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Multiplicative Energy of Shifted Subgroups
and Bounds On Exponential Sums with
Trinomials in Finite Fields

Simon Macourt, Ilya D. Shkredov, and Igor E. Shparlinski

Abstract. We prove a new bound on collinear triples in subgroups of prime ûnite ûelds and use it
to give some new bounds on exponential sums with trinomials.

1 Introduction

1.1 Set Up

For a prime p, we use Fp to denote the ûnite ûeld of p elements.
For a t-sparse polynomial

Ψ(X) =
t

∑
i=1
a iXk i

with some pairwise distinct positive integer exponents k1 , . . . , kt , coeõcients
a1 , . . . , at ∈ F∗p , and amultiplicative character χ of F∗p , we deûne the sums

Sχ(Ψ) = ∑
x∈F∗p

χ(x) ep(Ψ(x)),

where ep(u) = exp(2πiu/p) and χ is an arbitrarymultiplicative character ofF∗p . Cer-
tainly, themost interesting and well-studied special case is when χ = χ0 is a principal
character. However,most of our results extend to the general case without any loss of
strength or complication of the argument, so this is how we present them.

_emain challenge here is to estimate these sums better than by theWeil bound

∣Sχ(Ψ)∣ ≤ max{k1 , . . . , kt}p1/2

(see [36, Appendix 5, Example 12]) by taking advantage of sparsity and of the arith-
metic structure of the exponents k1 , . . . , kt .
For monomials Ψ(X) = aXk (where we can always assume that k ∣ p − 1), the ûrst

bound of this type is due to Shparlinski [32], which has then been improved and ex-
tended in various directions by Bourgain,Glibichuk, andKonyagin [6], Bourgain [3],
Heath-Brown and Konyagin [19], Konyagin [21], Shkredov [27], and Shteinikov [34].
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Akulinichev [1] gives several bounds on binomials; see also [38]. Cochrane, Coòelt
and Pinner, (see [8–13] and references therein) have given a series of other bounds on
exponential sums with sparse polynomials, some of which we present in Section 1.2.

We also remark that exponential sums with sparse polynomials and a composite
denominator have been studied in [4,33].

Here we use a slightly diòerent approach to improve some of the previous results.
Our approach relies on reducing bounds of exponential sumswith sparse polynomials
to bounds of weighted multilinear exponential sums of the type considered in [25].
However, instead of applying the results of [25] directly,we ûrst obtain amore precise
variant for triple weighted sums over multiplicative subgroups of F∗p , which could be
of independent interest; see Lemma 3.5.

_is result rests on an extension of the bound on the number of collinear triples in
multiplicative subgroups from [28, Proposition 1] to subgroups of any size; see _e-
orem 1.2. In turn, this gives a new bound on the multiplicative energy of arbitrary
subgroups (see Corollary 4.1) and has several other applications; see Section 4.
Although here we concentrate on the case of trinomials

(1.1) Ψ(X) = aXk
+ bXℓ

+ cXm ,

our method works, without any changes, for more general sums with polynomials of
the shape

Ψ(X) = aXk
+ F(Xℓ

) +G(Xm
)

with arbitrary polynomials F ,G ∈ Fp[X] (uniformly in the degrees of F andG,which
essentially means that they can be any functions deûned on Fp).

One can certainly use our approach for sumswith quadrinomials by reducing it to
quadrilinear sums and using our Lemma 3.3 in an appropriate place of the argument
of the proof of [25, _eorem 1.4]. Furthermore, using results of [4, 5, 17], one can
consider the case of arbitrary sparse polynomials.

_e notation A≪ B is equivalent to ∣A∣ ≤ c∣B∣ for some constant c,which through-
out the paper may only depend on the number of monomials in the sparse polyno-
mials under considerations.

1.2 Previous Results

We compare our results for trinomials (1.1) with the estimates of Cochrane, Coòelt,
and Pinner [8, Equation (1.6)]

(1.2) Sχ(Ψ) ≪ (
kℓm

max{k, ℓ,m}
)

1/4
p7/8 ,

which is nontrivial for min{kℓ, km, ℓm} < p1/2, and of Cochrane and Pinner [10,
_eorem 1.1]:

(1.3) Sχ(Ψ) ≪ (kℓm)
1/9p5/6 ,

which is nontrivial for kℓm < p3/2.
We also recall the bound of Cochrane, Coòelt, and Pinner [9, Corollary 1.1]

(1.4) Sχ(Ψ) ≪ D1/2p7/8
+ (kℓm)

1/4p5/8 ,
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where D = gcd(k, ℓ,m, p − 1), which is nontrivial for kℓm < p3/2 and D < p1/4.

1.3 New Results

_e following quantity is one of our main objects of study.

Deûnition 1.1 (Collinear triples) For sets U1 ,U2 ⊆ F∗p and elements λ1 , λ2 ∈ F∗p , we
deûne Tλ1 ,λ2(U1 ,U2) to be the number of solutions to

(1.5)
u1 − λ1v1

u1 − λ1w1
=

u2 − λ2v2

u2 − λ2w2
, u i , v i ,w i ∈ Ui , i = 1, 2.

We also set T(U) = T1,1(U,U).
As relation (2.1) shows, the triples (u i , v i ,w i), i = 1, 2 satisfying (1.5) deûne their

collinear points. Recent results on the quantity T(U) for an arbitrary set U can be
found in [24], where, in particular, the bound

T(U) =
∣U∣6

p
+ O(p1/2

∣U∣
7/2

)

is given. _is bound was generalised in [22] as

(1.6) Tλ1 ,λ2(U1 ,U2) =
∣U1∣

3∣U2∣
3

p
+ O (p1/2

∣U1∣
3/2

∣U2∣
2
+ ∣U1∣

3
∣U2∣) ,

provided that ∣U1∣ ≥ ∣U2∣.
Note that in (1.5), aswell as in all similar expressions of this type, we consider only

the values of the variables for which these expressions are deûned (that is, u i /= λ iw i ,
i = 1, 2 in (1.5)). We begin by providing a new result on the number of collinear
triples in subgroups. More generally, for amultiplicative subgroup G of F∗p , we deûne
Tλ(G) = T1,λ(G), which is our main object of study.

_eorem 1.2 Let G be amultiplicative subgroup of F∗p . _en for any λ ∈ F∗p , we have

Tλ(G) −
∣G∣6

p
≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p1/2∣G∣7/2 if ∣G∣ ≥ p2/3 ,
∣G∣5p−1/2 if p2/3 > ∣G∣ ≥ p1/2 log p,
∣G∣4 log ∣H∣ if ∣G∣ < p1/2 log p.

Remark 1.3 _eorem 1.2 is new only for subgroups of intermediate size p2/3 > ∣G∣ >

p1/2; otherwise, it is contained in [28, Proposition 1] (see also Lemma 2.6) or in the
bound [22, (1.6)].

Remark 1.4 _e method of proof of _eorem 1.2 also works without any changes
for Tλ ,µ(G,H) with two multiplicative subgroups, similarly to Lemma 2.6. However,
for subgroups of signiûcantly diòerent sizes, the optimisation part becomes rather
tedious.

We use_eorem 1.2 to obtain the following new bound on trinomial sums.
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_eorem 1.5 Let Ψ(X) be a trinomial of the form (1.1) with a, b, c ∈ F∗p . Deûne

d = gcd(k, p − 1), e = gcd(ℓ, p − 1), f = gcd(m, p − 1),

g = d
gcd(d , f )

, h =
e

gcd(e , f )
.

Suppose f ≥ g ≥ h; then

Sχ(Ψ) ≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p7/8 f 1/8 if h ≥ (p log p)1/2 ,
p15/16( f /h)1/8 (log p)1/16 if g ≥ (p log p)1/2

> h,
p( f /gh)1/8 (log p)1/8 if g < (p log p)1/2 .

Note that the assumption f ≥ g ≥ h of_eorem 1.5 does not present any additional
restrictions on the class of polynomials to which it applies as the roles of k, ℓ, and m
are fully symmetric: if h > g, say, one can simply interchange g and h in the bound.

We observe that the bound of_eorem 1.5 does not directly depend on the size of
the exponents k, ℓ, and m but rather on various greatest common divisors. In partic-
ular, it is strongest for large d and e and small greatest common divisors f , gcd(d , f ),
and gcd(e , f ). Furthermore, it may remain nontrivial even for polynomials of very
large degrees,while the bounds (1.2), (1.3), and (1.4) all become trivial for trinomials of
large degree. _us, it is easy to give various families of parameters where_eorem 1.5
improves the bounds (1.2), (1.3), and (1.4) simultaneously. For example, we assume
that f > d > e are relatively prime positive integers with, say, pδ < f < (de)1−δ for
some ûxed real δ > 0. _en g = d and h = e, and we also have d < p1/2, e < p1/3.
Hence, the bound of_eorem 1.5 becomes

Sχ(Ψ) ≪ p( f /gh)1/8+o(1)
= p( f /de)1/8+o(1) ,

which always gives a power saving against the trivial bound. On the other hand,
choosing k, ℓ, and m as largemultiples of d, e, and f , respectively, say, with k,m, ℓ ≥
p1/2+δ , we see that all bounds from Section 1.2, and of course the Weil bound, are
trivial.

We also give further applications of _eorem 1.2 to some additive problems with
multiplicative subgroups ofF∗p in Section 4. In particular, inCorollary 4.4we consider
amodular version of theRomanoò theorem and show that for almost all primes p, any
residue class modulo p can be represented as a sumof a prime ℓ < p and three powers
of any ûxed integer g ≥ 2. We recall that the classical result of Romanoò [26] asserts
that for any ûxed integer g ≥ 2 a positive proportion of integers can be written in the
form ℓ+ gk ,with some prime ℓ and nonnegative integer k. By a result of Crocker [14],
there are inûnitely many positive integers not of the form ℓ + 2k + 2m . _e case of
three powers of 2 or any other base g > 2 is widely open.
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2 Collinear Triples

2.1 Preliminaries

We require some previous results. We note that we use Lemma 2.1 only for G = H;
however,we present it and some other results in full generality, aswe believe theymay
result in several other applications, and this deserves to be better known.

_e ûrst one is a result ofMit’kin [23,_eorem 2] extending that ofHeath-Brown
and Konyagin [19, Lemma 5]; see also [21,31] for further generalisations.

Lemma 2.1 LetG andH be subgroups ofF∗p and letMG andMH be two complete sets
of distinct coset representatives of G andH in F∗p . For an arbitrary set Θ ⊆ MG ×MH

such that

∣Θ∣ ≤ min{ ∣G∣∣H∣,
p3

∣G∣2∣H∣2
} ,

we have

∑
(u ,v)∈Θ

∣ {(x , y) ∈ G ×H ∶ ux + vy = 1} ∣ ≪ ( ∣G∣∣H∣∣Θ∣
2)

1/3
.

Note that there is a natural bijection between MG, MH and some subsets of the
factor groups F∗p/G and F∗p/H. So, one can think of Θ as a subset of F∗p/G × F∗p/H.
Clearly, the trivial bound on the sum of Lemma 2.1 is

∑
(u ,v)∈Θ

∣ {(x , y) ∈ G ×H ∶ ux + vy = 1} ∣ ≪ min{∣G∣, ∣H∣}∣Θ∣.

Hence if, for example, G = H, then Lemma 2.1 always signiûcantly improves this
bound.

Given a line
ℓa ,b = {(x , y) ∈ F2

p ∶ y = ax + b}

for some pair (a, b) ∈ F2
p and sets A,B ⊆ Fp , we let

ιA,B (ℓa ,b) = ∣ℓa ,b ∩ (A ×B)∣ .

_e following elementary identities are well known and no doubt have appeared,
implicitly and explicitly, in a number of works.

Lemma 2.2 Let A,B ⊆ Fp and λ, µ ∈ F∗p . _en

∑
(a ,b)∈F2

p

ιA,B(ℓa ,b) = ∑
(a ,b)∈F2

p

ιA,B(ℓλa ,µb) = p∣A∣∣B∣,

∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)ιA,B(ℓλa ,µb) = ∣A∣
2
∣B∣

2
− ∣A∣∣B∣

2
+ p∣A∣∣B∣.

Proof _e ûrst relation is obvious, as for every (x , y, a) ∈ A × B × Fp , there is a
unique b = y − ax counted in that sum.

https://doi.org/10.4153/CJM-2017-044-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-044-2


1324 S. Macourt, I. D. Shkredov, and I. E. Shparlinski

For the second sum, we write

∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)ιA,B(ℓλa ,µb) =

∑
(u ,v ,x ,y)∈A×B×A×B

∣ {(a, b) ∈ F2
p ∶ v = au + b, y = λax + µb}∣ .

We now note that the ∣A∣∣B∣ quadruples (u, v , x , y) ∈ A ×B ×A ×B with

(u, v) = (λµ−1x , µ−1 y)
deûne exactly p pairs (a, b) = (a, v − au) ∈ F2

p as above. Furthermore, the
∣A∣∣B∣ (∣B∣ − 1) quadruples (u, v , x , y) ∈ A ×B ×A ×B with u = λµ−1x but v /= µ−1 y
do not deûne any pairs (a, b) as above. _e remaining

∣A∣
2
∣B∣

2
− ∣A∣∣B∣( ∣B∣ − 1) − ∣A∣∣B∣ = ∣A∣

2
∣B∣

2
− ∣A∣∣B∣

2

pairs (including the one with u /= λµ−1x but v = µ−1 y) deûne one pair (a, b) ∈ F2
p

each as above, which concludes the proof.

Using Lemma 2.2 with λ = µ = 1, we immediately derive the following result.

Corollary 2.3 Let A ⊆ Fp . _en

∑
(a ,b)∈F2

p

( ιA,B(ℓa ,b) −
∣A∣∣B∣

p
)

2
≤ p∣A∣∣B∣.

We now link the number of collinear triples Tλ ,µ(A,B) with the quantities
ιA,B(ℓa ,b).

Lemma 2.4 Let A,B ⊆ Fp and λ, µ ∈ F∗p . _en

Tλ ,µ(A,B) = ∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)ιA,B(ℓλa ,µb)2
+ O( ∣A∣

2
∣B∣

2) .

Proof Transforming equation (1.5) into
u1 − λv1

u2 − µv2
=

u1 − λw1

u2 − µw2
, u1 , v1 ,w1 ∈ A, u2 , v2 ,w2 ∈ B,

we introduce an error ofmagnitudeO(∣A∣2∣B∣2) (coming from diòerent pairs of vari-
ables which must be distinct). _en collecting, for every a ∈ Fp , the solutions with

u1 − λv1

u2 − µv2
=

u1 − λw1

u2 − µw2
= a,

we derive
u1 − au2 = λv1 − aµv2 = λw1 − aµw2 .

We now denote this common value by b and observe that for any (a, b) ∈ F2
p , there

are ιA,B(ℓa ,b)ιA,B(ℓλa ,µb)2 solutions to

(2.1) u1 − au2 = λv1 − aµv2 = λw1 − aµw2 = b.
Summing over all pairs (a, b) ∈ F2

p , we obtain the result.
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Corollary 2.5 Let A,B ⊆ Fp and λ, µ ∈ F∗p . _en

Tλ ,µ(A,B) −
∣A∣3∣B∣3

p
=

∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)( ιA,B(ℓλa ,µb) −
∣A∣∣B∣

p
)

2
+ O(∣A∣

2
∣B∣

2
).

Proof Using the identity X2 = (X − Y)2 + 2XY − Y 2 with X = ιA,B (ℓλa ,µb) and
Y = ∣A∣∣B∣/p, we see that

(2.2) ∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)ιA,B(ℓλa ,µb)2
=

∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)( ιA,B(ℓλa ,µb) −
∣A∣2

p
)

2
+ R1 − R2 ,

where

R1 = 2
∣A∣∣B∣

p ∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)ιA,B(ℓλa ,µb),

R2 =
∣A∣2∣B∣2

p2 ∑
(a ,b)∈F2

p

ιA,B(ℓa ,b).

By Lemma 2.2, a�er simple calculations, we have

R1 − R2 = 2( ∣A∣
2
∣B∣

2
− ∣A∣

2
∣B∣

3
/p) ≪ ∣A∣

2
∣B∣

2 .

Combining this with (2.2) yields

∑
(a ,b)∈F2

p

ιA,B (ℓa ,b) ιA,B (ℓλa ,µb)
2
=

∣A∣3∣B∣3

p
+ ∑
(a ,b)∈F2

p

ιA,B(ℓa ,b)( ιA,B(ℓa ,b) −
∣A∣2

p
)

2
+ O( ∣A∣

2
∣B∣

2) .

Hence, using Lemma 2.4, we obtain the result.

Given two sets U,V ⊆ Fp , we deûne E×(U,V) to be the multiplicative energy of U
and V, that is, the number of solutions to

u1v1 = u2v2 , u1 , u2 ∈ U, v1 , v2 ∈ V.

For U = V, we also write E×(U) = E×(U,U). It is easy to see that for any subgroup of
G,H ⊆ F∗p and λ, µ ∈ F∗p , we have

Tλ ,µ(G,H) = ∑
(g ,h)∈G×H

E×(G − λg ,H − µh) + O( ∣G∣3∣H∣)

= ∣G∣∣H∣E×(G − λ,H − µ) + O( ∣G∣3∣H∣) ,

(2.3)

where the error term O(∣G∣3∣H∣) (which is obviously negative) accounts for zero val-
ues of the linear forms in the deûnition of Tλ ,µ(G,H).
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Finally, we need the following bound for small subgroups, which is a slightly sim-
pliûed form of [28, Proposition 1] combined with (2.3).

Lemma 2.6 Let G be a subgroup of F∗p with ∣G∣ ≥ ∣H∣ and ∣G∣∣H∣ < p. _en

Tλ ,µ(G,H) ≪ ∣G∣3∣H∣ log ∣G∣.

2.2 Initial Reductions

_e argument below follows [28,29]. First, note that Lemma 2.6 implies the required
result provided ∣G∣∣H∣ < p, while the bound (1.6) implies it for ∣G∣ ≥ p2/3.

So it remains to consider the case p2/3 > ∣G∣ > p1/2 .
Let ∆ ≥ 3 be a parameter to be chosen later. Using Corollaries 2.3 and 2.5, we

obtain

(2.4) Tλ(G) −
∣G∣6

p
≪ ∣G∣4 + ∆∣G∣2p +W ,

where

W = ∑
(a ,b)∈F2

p
ιG(ℓa ,b)>∆

ιG(ℓa ,b)( ιG (ℓa ,λb) −
∣G∣2

p
)

2
.

Clearly, the contribution toW from lineswith ab = 0 is at most ∣G∣4, as in this case
ιG (ℓa ,b) = 0, unless a ∈ G or b ∈ G, in which case ιG (ℓa ,b) = ∣G∣. _erefore,

∑
(a ,b)∈F2

p
ab=0

ιG(ℓa ,b)( ιG(ℓa ,λb) −
∣G∣2

p
)

2
= O( ∣G∣4) .

_us,

(2.5) W =W∗
+ O( ∣G∣4) ,

where

W∗
= ∑
(a ,b)∈(F∗p)2
ιG(ℓa ,b)>∆

ιG(ℓa ,b)( ιG(ℓa ,λb) −
∣G∣2

p
)

2
,

which is the sum we now consider.
Returning to (1.5), we see that the quantity Tλ(G), up to the error O(∣G∣4) (which

can be absorbed in the same error term that is already present in (2.4)), is equal to the
number of solutions of the equation

(u1 − v1)(u2 − λw2) = (u1 −w1)(u2 − λv2) /= 0,
u i , v i ,w i ∈ G, i = 1, 2.

2.3 Sets Θτ and Qτ

As before, let MG be a set of distinct coset representatives of G in F∗p . Take another
parameter τ ≥ ∆ and put

Θτ = {(α, β) ∈M2
G ∶ ∣ {(x , y) ∈ G2

∶ αx + βy = 1} ∣ ≥ τ} .
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In other words, Θτ is the set of (α, β) ∈M2
G for which the lines

(2.6) Lα ,β = {(x , y) ∈ F2
p ∶ αx + βy = 1} = ℓ−αβ−1 ,β−1

have the intersection with G2 of size at least ιG(ℓ−αβ−1 ,β−1) ≥ τ. In particular,

(2.7) Θτ = {(α, β) ∈M2
G ∶ ιG(Lα ,β) ≥ τ} .

By Lemma 2.1, we have ∣Θτ ∣τ ≪ (∣G∣∣Θτ ∣)
2/3 provided

∣G∣4∣Θτ ∣ < p3 ,(2.8)

∣Θτ ∣ ≤ ∣G∣2 .(2.9)

We also deûne the set

(2.10) Qτ = {(α, β) ∈ (F∗p)
2
∶ ιG(Lα ,β) ≥ τ} .

Comparing (2.7) and (2.10), we see that we can think of Θτ as of an union of cosets
Qτ/G. Clearly, we have

(2.11) ∣Qτ ∣ = ∣G∣2∣Θτ ∣ ≪ ∣G∣4τ−3

provided conditions (2.8) and (2.9) are satisûed.
Condition (2.9) is trivial to verify. Indeed, since ∣G∣2 > p, we have

∣Θτ ∣ ≤ ∣MG∣
2
= (p − 1)2

/∣G∣2 ≤ ∣G∣2 ,

and thus (2.9) holds.
We now show that condition (2.8) also holds for the choice

(2.12) ∆ = c∣G∣3p−3/2 ,

with a suõciently large constant c (recalling that ∣G∣ > p1/2 we see that the condition
∆ ≥ 3 is satisûed).

Lemma 2.7 For ∆ given by (2.12), the bound (2.8) holds.

Proof Suppose, to the contrary, that

(2.13) ∣Θτ ∣ > p3
∣G∣4 .

Whence, the number of incidences between points of P = G2 and the lines Lα ,β as
above with (α, β) ∈ Qτ is at least

(2.14) ∣Qτ ∣τ = ∣G∣2∣Θτ ∣τ > p3
∣G∣−2∆.

On the other hand, by a classical result that holds over any ûeld (see, for example [7,
Corollary 5.2] or [37, Exercise 8.2.1]), the number of incidences for any set of points
P and a set of lines Qτ is at most ∣Qτ ∣

1/2∣P∣ + ∣Qτ ∣. Hence,

(2.15) ∣Qτ ∣τ ≤ ∣Qτ ∣
1/2

∣P∣ + ∣Qτ ∣,

and we obtain

(2.16) ∣Qτ ∣τ2
≪ ∣P∣

2
= ∣G∣4 .

Combining (2.14) and (2.16), we derive

(2.17) p3
∣G∣−2∆ < ∣Qτ ∣τ ≪ ∣G∣4τ−1

≤ ∣G∣4∆−1 .
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Recalling that ∣G∣ ≥ p1/2, we see that for ∆ given by (2.12) with a suõciently large
constant c, the inequalities (2.17) are impossible, which also shows that our assump-
tion (2.13) is false, and this concludes the proof.

2.4 Concluding the Proof of Theorem 1.2

We now deûne

Rτ = {(α, β) ∈ (F∗p)
2
∶ max{ ιG(Lα ,β), ιG(Lα ,λβ)} ≥ τ} .

By Lemma 2.7, for the choice (2.12) of ∆, we have the desired condition (2.8) for
any τ ≥ ∆. Hence, the bound (2.11) also implies that

(2.18) ∣Rτ ∣ = ∣G∣2∣Θτ ∣ ≪ ∣G∣4τ−3 .

We see from (2.6) that there is a one-to-one correspondence between the lines ℓa ,b ,
(a, b) ∈ (F∗p)

2
and the lines Lα ,β , (α, β) ∈ (F∗p)

2
. We now deûne

τ j = e j∆, j = 0, 1, . . . , J ,

where J = ⌈log(∣G∣/∆)⌉ . Note that due to the choice of ∆ and the condition ∣G∣ ≥ p1/2,
we have

τ j ≥ τ0 = ∆≫ ∣G∣3p−3/2
≥ ∣G∣2/p, j = 0, 1, . . . , J .

_en, recalling also the bound (2.18), we conclude that the contribution to W∗ from
the lines with τ j+1 ≥ ιG (ℓa ,b) > τ j is bounded by

(2.19) ∣Qτ j ∣τ j+1( τ j+1 + ∣G∣2/p) 2
≪ ∣Qτ j ∣τ

3
j+1 ≪ ∣G∣4 .

Summing up (2.19) we obtain

W∗
≪ J∣G∣4 ≪ ∣G∣4 log ∣G∣.

Substituting this bound in (2.5) and combining it with (2.4), we obtain

Tλ(G) =
∣G∣6

p
+ O( ∣G∣5p−1/2

+ ∣G∣4 log ∣G∣)

in the range p2/3 ≥ ∣G∣ ≥ p1/2, which concludes the proof.

Remark 2.8 In principle, a stronger version of the classical incidence bound that is
used in (2.15) may lead to improvements of _eorem 1.2. However, the range where
such improvements are known is far away from the range that appears in our appli-
cations; see [35].

3 Trinomial Sums

3.1 Preliminaries

We recall the following classical bound of bilinear sums, see, for example, [17,
Lemma 4.1].
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Lemma 3.1 For any sets X,Y ⊆ Fp and any α = (αx)x∈X, β = (βy)y∈Y, with
max
x∈X

∣αx ∣ ≤ 1 and max
y∈Y

∣βy ∣ ≤ 1,

we have
∣ ∑
x∈X
∑
y∈Y
αxβy ep(xy)∣ ≤

√
p∣X∣∣Y ∣.

Deûnition 3.2 (Ratios of diòerences) For a set U ⊆ F∗p , we deûne D×(U) to be the
number of solutions of

(u1 − v1)(u2 − v2) = (u3 − v3)(u4 − v4), u i , v i ∈ U, i = 1, 2, 3, 4.

As before, we deûne T(U) to be the number of solutions to (1.5). We now recall
the following bound from [25, Lemma 2.7].

Lemma 3.3 For any set U ⊆ F∗p with ∣U∣ = U , we have

D×(U) ≪ U2T(U) +U6 .

Combining Lemma 3.3 with _eorem 1.2, we obtain

D×(G) ≪
∣G∣8

p
+

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p1/2∣G∣11/2 if ∣G∣ ≥ p2/3 ,
∣G∣7p−1/2 if p2/3 > ∣G∣ ≥ p1/2 log p,
∣G∣6 log ∣G∣ if ∣G∣ < p1/2 log p.

Since for ∣G∣ ≥ (p log p)1/2 the ûrst term dominates, this simpliûes as the following
corollary.

Corollary 3.4 For amultiplicative subgroup G ⊆ F∗p , we have

D×(G) ≪
⎧⎪⎪
⎨
⎪⎪⎩

∣G∣8p−1 if ∣G∣ ≥ (p log p)1/2 ,
∣G∣6 log ∣G∣ if ∣G∣ < (p log p)1/2 .

Substituting Corollary 3.4 into the proof of [25, _eorem 1.3], we obtain the fol-
lowing result for trilinear sums over subgroups, which improves its general bound.

Lemma 3.5 For any multiplicative subgroups F,G,H ⊆ F∗p of cardinalities F ,G ,H,
respectively, with F ≥ G ≥ H and weights ρ = (ρu ,v), σ = (σu ,w) and τ = (τv ,w) with

max
(u ,v)∈F×G

∣ρu ,v ∣ ≤ 1, max
(u ,w)∈F×H

∣σu ,w ∣ ≤ 1, max
(v ,w)∈G×H

∣τv ,w ∣ ≤ 1,

for the sum
T = ∑

u∈F
∑
v∈G
∑
w∈H

ρu ,vσu ,wτv ,w ep(auvw),

we have

T ≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

F7/8GH if H ≥ (p log p)1/2 ,
p1/16F7/8GH7/8 (log p)1/16 if G ≥ (p log p)1/2

> H,
p1/8F7/8G7/8H7/8 (log p)1/8 if G < (p log p)1/2 ,
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uniformly over a ∈ F∗p .

Proof We see from [25, Equation (3.8)] that

T8
≪ pF7G4H4K + F8G8H6 ,

where K is the number of solutions to the equation

(u1 − u2)(w1 −w2) = (u3 − u4)(w3 −w4) /= 0,
(u i ,w i) ∈ G ×H, i = 1, 2, 3, 4.

As in the proof of [25, _eorem 1.3], expressing K via multiplicative character sums
and using the Cauchy inequality, we obtain K2 ≤ D×(G)D×(H). Applying Corol-
lary 3.4, instead of [25, Equation 3.9], we now obtain

K ≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

G4H4/p if H ≥ (p log p)1/2 ,
G4H3p−1/2(log p)1/2 if G ≥ (p log p)1/2

> H,
(GH)3 log p if G < (p log p)1/2 .

We now deal with the three cases separately.
For H ≥ (p log p)1/2, we have

T8
≪ F7G8H8

+ F8G8H6 .

Since F < p < H2, the ûrst term dominates, and we obtain

(3.1) T ≪ F7/8GH.

For G ≥ (p log p)1/2
> H, we have

T8
≪ p1/2F7G8H7

(log p)1/2
+ F8G8H6

or

(3.2) T ≪ p1/16F7/8GH7/8
(log p)1/16

+ FGH3/4 .

_e ûrst term of (3.2) dominates for p1/2 ≥ F/H.
We now note that by Lemma 3.1 and the trivial bound for the sum overH, we also

have

(3.3) T ≪ p1/2F 1/2G1/2H.

Furthermore, since for F > p1/2H and G > p1/2, we have

p1/2F 1/2G1/2H = p1/16F7/8GH7/8
(
p7/2H
F3G4 )

1/8

< p1/16F7/8GH7/8
(

p3

F2G4 )
1/8

< p1/16F7/8GH7/8 ,

we see that for G ≥ (p log p)1/2
> H the bound (3.2) simpliûes as

(3.4) T ≤ p1/16F7/8GH7/8
(log p)1/16 .

For G < (p log p)1/2, we have

T8
≪ pF7G7H7 log p + F8G8H6
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or

T ≪ p1/8F7/8G7/8H7/8
(log p)1/8

+ FGH3/4 .(3.5)

_e ûrst term of (3.5) dominates for pH ≥ FG. Otherwise, that is, for pH < FG, we
have

p1/2F 1/2G1/2H = p1/8F7/8G7/8H7/8
(

p3H
F3G3 )

1/8

< p1/8F7/8G7/8H7/8
(

1
H2 )

1/8
≤ p1/8F7/8G7/8H7/8 .

_us, using (3.3) we see that the bound (3.5) simpliûes as

(3.6) T ≤ p1/8F7/8G7/8H7/8
(log p)1/8 .

Combining (3.1), (3.4), and (3.6), we complete the proof.

Clearly, the bound of Lemma 3.5 is nontrivial when F, G and H are all a little
larger than p1/3. More formally, for any ε > 0 there exists some δ > 0 such that
if F ≥ G ≥ H ≥ p1/3+ε , then the exponential sums of Lemma 3.5 are bounded by
O (FGHp−δ).

3.2 Proof of Theorem 1.5

Let Gd and Ge be the subgroups of F∗p formed by the elements of orders dividing d
and e, respectively.

We have

Sχ(Ψ) =
1
de ∑y∈Gd

∑
z∈Ge
∑
x∈F∗p

χ(xyz) ep(Ψ(xyz))

=
1
de ∑x∈F∗p

∑
y∈Gd
∑
z∈Ge

χ(x)χ(y)χ(z) ep (axkzk
+ bxℓ yℓ + cxm ymzm)

=
1
de ∑x∈F∗p

∑
z∈Ge
∑
y∈Gd

ρx ,yσx ,z ep(cxm ymzm
),

where

ρx ,y = χ(x)χ(y) ep(bxℓ yℓ) and σx ,z = χ(z) ep(axkzk
).

Clearly, the set X = {xm ∶ x ∈ F∗p} of nonzero m-th powers contains (p − 1)/ f
elements, each appearingwithmultiplicity f . Furthermore, direct examination shows
that the sets Y = {ym ∶ y ∈ Gd} and Z = {zm ∶ z ∈ Ge} contain g and h elements with
multiplicities gcd(d , f ) and gcd(e , f ), respectively. We recall that by our assumption
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we have f ≥ g ≥ h, and we invoke Lemma 3.5, which gives us

Sχ(Ψ) ≪
f gcd(d , f ) gcd(e , f )

de

×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(p/ f )7/8gh if h ≥ p1/2 log p,
p1/16(p/ f )7/8gh7/8 (log p)1/16 if g ≥ (p log p)1/2

> h,
p1/8(p/ f )7/8g7/8h7/8 (log p)1/8 if g < (p log p)1/2 ,

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p7/8 f 1/8 if h ≥ (p log p)1/2 ,
p15/16 f 1/8h−1/8 (log p)1/16 if g ≥ (p log p)1/2

> g ,
p f 1/8g−1/8h−1/8 (log p)1/8 if g < (p log p)1/2 .

_is concludes the proof.

4 Further Applications

4.1 Additive Properties of Subgroups

As usual, given a rational function

R(X1 , . . . , Xm) ∈ Fp(X1 , . . . , Xm),

and m sets A1 , . . . ,Am ⊆ Fp , we deûne the set

R(A1 , . . . ,Am) = {R(a1 , . . . , am) ∶ (a1 , . . . , am) ∈ (A1 × ⋅ ⋅ ⋅ ×Am) ∖PR} ,

where PR is the set of poles of R.
We note thatwe have usedAm for them-foldCartesian product rather than for the

m-fold product-set of a setA as the previous deûnition suggests. However, neither of
these notations is used in this section.
For a scalar λ ∈ Fp , we use the notation

λA = {λ} ⋅A = {λa ∶ a ∈ A}

for sets ofmultiples ofA ⊆ Fp .
Applying the bound of _eorem 1.2 to cosets of G, that is, to T(G, λG), and us-

ing (2.3) we obtain the following corollary.

Corollary 4.1 Let G be amultiplicative subgroup of F∗p . _en for any λ ∈ F∗p , we have

E×(G + λ) − ∣G∣4

p
≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p1/2∣G∣3/2 if ∣G∣ ≥ p2/3 ,
∣G∣3p−1/2 if p2/3 > ∣G∣ ≥ p1/2 log p,
∣G∣2 log ∣G∣ if ∣G∣ < p1/2 log p.

Note that for ∣G∣/
√

p log p → ∞, Corollary 4.1 gives an asymptotic formula for
E×(G + λ); otherwise, we only have an upper bound.

Corollary 4.2 For amultiplicative subgroup G of F∗p and λ, µ ∈ F∗p we deûne the sets

S1 = G + λG + µG and S2 = {
u − λ
v − µ

∶ u, v ∈ G} .
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We have:
● if ∣G∣ ≥ p2/3, then F∗p ⊆ S1 and F∗p ⊆ GS2;
● if ∣G∣ ≤ (p log p)1/2, then for i = 1, 2,

∣Si ∣ ≫
∣G∣2

log ∣G∣
;

● otherwise, for i = 1, 2,

p − ∣Si ∣ ≪

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p5/2∣G∣−5/2 if ∣G∣ ≥ p2/3 ,
p3/2∣G∣−1 if p2/3 > ∣G∣ ≥ p1/2 log p,
p2∣G∣−2 log p if p1/2 log p ≥ ∣G∣ > (p log p)1/2 .

Proof We consider the set S1 ûrst.
First we show that S1 ⊇ F∗p , provided ∣S1∣ ≥ p2/3. Clearly, the set S1 satisûes the

propertyS1G = S1, andhence ifS1 ⊇ F∗p , then there is anonzero ξ such thatS1∩ξG = ∅.
In other words, the equation

x + λy + zµ = ξw , x , y, z,w ∈ G

has no solutions. By the orthogonality property of exponential functions, this means
that for the sum

σ = ∑
a∈Fp

∑
x∈G

ep(ax)∑
y∈G

ep(aλy)∑
z∈G

ep(aµz)∑
w∈G

ep(−aξw),

we have σ = 0.Clearly, the contribution of σ corresponding to a = 0 equals ∣G∣4. Using
the well-known bound

∣ ∑
x∈Fp

ep(bxk
)∣ ≤ (k − 1)p1/2 , b ∈ F∗p

(see, for example [19, Equation (1)]), combined with the identity

∑
z∈G

ep(bz) =
1
k ∑x∈F∗p

ep(bxk
),

where k = (p − 1)/∣G∣, we have

0 = σ ≥ ∣G∣4 − p ∑
a∈F∗p

∣ ∑
x∈G

ep(ax)∣ ∣ ∑
y∈G

ep(aλy)∣ .

By the Cauchy inequality, we get

0 > ∣G∣4 − p2
∣G∣ ≥ 0,

and this is a contradiction, which gives the result for ∣G∣ ≥ p2/3.
We now consider subgroups with ∣G∣ < p2/3. Clearly,

∣S1∣ = ∣G + λG + µG + λµ∣ ≥ ∣(G + λ)(G + µ)∣.
For a ∈ F∗p ,we let N(a) be the number of solutions to (g+λ)(h+µ) = a with g , h ∈ G.
Clearly,

∑
a∈Fp

N(a) = ∣G∣2 .
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Hence, by the Cauchy inequality, we have

∣G∣4 = ( ∑
a∈Fp

N(a))
2
≤ ∣(G + λ)(G + µ)∣ ∑

a∈Fp

N(a)2
= ∣(G + λ)(G + µ)∣F ,

where F is the number of solutions to

(g1 + λ)(h1 + µ) = (g2 + λ)(h2 + µ), g1 , g2 , h1 , h2 ∈ G.

_ere are obviously O(∣G∣2) solutions when

(g1 + λ)(h1 + µ) = (g2 + λ)(h2 + µ) = 0.

For the other solutionswe repeat the same argument as in the above. _at is, for every
a ∈ Fp , we ûrst collect together solutions with the same value

g1 + λ
g2 + λ

=
h1 + µ
h2 + µ

= a.

A�er this, using the Cauchy inequality again, we obtain

F ≤
√
E×(G + λ)E×(G + µ) + O(∣G∣2).

Hence, putting the above inequalities together, we derive

∣S1∣ ≫
∣G∣4

√
E×(G + λ)E×(G + µ) + O(∣G∣2)

.

Hence, using Corollary 4.1, we derive the result for S1. Indeed, letR be the bound on
∣E×(G + λ) − ∣G∣4/p∣ given by Corollary 4.1. It is easy to see that for G to which the
upper bound on p − ∣Si ∣ applies we have

∣G∣4

p
≫R.

Hence,

E×(G + λ)E×(G + µ) = ∣G∣8

p2 + O(
∣G∣4

p
R +R2

)

=
∣G∣8

p2 + O(
∣G∣4

p
R) =

∣G∣8

p2 ( 1 + O(
p

∣G∣4
R)) ,

which, together with R≫ ∣G∣2, implies

√
E×(G + λ)E×(G + µ) + O(∣G∣2) =

∣G∣4

p
( 1 + O(

p
∣G∣4

R)) + O(∣G∣2)

=
∣G∣4

p
(1 +Q),

where

Q≪
p

∣G∣4
R.
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We note that by adjusting the implied constant in the upper bound on p − ∣S1∣, we
see that one can actually assume that ∣G∣ ≥ C0(p log p)1/2 for some suõciently large
absolute constant C0, so that ∣Q∣ ≤ 1/2. In this case

(1 +Q)
−1
= 1 + O(Q) = 1 + O(

p
∣G∣4

R) ,

and the bound on p− ∣S1∣ follows. For the lower bound on ∣S1∣, we simply remark that
the error termR dominates themain term ∣G∣4/p in Corollary 4.1, so in this case, we
simply write

√
E×(G + λ)E×(G + µ) + O(∣G∣2) ≪R,

and the bound follows.
Similar arguments also lead to the same bounds on ∣S2∣. For example, consider the

case ∣G∣ ≥ p2/3 (where the statement about S2 is slightly diòerent than that about S1).
We denote

(4.1) Q = GS2 =
λG − G

µG − G
.

Using the orthogonality of exponential functions, for any ξ ∈ F∗p , we can write

∣ { λu1 − u2 = ξ(µv1 − v2) ∶ u i , v i ∈ G, i = 1, 2} ∣ =

∣G∣4

p
+

1
p ∑a∈F∗p

∑
u∈G

ep(aλu)∑
v∈G

ep(v)∑
w∈G

ep(aξµw)∑
z∈G

ep(−aξz).

As before, we obtain

∣ ∣ { λu1 − u2 = ξ(v1 − v2) ∶ u i , v i ∈ G, i = 1, 2} ∣ −
∣G∣4

p
∣ <

∑
a∈F∗p

∣ ∑
w∈G

ep(aξw)∣
2
= p∣G∣ − ∣G∣2 .

Hence, for ∣G∣ > p2/3, we have

∣ { λu1 − u2 = ξ(v1 − v2) ∶ u i , v i ∈ G, i = 1, 2} ∣ >
∣G∣4

p
− p∣G∣ + ∣G∣2 > ∣G∣2 .

_erefore, there is a solution with v1 /= v2 that leads to a representation
ξ = (λu1 − u2)/(v1 − v2) for every ξ ∈ F∗p .

Proofs of the other statements about S2 are the same as those about S1.

In particular, Corollary 4.2 applies to S1 = G + G + G and S1 = G + G − G. We note
that for the set Q given by (4.1) we have 0 ∈ λG−G

µG−G if and only if λ ∈ G.

Remark 4.3 Let

Q =
λG − G

G − G
and R =

λG − 1
G − 1

.

Clearly,
RG = Q and R = 1 −R.
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Hence, the set Q contains both RG and (1 − R)G, and hence ∣Q∣ ≥ max{∣RG∣, ∣(1 −
R)G∣}. Using [30,_eorem 18] and ∣R∣ ≫ ∣G∣2/ log ∣G∣, one can show that there is an
absolute constant c > 0 such that ∣Q∣ ≫ ∣G∣2+c for suõciently small G (the condition
∣Q∣2∣G∣ ≤ p2 is enough). _us, the lower bound for size of Q, which follows from
bounds on ∣S2∣ in Corollary 4.2, can be improved for small subgroups.

We note that Corollary 4.2 also allows us to obtain the following version of the
Romanoò theorem modulo almost all primes p.

Corollary 4.4 For a ûxed integer g with ∣g∣ ≥ 2, and suõciently large Q, for all
but o(Q/ logQ) primes p ≤ Q, every residue class modulo p can be represented as
ℓ + gk + gm + gn for a prime ℓ < p and positive integers k,m, n ≤ p − 1.

Proof We recall that by a special case of a result of Indlekofer and Timofeev [20,
Corollary 6], given any positive α < 1, for all but o(Q/ logQ) primes p ≤ Q, the
multiplicative order of g modulo p is at least p1/2 exp((log p)α). For each of these
primes, we apply Corollary 4.2 to the set S1 = G + G + G with the group G ≡ ⟨g
(mod p)⟩ (only the ûrst two inequalities are relevant) and use that for ∣G∣ ≥ p2/3 we
have p5/2∣G∣−5/2 ≤ p3/2∣G∣−1. Hence, we obtain

p − ∣S1∣ ≪ p3/2
∣G∣−1

≪ p exp ( − (log p)α) = o(p/ log p),

and by the prime number theorem, we conclude the proof.

We remark that a classical result of Erdős and Murty [15] can also be used in the
proof of Corollary 4.4; however, the bound of [20, Corollary 6] used in full strength
allows us to get better estimates on the size of the exceptional set. Perhapsmore recent
results of Ford [16] can also be used to estimate the size of the exceptional set; however,
we do not pursue this here.

4.2 Possible Application to Arbitrary Sets

Note that some auxiliary results established in the proofs of [18, _eorems 1 and 2]
can be reformulated as bounds on the size of the set (A−A)(A−A) for an arbitrary
set A ⊆ Fp . We also refer to [2] for more recent results and references. Combined
with the ideas of Balog [2], this may lead to further results on additive properties of
the product sets of diòerence sets.
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