp. pDt§) to this
augmented group. Now, if pdiy(g) (resp. pdti(p)) is a unit the canonical
homomorphism will send it into the factor commutator group proper. Thus
¢ is an automorphism. The converse was already stated in (5. 4).

(6. 2) CoroLLARY. Suppose that M is a finitely generated projective R-module.
Then the group of units of both pDty and pDty is canonically isomorphic to the
Sactor commutator group of AutzM.

Progf. Since every unit in both pDt, and pDt§ is the image of auto-
morphisms only the group of units in either monoid must be abelian by
the universal property (i) resp. (i°) of §1. Therefore the homomorphism &
constructed in the proof of (6. 1) must be an isomorphism on the group of
units.

Let S be a multiplicatively closed subset of R and let M be an R-
monoid. In the set M x S we have the well-known equivalence relation

“(my, 5;) ~ (my, 5,) if and only if there exists a ¢t € S with #s,m, = tsym,”.

3) By the augmented group of the group G is meant the monoid with zero that is obtained
from G by adjoining a zero element.
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The set of equivalence classes is denoted by S™'M. S~!M carries a canonical
left S-'R-monoid structure, and the assignment of S™'M to M extends in the
obvious fashion to a covariant functor from Mon; to Mong1z. Moreover
it is clear that the canonical map M— S™'M is a homomorphism of R-

monoids.
As in §4 we have for every R-module M a commutative diagram
(EndM)*
] pate
S {EndzM)* (Endg-1,S-1M)*
S~pdty oDty pdts1y
TN
S™1pDt y pDt -1y

in which all the undesignated homomorphisms are canonical. A similar de-
finition holds for the commutative predeterminant, in which case the bottom
homomorphism shall be denoted by #§,.

(6. 3) THEOREM. Suppose that the canonical homomorphism ¢: S~ (EndzM)* —>
(Ends-12ST'M)* is an isomorphism. Then t§, ts also an isomorphism (and thus a
byection). In particular this is true if M is finitely presentable.

Proof. Clearly the proof for (4. 9) does not carry over to the present
situation. We shall now give a proof which mutatis mutandis also works
in the case discussed in (4. 9).

Let ¢:S™(EndzM)*—> N be a S~'R-homomorphism which satisfies
W) = ¢legrs) for all gy, ¢, in S™H(EndzM)*.  Denoting the canonical R-
homomorphism (EndzM)*—> S™(EndzM)* by ¢ we obtain a unique R-
homomorphism 2': pDty —> N satisfying ¢¢=x"- pdty. Let m,m’ be in
pDt such that for some s, s” in S, -’%L = -Zf'- holds in S-'pDty. Then
there exists an element ¢ in S with fsm’ = ts'm. Hence ¢st’(m’)=1s%"(m) and,
as N is a S™'R-monoid, —XKS@— = X_’(y'n’) Therefore we can define a

s
map x: S”'pDty —> N by putting 2(-2) = 20m)_ | Eyidently  is a S-'R-
P p g s s y

homomorphism satisfying 2’ = x." where ¢’: pDty —> S~'pDt} is the canoni-
cal R-homomorphism. Hence ¢¢ = x"-pdty = ¢ - pdty = x-S'pdt§ -+ ¢. Since
(EndgM)* generates S~ (EndzM)* as a S 'R-monoid we conclude that
¢ =%x-S7'pdty. Uniqueness of x follows similarly. Since ¢ was assumed
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to be an isomorphism this means that S-!pdtj -9~ solves the commutative
version of the universal problem for S7'M. Hence our claim follows by
standard argument.

(6. 4) CoOROLLARY. Suppose that the R-module M 1is finitely presentable. If the
prime ideal p of R is not in the support of M then (pDty), = 0.

Proof. Since M, =0 and since pdtj,: (Endg M, —> pDtj, is an epi-
morphism we conclude that pDtj;, is the zero monoid. Hence (6. 3) finishes

the proof.

(6.5) CoROLLARY. Suppose that M is a finitely generated projective R-module.
Suppose that the prime ideal p of R is in the support of M and that either the p-
rank of M is=c2 or that R, salisfies the condition of (5. 8) (stated there for End A).
Then the group of units of (pDty), ts canonically isomorphic to the group of units

of R,.

Proof. By (6. 3) the group of units of (pDty), is isomorphic to the group
of units of pDt§ where N is some finitely generated free R,-module of
positive rank. By (6. 2) the latter is isomorphic to the factor commutator
group of AutpN which, due to (5.7), (5.8) and [3], Theorem (4. 2), b), is
isomorphic to R,.

(6. 6) CoroLLARY. Suppose that R is a principal ideal domain and that M is a
Sfinitely generated free R-module of positive rank. Then for every prime ideal p of R
in the support of M, (pDtiy), = R,.

Proof. Since every localization of a principal ideal domain is a princi-
pal ideal domain having 1 as a stable range, (5. 13) and (6. 3) imply our
assertion.

It is clear that the aspects of §4 other than the localization principle
(4. 9) carry over to pdt and pd#° in various degrees. Details are left to the
reader.

It should also be remarked that mutatis mutandis the considerations of
§56 and §6 remain valid when the category Mod; is replaced by the category
Modj} of null morphisms and isomorphisms of R-modules (Note that R is
operating on Mod}(M;, M,) as follows. If » € R is a unit then » operates
on Mod¥%(M,, M,) in the usual fashion; if » € R is a non-unit then 7-p is
always the null morphism).
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(6. 7) THEOREM. Let R be a (not necessarily noetherian) local ring with maximal
tdeal m. Let M= 0 be a finitely generated R-module such that with n the minimal
number of generators of M exponentiation by n maps R[m onto itself. Then there is
a canonical epimorphism pDty —> (Rlm)*.  In particular there is an epimorphism
from the factor commutator group of AutpxM to (R/m)*.

Proof. The fact that the canonical morphism pDty —> (R/m)* is an
epimorphism is proved along the lines of the proof of (4.15). This argu-
ment then reveals that already AutpM maps onto (R/m)* via (EndzM)*—>
pDt §—> (R/m)*. Hence our assertion follows.

(6. 8) CoroLLARY. Assumptions as in (6. 7). If pdty(p) is a unit then p s

an epimorphism.

Progf. Looking at the appropriate re-interpretation of the diagram in
the proof of (4. 15) we conclude that the image of g in Endg ,M/mM is an
isomorphism. Hence an easy application of the Nakayama Lemma proves
our claim.

(6. 9) CoroLLARY. Let M be a finitely presentable R-module such that for some
prime ideal p of R in the support of M exponentiation by n maps R,/ pR, onto itself,
n being the minimal number of generators of M,.  Then pDty 1is not the null
monotd.

Proof. (6. 3) and (6. 7).

§7. Concluding Remarks.

I. The universal problem expounded in §1 leads to another invariant for
endomorphisms of modules. Let C be the category Mod; with a commuta-
tive ring, L the category Algy of unital R-algebras, 1 the map that assigns
to each R-module M the R-algebra EndgM, and | | the standard forgetful
functor. Then the universal problem has a solution (u,,U,) for every
module M. u, clearly “combines” the properties of tr, and pdiy. One
checks quickly that for every free R-module M of rank =1 the universal
solution Uy is the zero algebra. Since the localization principle (4. 9) car-
ries over to this case one can prove that U, is the zero algebra for every
finitely generated projective R-module M for which every local rank is
different from 1. Hence the universal solution U, measures the deviation
of the module M from being projective.
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II. Let 3} be a species of an algebraic structure (in the sense of [4], p. 42)
in which for every principal term x; one of the internal compositions, say
T? 1is singled out and in which the following is part of the axiom of 3I:

“for every i, T° is defined throughout, is associative, and possesses a

neutral element”.
Given a structure of the species 3} on the principal sets S, ---, S, and
the auxiliary sets Ty, - -, T, one obtains a one-object category Cgx,s,T
whose set of morphisms equals S;x---+XxS, and whose multiplication is
determined, in each component, by the internal composition T*. If ¢; is
the neutral element for T* then E= (e, - -+, ¢,) is the sole object of this
category. Evidently Cz,s7(E)= S;x +++ xS, and C} s r(E) consists precisely
of those m-tuples (u,, + -+, u,) for which every u; is symmetric with respect
to T°. Cz,57(E) carries also the original structure of species Y.

Denote by sc3} the species that is obtained formally from >} by adding
to the axiom of 3!

“for every 4, each element that is symmetric with respect to T is
central with respect to T*”.

Let € be the category Cz.sr, L the category C,s of structures of

species sc>} and their representations (cf. [4], p. 48), / the map that assigns
to E the canonical structure of species 31 on C3z.s7(E) and | | the canoni-
cal forgetful functor. If C,s is complete and if | | preserves monomorph-
isms then we take from (1.5) that the universal problem has a solution
(us.s1,Uz,s 1) for every structure of the species 3} on the principal sets
Sy +++, S, and on the auxiliary sets 7, « -+, T,. Representations between
various such structures then give rise to representations between the associated
universal solutions; this assignment obviously constitutes a covariant functor
that is adjoint to the inclusion of C,» in the category Cz of structures of
species 3.
III. Let R be a commutative unital ring, let C be the R-monoidal category
associated with Modz, and let Hom be the usual Hom-functor Hom,. For
every R-module M we pose now the universal problem for all morphisms »
in Mon; with domain (End,M)* satisfying:

lol(g,) = lvl(#,) whenever there exists a prime ideal p of R and an

element « € Autp M, such that J{L =a %a“ holds.

Again on has an obvious commutative companion to this universal problem.
As before one obtains in both cases the existence of a solution for every
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R-module M. This solution shall be denoted by (Idty, IDty) resp. (Idty,
IDty). A number of results concerning predeterminants carry over to the
present situation. In particular the localization principle is valid for finitely
presentable modules and the analogue to (5.14) remains true. We claim
that this suffices to prove for a commutative unital ring R whose nilradical
is zero and which satisfies the assumptions of (5. 8) (imposed there on End A)

that for any integer » the canonical morphism Iz : IDiz

is an isomorphism. Obviously it suffices to show that the canonical morph-
ism is an injection. Let [-ldt(p)=det(g)=0. Then Lemma 3 of [18]
implies the existence of a triangular matrix « with det(s) =0 such that one

—>Detr =R
R DR

column, say the first one, of vanishes. Hence gz is the product of

(o

with a suitable matrix. Thus the analogue of (5. 14) shows that Id#(y)-ldi(z)
=0. If pis a prime ideal in R not containing det(z) then —'{—e EndRp(-in)Rp

is invertible, which allows us to conclude M’i(fi =0. By the localization

principle we have then [d t(—f—) =0 and hence the universal problem implies
1dt(p) = 0. Next, let 2, and #, be such that 7-1d#(p) =1-1dt(¢,) 0. If p
is a prime ideal in R not containing det(#;) then both % and ff—e
Endr, ® R, are invertible and have the same determinant. Hence

#
1

[3], Proposition (5.1), a). Therefore ldt% = ldt% and the universal

. (_’{L)—l belongs to SL(xn,R,) which equals [GL(rn, R,), GL(n, R,)] due to

problem implies Idt(,) = ldt(#,). Hence our claim. Clearly if we exclude
n =2, R need not to satisfy the assumptions of (5.8) for our claim to
remain valid.
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