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INITIATION OF THERMAL EXPLOSION BY INTENSE LIGHT:
CRITICALITY DEPENDENCE ON DATA AND PARAMETERS
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Abstract

A model for thermal ignition by intense light is studied. The governing non-linear
parabolic equation is linearized in a two-step manner with the aid of a non-linear ordinary
differential equation which captures the salient features of the non-linear parabolic
equation. The critical parameters are computed from the steady-state solution of the
ordinary differential equation, which can be obtained without actually solving the
equation. Comparison with available data shows that the present method yields good
results.

1. Introduction and formulation

Certain problems in the initiation of thermal explosion by intense light can be
formulated as mixed boundary-value problems consisting of a well-known nonlin-
ear parabolic equation and mixed boundary conditions. Of interest are questions
regarding the criticality dependence on data and parameter. For the case of an
infinite slab with one side subjected to a heat flux and the other kept at a
constant temperature, the problem has been examined by a number of authors,
and most recently, by Boddington, Feng and Gray [1], in which reference to
previous work can be found. In this note, we consider more general geometries,
and use a comparison theorem for parabolic equations and a two-step lineariza-
tion to construct an approximate solution. A non-linear ordinary differential
equation is derived, from which the critical parameters of the problem can be
estimated without having to solve the differential equation. This approach was
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used by the present author in [4] in the study of parameter and data dependence
for the same problem when the boundary conditions are not mixed. For com-
pleteness, we present a brief description of the procedure in Section 2. In Section
3, specific examples, including the infinite slab, are considered and numerical
values of the critical parameters computed.

The derivation of the governing equation can be found in Frank-Kamenetski
{3]. We formulate the boundary-value problem as follows:

00/t =v? +8f(6),x€ D, t>0, (1.1)
where f(8) = exp(ad/(a + 8)); D is the domain of interest; and the conditions
6(x,0)=0, B8 =g,(x,t) forx € 0D,. (1.2)

The expression B,@ = g, is used generically to mean that boundary conditions of
different types are prescribed on different parts of the bounding surface. In the
above, 0 is the temperature, x and ¢ are the non-dimensional spatial and time
variables, & is a parameter incorporating the chemical properties of the combusti-
ble material, the temperature of the assembly, as well as its geometrical dimen-
sions; and « is a parameter related to the activation energy of the material.
Typically « is considerably greater than unity.

We assume that the boundary conditions are such that the initial boundary-value
problem (IBVP) (1.1) and (1.2) has a unique solution reaching a steady state. It is
well known that, depending on the magnitude of & and g;, the steady state may
be of order one (sub-critical) or exponentially large of order exp(a) (super-criti-
cal). However, if a is decreased, a value a, is reached below which the
multiplicity in the steady-state behaviour disappears, a phenomenon known as
loss of criticality.

2. Approximate solution of (1.1) and (1.2)

Let U(x, t) be the solution of the IBVP

%—(tJ=V2U;t>O,5€D; (2.1)
U(x,0)=0; BU =g, for x € 3D;; (2.2)

and let G(x, §, t) be the corresponding Green’s function. We observe that since
the boundary conditions are mixed, the determination of U, even for simple
geometries, may be quite difficult. However, to proceed, we shall suppose that
U(x, ) is known, and that it is an increasing function of ¢, tending to the steady
state U(x, o0) as ¢ tends to infinity.
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For the Green’s function, we have [2, p. 289]
[+ o}
G(&’ §’t) = Z exp(-)‘znl)(pn(&)(pn(g) (23)
n=1
where {A%} and {¢,(x))} are respectively the eigenvalues and normalized eigen-
functions of the system
v’ = -Ng; x € D;
Bop=0,x€ 0D,
We further suppose the mixed boundary conditions are such that both ¢, and G

are positive. Let m(x) > 0, T(¢) > 0 be functions to be determined. Let x(x, ¢)
be the solution (the existence of which is assumed) of the linear IBVP

X —Vx= 8exp{%} (2.4)
subject to
x(x,0)=0; B,x = g, for x € aD,. (2.5)
We have
x(x,1) = U(x, 1) +sf0‘ G(x,8,1— 1)
4m@ﬁ0m49+0@n»}
exp{ " m(§)T('r)<pl(§) " U(g,'r) dr. (2.6)

The notation h(x, §) - g(§) = [ph(x, §)g(§) dV; is used throughout this paper.
Our first objective is to choose m(x) and T(¢) so that x(x, ¢) is a lower solution
of (1.1) and (1.2); that is, we wish to make

= w2y _ ax
Px=x,—-Vx 8exr>(a+x)<0,

which would imply x < @ in D. Now, we have
+
Px=8{ I:a(m('-’g)T(t)(pl(&) U(E’t)) ]_ C!X(.E,t) }

TPl a+ m(x)T(1)e,(x) + U(x,1) o« + x(x,1)

Since the function exp(au/(« + u)) is an increasing function of u for a, u > 0, it
is clear that Px < 0 if we can choose m(x) and T(¢) to make

m(x)T(t)oi(x) + U(x, 1) < x(x,1).
Using (2.6), we require

m(x)T(t)gy(x) < [ X6t
x{dethA9+U@n»

P a + m(g)T(T)(pl(g) + U(g,'r) } dr. (27)
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Now, let T(t) denote the solution of the ordinary differential equation

o(T()i(8) + U(§,1))
a+ T()o (&) + U(¢, 1)

dT
i —}\ZIT + 8_[D <P1(§) exp{

} av, (2.8)

subject to 7(0) = 0. Equivalently, 7 can be considered as the solution of the
integral equation

T(r) = 8e"‘%'fot e“’%(ﬁ) . eXp{ a(T(")‘Pl(‘g) + U(é'f)) }

a+ T(T)q)1(§) + U(§,T)

Hence we have

m()T()91(x) = dm(x) [ Ny (x)1(8)

{ o(T(r)@,(§) + U(4, 7))

exp - T(T)(pl(g) " U(g,-r) } dr. (2.9)

Since ¢, and G are positive, it is clear that by choosing m(x) sufficiently small,
the inequality (2.7) can be satisfied, implying that the function x(x,?) given by
(2.6) is a lower solution for a suitable choice of m(x). An entirely analogous
consideration with a suitably chosen M > 0 replacing m yields an upper solution.
An examination of (2.7) and (2.9) shows that if the magnitude of

o T(),(8) + U(, 7)) ]
a+ T(r)py(§) + U(£,7) |

0
e‘”"""’%(z)%(sﬁ)] - exp
-2

n

is negligible, m and M can be brought close to 1.

Experience gained from the computations for a similar problem studied in [4]
suggests that the deviation of m and M from unity will be small. Thus, we take x
as given by (2.6) with m = 1 as an approximate solution to the original problem,
and we have the assurance that this solution is bounded by an upper and a lower
solution which in principle can be determined.

Now, it is clear from (2.4) that if T becomes large, so will x; and if T remains
of order one, x will also remain of order one, unless U is large. Assuming the
boundary conditions are such that U is not large, then T and x share the same
qualitative growth property. Instead of studying the partial differential equation,
we can deduce its properties by examining the ordinary differential equation for
T.
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3. Computation of critical parameters

From equation (2.8), we see that the equilibrium values of T are given by the
solutions of the transcendental equation

oz(T(oo)(p1 + U(§,oo))
a+ T(co)p, + U(g, )

As a function of T, the term on the right side of (3.1) is an S-shaped curve for a
sufficiently large. If § is small, (3.1) has only one solution with 7= O(1). As §
increases, (3.1) has three solutions and the smallest is again O(1). When 8 is
greater than a critical value §,,, (3.1) again has only one solution with "= O(e®).
When « is decreased, the S-shaped curve flattens out, and eventually a value « is
reached so that regardless of the magnitude of 8, there is only one solution to
(3.1). Since a,, is not large, quantities of O(e®) are also not large. In this case, we
have the so-called disappearance of criticality. Both §,, and «a,, can be determined
if we know A;, ¢, and U(§, o0). In what follows, we consider a few simple
geometries with simple boundary values. The critical parameters are computed
and compared with available existing results.

a) Infinite slab

Let D be described by 0 < x <1, — o0 <y, z < o0, with boundary condition
00/0x = -k at x=0and § = Qat x = 1.

We readily obtain

N =n2/4; ¢, = V2 cosmx/2; U(x, ) = k(1 - x).

Using these in (3.1), we computed the values of §,, and «,,, for different values of
k. These are presented in Table I, and compared with values of k. These are
presented in Table I, and compared with values obtained by Boddington, Feng

NT(c0) /8 = /D 1(£) exp av,.  (31)

TaBLE [. Transitional values for the infinite slab.

k Qyp S, Qe = E:rl 8,
from Ref. (1]
0 4.06948 1.30706 4.068663 1.307360
1 4.66068 0.95442 4.663266 0.953448
2 5.14564 0.71927 5.151400 0.717459
3 5.56699 0.55423 5.575628 0.551953
4 5.94471 0.43436 5.956033 0.431874
5 6.29007 0.34507 6.303898 0.342543
6 6.61021 027724 6.626378 0.274771
7 6.90996 0.22488 6.928326 0.222531
8 719279 0.18392 7.213238 0.181724
9 7.46127 0.15151 7.483686 0.149485
10 7.71739 0.12563
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TaBLE I1. Critical values of 8§ for different values of a and & for the infinite slab.

a

20 40 60 80 100

k 8Cl' 8Cl' acr 8cr 8Cl’
0 0.92738 0.90132 0.89311 0.88909 0.88670
1 0.50452 0.46560 0.45342 0.44747 0.44394
2 0.28037 0.23905 0.22643 0.22031 0.21670
3 0.16013 0.12299 0.11212 0.10694 0.10391
4 0.09427 0.06380 0.05541 0.05151 0.04926
5 0.05724 0.03351 0.02746 0.02475 0.02321
6 0.03583 0.01786 0.01370 0.01191 0.01091
7 0.02309 0.00969 0.00690 0.00575 0.00514
8 0.01529 0.00535 0.00351 0.00280 0.00243
9 0.01039 0.00300 0.00181 0.00137 0.00115
10 0.00723 0.00172 0.00094 0.00068 0.00055

(6]

TaBLE I11. Transitional values for the infinite rectangular cylinder, with unit width and depth a.

k
0 2 4 6 8

a, 4.13925 4.35598 4.55640 4.74372 4.92020
8, 6.39331 5.72789 5.15147 4.64867 420753
a, 4.13925 4.27286 4.40076 4.52351 4.64160
&, 5.43431 5.08576 4.76506 4.46953 419677
a, 4.13925 4.19755 4.25516 4.31196 4.36787

» 5.16579 5.02129 4.88139 4.74613 4.61545
a, 4.13925 4.16891 4.19858 4.22815 4.25756
8, 5.12743 5.05438 4.98236 491151 4.84189

and Gray [1]. Critical values of 8 for some values of k and a are also computed
and given in Table II.
b) Infinite rectangular cylinder
Let D be described by 0 <x < 1,0 <y <a, —oo <z < o0, with boundary
condition d8/0y = -k at y=0and § =0on x =0, x = 1, and y = a. We then

have
N = 7%(1 + 1/4a?); @, = (2/Va ) sinmxcos(my/2a);
U(x, y, ) = (k/(wcoshma))sinmxsinhw(a — y).

For this case, the computed values of 8,, and a,, for some values of k and a are
presented in Table III, and critical values of § presented in Table IV.
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TaBLE IV. Critical values of § for different values of a and &
for the infinite rectangular cylinder with one unit width and depth a.
a
20 40 60 80 100
k 8(3! 80! acl' 8Cl’ 8Cl’
0 26.03663 25.26566 25.02315 24.90440 24.83392
2 21.79088 20.87689 20.58941 20.44863 20.36508
a=02 4 18.23162 12.19824 16.87360 16.71469 16.62040
6 15.25548 1412971 13.77695 13.60444 13.50213
0 9.20260 8.93010 8.84439 8.80242 8.77751
2 7.13492 6.79119 6.68307 6.63013 6.59871
a=04 4 5.52270 5.12498 5.00019 493914 4.90292
6 427382 3.84211 3.70743 3.64167 3.60271
0 6.08519 5.90500 5.84832 5.82057 5.80410
2 4.68917 4.45925 4.38690 435146 4.33042
a=106 4 3.59825 3.32944 3.24498 3.20364 3.17911
6 2.75477 2.46099 2.36918 2.32433 2.29775
0 4.99409 4.84621 4.79970 477692 4.76340
2 3.91863 3.73092 3.67179 3.64282 3.62563
a=08 4 3.05359 2.83211 2.76235 2.72817 2.70788
6 2.36769 2.12207 2.04497 2.00724 1.98486
0 4.48907 4.35615 4.31434 4.29386 428171
2 3.60296 3.43588 3.38321 3.35740 3.34208
a=10 4 2.86532 2.66673 2.60402 2.57326 2.55499
6 2.26184 2.03815 1.96758 1.93299 1.91245

¢) Finite Rectangular Cylinder
Let D be described by 0 <x <1, 0 <y<a, 0<:z<b, with boundary
conditions d6/0y = -k at y=0and § =0 on x=0,1, y=a, z=0,b. We

have

and

U(x, y,z,0) =

A =721+ 1/(4a%) + 1/b%);

@, = /8/ab sinmxcos(wy/2a)sin(7z/b)

kbsinmx sinh(V1 + b2my/b) sin(wz/b)

m(1 + b?) cosh(V1 + b2 am/b)

The computed values for 8,, and a,, are presented in Table V for some values of

k, a, and b. The critical values of 8§ are given in Table VI.
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TABLE V. Transitional values for the finite rectangular cylinder
with unit width, depth a, and height b.
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k
0 2 4 6 8
a=1 a, 4.20923 4.28882 4.36914 4.44922 4.52881
b=1 i 11.25479 10.77374 10.30763 9.86026 9.43242
{a =1 a, 4.20938 4.38599 4.55792 472327 4.88147
b=>5 8 6.45249 5.85883 5.32444 4.84731 4.42240
a=1 a, 4.20938 4.39175 4.56891 4.73892 4.90152
{ b=10 8 6.30244 5.70461 5.16881 4.69239 4.26944
TaBLE VI. Critical values of 8 for different values of « and &
for the finite rectangular cylinder with unit width, depth a, and height 5.
a
20 40 60 80 100
k 8Cl' 8CI' 861’ BCI 8cr
0 7.81354 7.56928 729257 7.45503 7.43276
a=1 2 7.28025 7.02390 6.94340 6.90401 6.88064
b=1 4 6.70789 6.42599 6.33683 6.29306 6.26705
6 6.09516 5.76468 5.65756 5.60440 5.57262
0 4.47976 433972 4.29574 4.27422 426145
a=1 2 3.79321 3.63308 3.58267 3.55797 3.54331
b=135 4 3.10911 2.90697 2.84173 2.80942 2.79012
6 2.45588 2.18686 2.09569 2.04954 2.02163
0 4.37558 4.23880 4.19584 417482 4.16235
a=1 2 3.68326 3.52601 3.47649 3.45223 3.43783
b=10 4 2.99697 2.79708 2.73249 2.70048 2.68136
6 2.34690 2.08023 1.98973 1.94389 1.91616

4. Concluding remarks

We have used a two-step linearization procedure, together with a comparison
theorem for parabolic equations, to derive an ordinary differential equation
associated with a non-linear parabolic equation in combustion theory. The
parameter dependence of the solution of the parabolic equation can be deduced
from the steady state of the ordinary differential equation, which in turn can be
deduced without having to solve for the equation. Comparison with available
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results for a simple geometry, which involves only one spatial variable, shows that
the computed transitional values for the two parameters of interest agree very
well. The procedure presented can be used whenever we know the first eigenvalue
and the corresponding eigenfunction for the domain. The computation involved is
also relatively straightforward. We believe this linearization-cum-comparison
theorem can be used in similar problems.
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