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Basal-flow characteristics of a linear rnedium. sliding 
frictionless over sm.all bedrock undulations 
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ABSTRACT. The basal defo rma tion of a g ravity-drive n linear creeping fl ow sliding 
fri ctionless over slowly varying bed undul ati ons in two dimensions is a nalysed a n a ly t­
ica lly, using results from second-order perturbation theory. One of the key res ults is tha t, 
close to sinuso ida l bedrock undula tions, up to two differenL spati a l regions orJocal extru­
sion flow m ay a rise. The ofTse t a nd onse t of ex trusio n Oow is controlled primaril y by the 
a mplitude-to-wavelength ra ti o. Above the crest o f a sinusoidal bed lin e, a local maximum 
of the surface-pa ra llel velocity develops for c : = ak < 0.1 38, where a is the a mplitude a nd 
k is the wave n umber. As c increases from ze ro to t hi s crit ical va l ue, the ve rtical position of 
the velocity maximum moves from kz = 1 to kz ~ 1.98, where z is the ve rtica l di sta nce 
a bove the mean bed line. Within and above the troug h of a sinusoid , a region of local 
minimum of the surface-para ll e l velocity compo nent develops, which shifts from kz = 1 
towards the bed line as c increases from zero to!. Below thi s \"C locity minimum, a nd fo r 
some di sta nce a bove the velocity maximum, the surface-para ll el veloc it y increases with 
depth. This typ e o f extrusion fl ow will cau e a reve rsal of borehol e-inclina ti on profiles 
c lose to the bedrock. 

INTRODUCTION 

M ost of the intern a l deform a tio n o f g laciers ta kes pl ace in a 
rel a tively narrow region close to the base. One must, in gen­
e ra l, expec t sm a ll loca l bedrock undulati ons, which pro­
trucle into the ice, to a fTec t the basal 0011' a nd poss ibly to 
cause a fl ow pattern considerabl y different from the one pre­
di cted by the well-known pla ne-sla b solution. Kn owledge of 
the fl ow perturba ti ons associa ted with bedrock undulations 
is, a mong other things, importa nt fo r the interpreta tion 0 [" 

s lo pe measurem e nts in ice, a nd beca use of their possible 
effect on ice stra tig raphy. 

This paper de\"Clops a n a na ly ti cal solution fo r a highl y 
v iscous medium fl owing over a perfec tly lubricatcd sinuso i­
da l bed a nd a na lyses its properti es. A numeri ca l treatmcnt 
o f the problem fo r high roughness \ 'a lues, where the rough­
ness r is defin ed as the rati o o f th e bed 's amplitude a to its 
wave length A (T : = a/ A) a nd using Glen's fl ow law, is the 
subj ec t of a furth e r paper (Gudmundsson, 1997). 
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~rea n norm a l pressure 
Atmospheric press ure 
O ve rburde n press ure 
Roughness; T : = a/ A 
Sliding func tio n: 

s(c. 8, 17) : = c//+1 kUb(c . 8. n) / (2 AT,,n) 
Basa l sliding \'elocity 
Non-dimen sio na l sliding veloc ity, 

U" = ATb" AU" 
Surface \'eloc ity 

The loca l m ax imum of v.r a t k.T = 7r/ 2 

The saddle po i III of V.r at kx = 7r / 2 

The local minimum of ur a t kx = 37r/ 2 

Scaled \'e lociti es, defin ed as 

(\Ix , Vz ) : = (V l' VJhLi, 
Components o f the \'elociry vec to r 

'Ch: = AI A* = k./It 
Space coordi nates 
Scaled coordin ates; (X. Z) = k( ~r, z) 

:r , y, z 
X , Z 
Zcri l 

Zo 

The Z coord i na te of u saclcl lp a nd U~'~IX at c = c tTil 
rr/2 ,,/2 ,,/2 

NOTATION 

All , Morl a nd's A para me ter, defin ed through 
Equa ti on (18) 

CL Amplitude ofa sinuso ida l wme 
Co C la usius C lapey ron consta nt 
9 Accel era tion ofgra\'it y 
h Mean g lac ier thickn ess 

k ''\law' number 
k. Contro lling wave number, defin ed by 

Equ ation (17) 
J( Thermal conductivity 
L L atent heat of fu sion per unit volume of ice 
N Set of intege rs 

0' 

(3(x ) 
(3J 
8 
8ij 
Ell 

f " I) 

Vertica l p ositio n of glacier bed 
Mean surface slope 

Loca l bedrock slope; tan (3 (x ) = dzo(x) / d:1.' 
(31: = il/ / (ii} + 1) 
Thinness pa ra meter; 8: = (kh )- ' 
Kronccker d elta 
Second inva ri a nt of the stra in-ra te tensor; 

. I " 
f it : = 2 EijEij 

Components o f strain-rate te nso r 

EfTec ti\ 'e st ra in rate' f. . = ~ , . V 2 t ij t ;j 

Loca l bed-slope parameter, c : = ak 
Fo r c < ccr il V (::r z) has a sta ti o nar)' point rr/2' .r , ' 

somewhere a long the vertica l line k:r; = 7r/2 
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c:crit 
3rr/ 2 

SzifJixes 
I 
B 

b 

Fa r 10 < C:~~/2' V.r(x, z) has a stati ona ry point 
somewhere along the vertical I i ne kx = 37'1/ 2 

Viscosity 
vVavelength 
Tra nsition \I'a\'e!eng th 
Specific density 
Second deviatoric stress inva ri ant; 

I 1 / I 

(TIT: = 2aijaij 
Components of the stress tensor 
Components of the devi atoric stress tensor; 

' I e a ij : = aij - 3Uija kk 

Effective stress; T : = Frr 
Driving stress; Tb : = prgh sin a 

Properties of ice 
Properti es of bed rock 
Basal properti es 

Dimensional quantities a re usuall y in lower-case letters 
and non-dimensional quantiti es are in capita l le tters. 

PREVIOUS WORK 

Theoretica l treatment of flow over undulating bed is diffi­
cult and o nl y a few analytical solutions ex ist (Nye, 1969, 
1970; K amb, 1970; Morla nd , 1976a, b; Fowler, 1979, 1981). 
These soluti ons often apply to somewhat idealized condi­
tions at the glacier bed but nevertheless give a va luable in­
sight into the nature of the fl ow. Numerical work has so far 
been limited to a few cases (M eyssonnier, 1983; Schweizer, 
1989; Schweizer and Iken, 1992; R aymond, unpublished). 

Nye (1969) and Kamb (1970) found an approximate solu­
tion for a highly viscous Newtoni a n fluid sliding over a per­
fec tl y lubri cated bed. They used a perturba tio n approach 
a nd ca lcul a ted the flo w fi e ld to fir st orde r in 10 : = ak, 
where the vertical position of the bed line is given by Zo = 
a sin kx . 

Ignoring the effec t of regelation and assuming no tan­
genti a l trac ti on, the bound a r y condi tions a long th e bed 
line are 

z 

h 

a nd 

d zo -vx -
d 

+ V z = 0, on 
x 

Z= Zo, (1) 

axz =~(aTX- azz)tan2f3(x), on Z=Zo, (2) 

where tan f3( x) : = dZQ (x) / dx. The problem is depic ted in 
Fig ure I and the vari ables have been defined above under 
Nota tion. 

The fi eld perturbations are to fir st order (Nye, 1969; 
K a mb, 1970): 

vx(x, z) = U b + 'ubak2ze-kz sin kx + 0(102
) , (3a) 

Vz(x, Z) = Ubk (l + kz)e-kza cos kx + 0(102
) , (3b) 

p(x , Z) = Poc + 27]Ub k2e-kza cos kx + 0(102
) , (3c) 

a~x(x,z) = -a~z = 27]Uhk3ze-kza cos kx + 0(102
) , (3d) 

axz(x, z) = - 27]ubk3ze-kza sin kx + 0(102) , (3e) 

T(X,Z) = 27]Ubak3ze-kz = 2Tb'::ekz + 0 (102) , (3f) 
a 

where T : = \ ~, which is sometimes called the ellec tive 
stress, Pco is the ~ressure applied a t the upper bounda ry of 
the medium, (T'ij a re the components o f the stress tensor and 
a:j a re the components of the devia LOric stress tensor. The 
drivi ng forcc of the motion is a constant shea r stress ap­
plied at the upper boundary. The basal sliding velocit y, Ub, 
is given by 

Tb 
Ub=~k3' 17a 

(4) 

where 7] is the viscosity of the ice, and Tb the dri ving stress. 
Expressions (3a )-(3f) di splay some interesting features. 

One of them is the fact that T , in Equation (3f), shows no 
dep endence on x . This will of course a lso apply to the sec­
ond invari ant of the strain-rate tensor. Another interesting 
feature of the linear solutions give n above is the occurrence 
of extrusion flow, which is here defin ed as an increase of the 
horizonta l flow- veloc ity compone nt with depth. At the 
p oint kx = 37'1/ 2 + 27rl where 1 E N, where N is the set of 
integers and z = Zmill : = I / k, Vx has a local minimum: 

~ 9 ~ 

x 

Fig. 1. Flow over a sinusoidal bed. The coordinate system makes the angle et with respect to the horizontaL. The vertical position of 
the bed line Zo, is Zo = a sin kx. The sine wave has the wavelength), = 27'1/ k and amplitude a. The sUljace velocity is denoted 
by 'Us and the sliding velocity by Ub. h is the glacier thickness. 
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Vmin : = v.,. (x = 37f, Z = -k1) = Ub (1 _ ak) . (5) 
2k - e 

From Z = Zmin downwards to the bed the horizonta l velocity 
increases. Note th at, since ak « 1, it follows that Zmin » a. 

Extrusion fl ow, a term introduced by Demorest (1941, 
1942), has been a subj ect of some deba te in the glacio logical 
li te ra ture. On theor eti cal grounds, it can easily be shown 
th at a global extrusion fl ow, tha t is a n increase of the hori­
zonta l velocity with depth througho ut an entire g lacier, is 
im possible since the overl ying mass ""ill then experience a 
fo rce in the ma in direction of Dow, which is not co unter­
ba la nced by any other force, leading to an accelera ting ve­
locity (Nye, 1952). There are, on th e o ther hand , cla ims of 
ex trusion fl ow hav ing been direc tl y observed by bo rehole 
deformation measu rements (H ooke a nd others, 1987) a nd 
by ob erva ti ons within subglacia l caves close to t he bed­
rock interface (Caro l, 1947). Extrusive fl ow has a lso been 
obse rved within subglacia l sedim e nts (Blake a nd o th e rs, 
1992). Arguments supporting (global) ex trusion fl ow based 
o n m ass -ba la nce m easurements h ave a lso bee n g ive n 
(StreifT-Becker, 19:)8; Seligman, 1947). 

.Morland (1976a) derived second-o rder solutions fo r fl ow 
over bedrock undula ti ons using bo und a ry conditio n s (I) 
a nd (2), a nd calc ula ted ex plicit solutions va lid a long the 
bed li ne of a sinusoida l bed. Solu t io ns based on hi s work, 
which a re va lid for the half-space above the bed, are g iven 
below a nd discussed. 

M eyssonnier (1983) and Schweize r (1989) did FE calcu­
la tions of fl ow ove r a sinusoidal bed . M eyssonnier obta ined, 
in some of hi s nume ri cal calcula tions, a point of maximum 
rel a tive hori zonta l velocity that was situ ated above th e p eak 
of the sine wave, a nd some of Schweizer 's calcu lati ons show 
a po int of rela ti ve h o ri zo ntal ve loc ity minimum sit u a ted 
a bove the trough of th e sine wave. 

SECOND-ORDER SOLUTIONS FOR A GRAVITY­
DRIVEN FLOW 

M orla nd (1976a ) incorporated grav ity as the driving force 
of the moti on a nd calcul atedlerm s to second ord e r in c. 

Fo r the spec ia l case of a sinusoidal bed , he gaw expressions 
valid for the pressure fi eld and for th e ve locity components 
a long the bed line, i. e. a t Z = O. Using M o rl and's results, one 
can ca lculate the velocity and the stress fi eld a functi ons of 
X a nd z, onl y so mewh a t labori ou s wo rk is invo lved. All 
equa tions in thi s sec tion foll ow from M o rl and (1976a). 

The basal sliding velocit y Ub is 

Cudmundsson: B asaljlow charaeteTisties if a linear medium 

Tb (iiP+ 1) 
Ub=--

'r}c 2k w2 

=~ (~ +~ k) 
'r}c 2 k k. k. 

(6) 

where the controlling wave number k. is defined by Equ a­
ti on (17), and iiJ is defin ed as iiJ : = k./ k. Ta ble 1 compa res 
the no ta tion that is used here with the n o ta ti on of sever a l 
othe r a uthors. 

If k/ k. « 1, the effects of rege lati on a re negligibl e a nd 
the basal sliding velocity is given by 

Tb 
Ub =--. 

T} kc2 (7) 

On th e o ther hand, if k/ k. » 1, which is th e pure rege lation 
limi t, 

Tb k 
Ub =---? ' 

T}c 2 k. -
(8) 

Ub h as a minimum a t k = k •. For a g iven am pli tude-to ­
wave le ng th rati o the la rgest part of the drag is contr ibuted 
by th e Fouri cr compo ne l1ls of the bed w ith wavelen gth s 
a ro und A., where A. = 27f/k. is give n by Eq uati on (15) 
(Nye, 1969). Note that 

wh ere 

Tb 
Ub(31 = - 2k' T}c . 

iiJ2 
(31 : = -_-? - . 

w- + 1 

(9) 

(10) 

Equ a ti o n (9) is a useful rela ti on that can b e used to eli m ina te 
the sliding velocity from the foll owing equ a tions. 

Th e velocity fi eld is given by 

v;(x, z) = 1ib + 1';:1 [1 _ (1 _ ~) 2] 

+ Ub f31 kze- kz (sin kx - AI" cos kx) 10 

+ Ub (31e-2kz(eos 2 kx + Alii sin 2 kx) (1- k;) 10
2 

+ 0 (c3
) , (l1a) 

and 

vz(x , z) = ubf31e-kz (eos kx + A 111 sin kx)(l +kz)c 

+~ubf31 kzc-2kZ (sin 2kx - Am cos2kx)c2 

(l1b ) 

whe re Am is defin ed th ro ugh Equatio n (18), and h is th e 
mean g lac ier thickness. 

Table /. Notation used here and that used by several different allthors. k. is the controlling wave number and A. the transition 
wavelength, A. = 27f/k., with k. = J L/2T}Co (1(r + K B)' l ' = a/ A is the single wavelengtlz roughness and 10 : = 
ak = 27fT is the (local bed) slo/Je l1 umbel: L is the latent heat ciffllsion !JeT unit volume of ice 

Thisfiofier . \i'e (1969, 1970) Komb (1970) Lfibolllc)' (1987) M orlalld (19760) 

k, k. lu w. 1/ ~. 
A, 2r./ k' AO 2r./w. 2r. A, 
L L H pL L 
k k h w k 
7' -/2T ( E/2r. 

73 https://doi.org/10.3189/S0022143000002823 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000002823


J ounzaL qfGLacioLogy 

For th e sp ecial case of z = 0, Equations (I la ) and (11 b) 
reduce ro solut ions for the velocity fi eld along the bed line 
g iven earli er by Morland (1976 a ). Note tha t for z = 0 the 
first-order term in Equati on (l la ) yani shes. 

Equa tions (11a ) and (llb ) lead to the fo llow ing ex pres­
sions for the strain rates: 

(Cl = Ub /31 zk2e -b (cos kx + Am sin /.,;x) c 

+ 'lll, /31 ke-2b (sin 2 kx - Alii cos 2 kx) (kz - ~) c2 

+ O(e3
) , (12a) 

a nd 

E. f z = ~ (1 - ~) a2 k3ub 

+ Ub /31 zk2e-kz (AIlI cos kx - sin kx) e 

+ UI> /31 ke-2kZ (kz - ~) (COS 2 kx + Am s in 2 kx) c2 

+ O(e3
) . (12b) 

The second inva riant of the strain-rate tenso r is then found 
to be 

En2 = ±(1 -~ra.J kGUb2 
+ Ub 

2
/31 (1 -~) (A m cos kx - sin kx)zk5a2e-k

: c 

+ UI} /312 (A 1I12 + 1) z2k.J e-2kz c2 

+ '[lI,2 /31 (1 -~) (kz -~) 
. (Am sin 2kx+ cos 2kx)a2kC1e-2I.:zc2 

+ Ub 
2 /312 (Am2 + 1) (2 kz - 1) sin kx zk3 e- 3 

kz c3 

+Ub 2 /312 (kz -~) 2 (Am 2 + 1)k2c- 1b e ' l 

+ O(e6
) . (13) 

Equ ation (17) shows tha t, to second order, Ell depends on 
both x a nd z a nd not on ly on z as is the case in the firsl­
order Nye/K a mb solutio n. 

Finall y, the pressure di stribution is given by 

p(x,z) = p" + pg cos 0' (1 -~) 
+ 2Uh /31 7)ke -J.:z( cos kx + Am sin kx)e 

+ Ub /31 7)kc-2kZ(sin 2 kx - AIJl cos 2 kx) c2 

+ O(e3
) . (14) 

T hese expressions can be used to calcu late the flow and the 
sli ding velocity for a genera l b ed geometry as long as c « 1. 

The effect of regelation on the flow field 

Regclation is only important a t waveleng ths comparable to 
or smalle r tha n the tra nsitio n waveleng th A. (\ Veertman, 
1957, 1964, 1979; Nye, 1969; K a mb, 1970), whe re 

87r27) Co (EL + KB) 
A. = (15) 

L 
and where KI and K o a rc thc thermal conductiviti es oUhe 
ice a nd bed, respec ti\·ely. 

Two p a ra meters (ill a nd Am ) enter the fl ow solutions 
(Equations (l la ) and (lI b)) tha t describe the relative impor­
tance of regelati on to viscous fl ow ( ~ Io rland , 1976a). ill is the 
rati o of th e bed waveleng th to the transiti on wavelength, i. e. 

(A)2 (k) 2 L 
ill

2
:= ">:. = ; = 2k2 7) Co(K 1 + K B ) ' 

(16) 

where k. is the controll ing w ave number, g ivc n by 

74 

(17) 

I n the no-regelation li mit (3) = 1 (/31 is defi ned by Equation 
(10)) and in the pure-regelation lim.it /31 = O. Am is given by 
( 10rland, 1976a ) 

(KI + KB) eos(O') p 9 Co + 2 Q Am =~~--~~~~~~~--~ 
LUb 

= a2
k

3
7) (Co (.K! + K B ) cot(O') + 2Q) . 

L h Tb 
(18) 

The effect of freez ing and melti ng on the Oow fi eld is negli­
g ible if Am « 1 a nd that is a lmost a lways the ca se (Mo r­
la nd, 1976a ), which is the reason fo r ignoring the eflec t of 
rcgelation on th e flow fi eld in the fo llowing d iscu ssion of 
t he properties of Equations (l la ) a nd (li b). 

Dimensionless form of the flow solutions 

For the fo llowin g di scussion, it is of a dvantage to rcscale the 
dimensional qu antit ies and to p ut the equations in a d imen­
sionless form . 10 thi end, d ime nsio nless vert ica l a nd hori­
zonta l length sca les, denoted by capital lctters, are defined 
by 

X: = kx and Z := kz, (19) 

where the wave number k is used as a scaling fac tor. T he 
velocity fi eld is scaled by the sliding velocity, so t ha t 

~\"" : = V.
T and V}, : = Vy . (20) 

Ub Ub 

The dimensionless pa rameters which enter the problem are 
the slope pa r a m eter c and the thinness param e te r {j : = 

(kh rl . Regelation will be ignored so that the following dis­
c ussion is only va lid for A » A •. 

Using the above-defin ed scalings, the velocity fi eld is 
? 

Vx(X , Z) = 1 + ~~ (1 - (1 - 8Z)2 ) 

+ cZe- z sinX 

+e2e-2Z G - ~) cos 2X + O(e3
) (21a) 

a nd 

Vz( X , Z) = c( l + Z )e- z eos X 

+ ~c2 Ze- 2Z s in 2X + O(c3 ) , 

where use has been made of Eq ua tion (7). 

(21b) 

OVERALL FEATURES OF THE HORIZONTAL 
VELOCITY FIELD 

Before going into a somewhat tedious mathema tical disc us­
sion of" the prope rties of the flo w fi eld, let us look a t some 
contour plots of the horizontal velocity fi eld to get an O\·er­
a ll idea of the fl ow perturba tion s caused by the sinusoidal 
bed. 

Figure 2 depicts V\-(X, Z) as a function of X a nd Z , for 
e = 0.01 and 15 = 0, according to Equation (ll a ). The bed 
line is Oat, since in the mathem a tical solution the sinusoidal 
bed profi le has b een projec ted on to the line Z = O. Note 
t hat (X / rr , Z) = G, O) and (X j7r,Z) = G, O) conespond , 
respec ti ve ly, to t he peak and the trough of th e sinuso id . 
The most consp icuous features of the fi gure a re the sta ti on­
a ry points situ a ted above the p eak and the trough of the 
sinuso idal curve a t Z ~ I. 
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N 2 

0.5 1.0 
Xht 

1.5 2.0 

Fig. 2. The horizontal velocity, V\", as afunction qf X and Z 
for c: = 0.01 and {) = O. The l'eloci£), ma\·imu1/l al X /7r =! 
and Z ~ 1 is referred to in Ihe lext as U~/~x . T he minimum 

velocity at X /7r = ~and Z ~ 1 is called V3~';~' 

I n Fig ure 3, the \ 'alue of E has been cha nged from c: = 

0.01 to E = 0.1 as compa red to fig ure 2. The effec t of thi s 
inc rease in c: is to mO\'e the loca l max imum of the horizo n­
ta l \ 'eloc it y field upwa rd away from the bed , and the mini­
mum o f th e ve loc it y fi eld dow n to w a rd s th e bed. Th e 
a mplitudes of the veloc it y penurba ti o n s a re also conside r­
ably la rger. fur thermore, a saddle po in t, where t here is a 
loca l m ax imum in ho ri zo nta l direc ti o n but a loca l mini­
mum in ve rtical direc ti o n, ca n be see n a bO\'e the \'clocity 

. X/ 1 max imum at 7r = 2' 

4 

3 

N 2 

1 

0.5 1.0 
Xht 

1.5 2.0 

Fig. 3. V\· as afill/clioll of X and ZJor c: = 0.1 and (; = o. 
U~?;X has moved upwards and U31~i;~ downward., wilh res/xct 
to Figure 2. The poillt U;"~dl0 filii also be seen. As E increases 
further. U~?r and U;/~(I{o m01'e 101m rds Z = Zerit ~ 1.98, 
which Ih~J' reachJor c: = E~';i ~ 0.138. SimuLtaneollsly. U~~i;k 
moves dowllwards alld reaches Z = 0 Jar c: = E~~/2 = b 

Increasing the \,{l lue of c: e\'en furt her, as has been do ne 
in Fig ure 4, where E = b, brings the minimum towards the 
be d lin e. The max imu m po int a nd th e sadd le po int at 
X/7f = ~ haw di sappea red. As will be show n be low, t he 
max imum point a nd the saddle point cancel each other fo r 
{) = 0 a t c: ~ 0.138. 

The effect of cha ng ing the va lue o f {5 somewhat on th e 
horizonta l velocit y fi eld can seen by compa ring fig ure 5, 
where E = 0.1 a nd {) = 0.1, to Figure 3, wh ere E = 0.1 but 
{5 = 0.0. The velocit y m ax imummO\"es slig htl y towards the 
bed line a nd the saddl e point furth er away from the bed as {5 

is inc reased fro l11 0 to 0 .1. Increase in {5 causes th e loca l 
m ini m um of t he ho ri zo n ta l velocit y fi e ld to 11100'e away 
from th e bed line. 

CUd17l11lldsson: Basalflow characteristics ofa linear medium 

3 

N 2 

0.5 1.0 
X/Tt 

1,5 2.0 

Fig. 4. V , as afimction of X and ZJor E = 0.5 and {5 = O. 
The 'Joints U1l1

1" and U,,,ddlo call no longer be seen and 'Joint .1' rr/ 2 rr/ 2 l' 
U~'~I;~ is al Z = O. 

4 

3 

N 2 

1.0 
X/Tt 

1.5 2.0 

Fig. 5. V\" as ajill1clion of X and ZJor E = 0.1 and (5 = OJ 
B.)' com/Jarillg Ihisjigllre with Figure 3, Ihe irif/uf1lce qf {5 call 
be seel/ . 

O nc o f the interesting fear ures of Fig ures 2,3 a nd 5 is 
tha t abo\ 'e the \'e locit y m axim um and below th e \'eloc it y 
minimum a reg ion where the hori zo nta l veloc it y increases 
with de plh (ex trusion fl ow ) is fo un d. In the nex t sec ti on, 
the exac t cond iti ons under which ex trusion fl o \\' den'lops 
a re determin ed . Since the fo ll owing di scussio n is somewhat 
tedi ous, the r eade r who is not interested in the fin e de ta il s of 
the ma tte r m ay find it bet ter to skip th e nex t sec ti on a nd 
read th e summ a ry of the results giw n in the las t secti on of 
the paper. 

EXTRUSION FLOW 

It is of pa rtic ul a r inte rest to know when ex trusio n fl o\\' oc­
curs acco rdin g to Equ al io n (l la ). T hi s qu es ti on ca n be 
answered by itwesti ga ting when Vx(X, Z) has a local max­
imum o r minimulll fo r Z > O. A necessa ry c rite rion fo r a 
stati onary p o int ofVY(X. Z) is that VVdX, Z) = O. 

The horizontal positions of the stationary points 

Differenti a ti o n of Equa ti on (1I a ) gi\'es 

81;\ (X Z) = EZC- Z cosX 8X . . 

+ c:2 G - Z)c- 2Z s iu 2X , (22) 

a nd shows th a t av\,(X, Z)/8X = 0 has as solutio ns X = 
7r/2 a nd X = 37r/2 wit h 11 0 res tri c ti ons o n Z. (It is to be 
understood tha t because o f the periodicity o f the sine fun c-

75 https://doi.org/10.3189/S0022143000002823 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000002823


J ournal ifClaciology 

tion, an in tege r multiple of 21T can always be added to the 
values of X , a lthough it will not be explicitl y so wrillen.) 

There is another interesting se t of solutions given by 

Zez 
sin X = c( l _ 2Z) . (23) 

It can be shown that thi s solution set is a second-order effect 
which is only important in th e immedi ate vicinity of the bed 
line. This solution branch will not be discussed here further. 
Th e interested reader can find a detailed analys is of this 
solution set out in Gudmundsson (l994a). Ig noring this sec­
o nd- orde r effec t t here a re, hence, only two sta ti o na r y 
points. One is loca ted above the peak of th e sinu so id a l 
curve, at X = 1T / 2, a nd can be shown to be a point of m ax­
imum velocity with respect to X. The other stationa ry point 
is situa ted above the trough, at X = 31T / 2, and is a point of 
minimum horizonta l velocity with respec t to X . 

The vertical positions of the stationary points 

Differenti ating Vy(X, Z) with res pect to Z and setting the 
resulting expression equ al to zero gives 

1 
1 - 5Z = - (Z - 1)e-z sin X + (1 - Z)e- 2Z cos 2X . 

c 
(24) 

The interesting cases to be considered a re X = 1T/2 and 
X = 31T /2, but there a re also solutions a t X = 0 and X = 1T 
with Z = O. These two soluti on points, situated at the bed­
rock interface, are saddl e points, where the hori zonta l velo­
city obtains a maximum with respect to X but a minimum 
with respect to Z. The existence of these points is a second­
order effect (Gudmundsson, 1994b) and they will not be di s­
cussed fur ther. 

Stationary points situated above the peak if a sinusoid 
Let us begin with the case X = 1T /2 in Equ ation (24) a nd see 
if there is a solution to the res ulting equ ation 

1 
1 - 5Z = - (Z - 1)e-z + (Z - 1)e-2z . (25) 
'--v--' c 

= :L(rr/ 2,Z.b) , , 
= :R(rr/ 2.Z,c: ) 

This is a non-linea r equation that does not have a solu tion in 
a closed form. By plotting the lefth and side (L (1T/2, Z, 5) ) 
a nd the righthand side (R (w/2, Z, c) ) sepa rately, as is done 
in Fig ure 6, one sees th at there will be a solu tion to Equation 
(25) if the rightha nd side, for at leas t one value of Z, be­
comes greater than, or equa l to, 1 - 5Z . This will happen if 
c is less th an some pa r ticul a r value, that will now be called 
c~;~. Th ere will , h e nce, o nl y be s ta ti o na r y p o in ts a t 
X = w / 2 for some 5 if c < c~/;. To determine c~;~, write c 
in Equation (25) as a function of Z and 5: 

Z - 1 - z 
c(Z,5) = (1 _ 5Z)eZ + (1 - Z)e . (26) 

Then c~Jn can be found by m ax imizing c(Z, 5) g ive n by 
Equation (26) subj ected to Z> 0 and 0 ::; 5 « 1. By sol­
ving &(Z, 5)/8Z = 0 numerically, c~)~ can be calcu la ted 
as a function of 5. The deta ils of these calcu lations can be 
found in Gudmundsson (1994b). 

It is found that there are in general two stationary points 
along the line X = 1T /2. An inspection of the determina nt of 
the H essian matrix ofVx( X. Z) at the p oint X = 1T/2 shows 
that one of the stati ona r y points is a point of relative m ax­
imum. This veloc it y m aximum will now be called u~/~x. 
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...J 

~ 

er: 

.. fi:.= 0.100 

z 

Fig. 6. L(w/2,Z,8) and R (w/ 2,Z,c) asJunctionsof Z. 
T he solid lines represent the lefthand side if Equation (25) 

Jor aJew different values if 8 and the dolted lines show the 
righthand side oft/wt same equationJor different c values. 

Th e o th e r s ta ti ona r y p o int is a sa ddl e p o in t, wher e 

Vx(X , Z) has a max imum w ith respec t to X , but a mini­

mum with respect to Z. The hori zontal velocity component 
at this point will be ca ll ed u sacld\e . 

. rr/ 2 
c~/~ is depicted in Figure 7 as a fun ction of 8. For 8 = 0, 

umax and usadcl\e ex ist as lon o- as c < ccrit ~ 0.1 38. The fig-,,/2 7r/2 b rr/2 
ure also shows that the value of c, above which the hori zon-

ta l velocity has no tationary points at X = w / 2, increases 
with 8. 

0.180 .---.-~----r~~'--'-~~'--'~~--,-~.---.--, 

0.170 

tlJ 0.160 

0.150 

0.140 

0.130 "---'-~-"---'~~'--'-_ _ '--'-_~--'-~~ 

0.00 0.02 0 .04 8 0.06 0.08 0.10 

Fig. 7 c~J)~ as aJunction if 8. For c and 8 values below the Line 
there wiLL be at least two solutions to Equation (25). One of 
these two solutions corresponds to a local maximum if the hor­
izontaL veLocities above the peak if the sinusoidaL bed and is 
caLLed umax The other solution is situated above umax and rr/ 2 7r/2 
corres/Jonds to a saddle /Joint qfthe horizontal veLocities, where 
Vx has a Local maximum with respect to X but a Local mini­
mum with respect to Z and is caLLed u sadd\e. 

rr/ 2 

The cha nges in the vertica l coordina tes of both U~/~x 

and U!i~d\C as c increases fr om zero a re inte resting. For 
c = 0 Umax is a t Z = 1 a nd usadd\e at Z = 1/8. As c in-, 7r/2 rr/2 
creases from zero toward s c = ccnt Ulllax m oves upward s ,,/2' 11/2 
away from the bed, while usa/~c1\C moves downward towards rr _ 

t he bed line. Both station ary poin ts t hen unite at Z = 
Zcrit ~ 1. 98 for c = c~;~, a nd di sa pp ea r (Gudmund sso n, 
1994b). T hese changes in the vertical coordinates of U~/~x and 
U!i~d\e a re illustrated in Figure 8. 
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£ 

0.15 

Fig. 8. The vertical /70silions or umax and u""ddle asfimc-u ,,/2 .1'/ 2 
tions if e Jar 6 = 0 and D = 0.1. Zcrit and e~';~ are the /)oi11ts 
where the the sloj)es if the two lines are verticaL. The branches 
above and below Z crit give the verlieal posilions if u~/~d le 
and umax respective" l. For e = eCfl.t there are no U lJlax and ,,/2 ' "Y ,,/2 ,,/2 
u sadd lr poinls. ,,/2 

The stationar )1 points umax and u :addle a re not the only ,,/2 ,, /2 
poss ible sta tiona ry points above th e peak of th e sinuso id 
whi ch th e hor izonta l ve locity fi eld ca n have. Fi g urc 6 
shows that the curvaturc of' R(7r/2. Z. e) cun'es (dotted 
lines) ca n cha nge, in which ca e th e L ( 7r / 2, Z, 6) curves 
(so lid lines) can cross the dotted ones not onl y twice but 
three times. In this case, a third stat ionary POilll, U~i, will 
be found a long the line X = 7r/2 together with U~)~X and 
U~/~dlc. It ca n be shown (Gudmundsson, 1994b ) that th c 
vert ica l positi on of U~;; wi II a lways bc above Z = 3 and 
th at it wi ll in general be found close to th e surface. Thi s sta­
tionary point may appear because of the assumption, m ade 
in the derivation of th e fl ow solutions, that the surface r e­
mains flat a t a ll times. Thi s assumption wi ll on ly be ap­
proximately truc when th e bedroc k is undul ated . Th e 
properti es of thi s sta tionary point wil l, hence, not be dis­
cussed furth er. 

SlatiOIlO1Y /)oints siluated above Ihe lrough if a sinusoid 
The other poss ibl e X value, beside X = 7r / 2, for a station­
ary point of VdX, Z) is X = 37r/ 2. In se rting X = 37r/ 2 
into Equa ti on (24) lead s to 

-Z (1 -z) 1 - 6Z = e (1 - Z) ~ - c . (27) 

The lefth a nd side will a lways be greate r than or equa l to 
zero, b eca use Z must a lwa ys b e within th e r ange 
0 ::::; Z ::::; kh . Th e l ie - e-z term o n th e ri g hth a nd s id e 
will a lways be positive. There is therefore no solution poss i­
ble for Z > 1, but for Z ::::; 1 there will a lways be a solu tion 
to Equation (27) as long as e ::::;~ . This limiting va lue for e 

'11 b II d (Tit I nit - 1 r s: 1 r. 0 
WI e ca e c3,,/2' so t 1at e3,,/2 = "2 tor u« . t or e ----> , 

th e vert ica l coordina te of thi s stationa r y point will be at 
Z = 1, and for e = ~ the poilll wi ll be situ ated at Z = 0 in­
dependent ly of the v; lue of 6. By looking a t the determ ina l1l 
of the H ess ian matrix, o ne find s that this sta tiona ry point is 
a point of relat ive minimum , and it will be referred to as 
umin 

J,,/ 2' 
Equation (27) can be solved for e, g iving 

Cudmundsson: BasaljLow (haracteristics if a linear medium 

1 - Z 
e = -:----:---:--=---,------,---=:-

(1 - 6Z)eZ + (1 - Z)e- Z (28) 

As 6 varies, the position of U~r;:)~ changes somewhat. This is 
depicted in Fig ure 9, wh ich shows the position of U1'~'/~ as a 
function of e for two different 6 values. For a g iven e value 
a nd 6> 0, there will be two soluti ons for Z of Equation 
(28). Only one of these so lution points will be situated be­
low Z = l iD ( the other one is abO\'e the surface, and is a 
mathematical a rtifact ) a nd it is thi s soluti o n that is de­
picted in Figure 9. 

1.0 
~ 

0.8 ...... 
...... 

"-

0 .6 "-

0=0 "- 0=0.2 N ...... 

0.4 "-

"-
...... 

0.2 :--.. 

~ 

0.0 
0.00 0.10 0 .20 0.30 0.40 0.50 

£ 

Fig. 9. Tlte vertical posil iOIl if U31;)~ as a Junction of e Jor 
6 = 0 and 6 = 0.2. U3:1)~ is the local minimum if the hori­
zOlltal velocilies above th e Irough oJ the sinusoidal curve 
(where x = 37r / 2). For e = 0, U3:i;b is situated at Z = 1. 
As e increases, it a/)/)roaches Ihe bed and disappears at e = ~. 
.!Iole that 6has al1l10s1l10 ~ffecl on the /)osiliol1 ifUl:%. 

Note th a t the perturbatio n approach is on ly valid as long 

as e « 1. A va lue or c~~/2 = ~ is, in thi s respec t, rather la rge. 
It is therefore not clear whether the prediction that the ta­
tionary point above the troug h of the sinuso id ex ists as long 

as e < e~~/2 = ! can be trusted. Numerica l a pproach seems 
to be the o nly possibi lity o f getting a definitive a nswer. 

The ex istence of the sta tionary points U~/~x, U~/~dlc and 
U31~';b shows that there wi ll be two regions of extrusion fl ow. 
One is a t X = 7r/2, which ex tends over the region that lies 
between the saddle poilll ( U~~dlC ) a nd the maximum point 
( U~;~X ) , and another one a t X = 37r / 2 that extends from the 
bedLOwards the point of local \'e1ocit y minimum ( U3r;:;~ ) . 

The region of ex trusion now a long the line X = 7r/ 2 wi ll 
on ly ex ist if e < eCl/'i~ (see Fig. 7) a nd the extrus ion fl ow at 7r _ 

X = 37r/2 on ly if e <~. 

DISCUSSION 

Comparison of the fir s t- and the second-order 
velocity solutions 

The so lution of Nye and of Kamb predicts, a sa id ea rli er, 
regions of extrusion flow. In thi s solu tion, the vertica l posi­
ti ons of th e loca l maximum of the horizontal velocity fi eld 
above th e p ea k of the sinusoid , U~?~X, and the loca l mini­
mum above the trough, U~:'?2' a re always a t Z = 1 indepell­
del1l of the value of e. The soluti ons ofNye and of K amb have 
no sadd le poi nl. These findings of the first-order solution are 
reproduced by the second-o rder olution in the li mit e -> 0, 
as is to be expected. As e increases somewhat, there are, how-
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ever, profound differences between these two solutions. The 
inclusion of the effects of g ravity on the flow fi eld limits the 
occurrence of extrusion fl ow to a certain range of E values, 
a nd causes the vertica l positions of the sta ti onary points of 
the horizontal yelocity fi eld to depend on the amplitude-to­
wavelength rat io of the bedrock undulations. 

Implications for borehole deformation 

The influence of the wavy naLUre of the bed on the fl ow is 
no t la rges t at the bed but at some dista nce above it. l y pi­
ca ll y, thi s di stance wi ll be about 1 (or z = I l k ). Often the 
deformation of a borehole is used to get informa ti on on the 
rheo logical behaviour of the ice. One must interpret care­
fu lly the data from the lowest pa rt of a borehole, since the 
exact form of the bedrock, which is usually not known, can 
have a large effect on the flow. Figure 3, for example, shows 
th at th e perturbed fl ow (the second and the third terms of 
Equa tion (2Ia )) dom i na tes the g ravity-driven plane flow 
(the first term of Equation (2Ia )) in the region kz < 3. 

The effect of ex trusion fl ow on the deformation profile 
with depth wi ll be to reve rse it with resp ect to what one 
wou ld expect from a simple p lane-slab flow. Although the 
di scussion here has been limited to one pa rt icu lar type of 
boundary condition (fr ee-slip), ex trusion flow can be ex­
pec ted to occur under other types of bounda ry cond itions 
as well. It wi ll , in general, be the lowes t sec tion of the bore­
hole, within the vertica l di stance A/ 27r, where A is the wave­
leng th of a typi cal bedro ck undu lat ion , whi ch will b e 
affected by ext rusion flow. 

A phy sical explanation for extrusion flow 

U pon refl ect ion, it becomes evident tha t the vertical con­
trac tion and expansion of the ice close to the bed is respon­
sible for the extrusion fl ow. At some distance sufficientl y far 
above the bed, let us say a t z = Z1, the ice moves para ll el to 
the mean bed slope. For kx = 7r 12, a high-pressure zone de­
ve lops above the bed, which causes a Poiseuille flow, super­
imposed on the gravit y-driven plane flow (GDPF) solution. 
Th e maximum of the Poise uille veloc ity profile i s a t 
(ZI - zo)/2 and , if its d ec rease above tha t point is fas ter 
than the increase of the GDPF velocit y profile, a ve locity 
maximum will be found. Since the influence of the bed pro­
fi le on the \·elocity field is (because of the factor c- kz ) lim­
ited to a zone of heig ht proportiona l to I lk, Zl wi ll b e 
proportional to I l k a nd one wi ll expect the position of thi s 
maximum also to be proportional to I l k. As a a matter of 
fa c t Equ a tion (3a ) has a maximum a t z = I l k for kx = 

7r 12. At kx = 37r 12, the ice is expanded vertically and the 
Poise u ille fl ow profi le reverses, causing a velocity mini­
mum, again at z = I lk. 

The Nye and K a mb soluti on ignores GDPFand actu ally 
expresses nothing but this contraction a nd expansion due to 
the wavy nature of the bed. The ve locity minimum a nd 
maximum therefore never disappears no m at ter how c is 
\·a ri ed . If, on the othe r hand , the GDPF is present , it in­
duces a subtle interpl ay between the Poi seuille fl ow and the 
GDPF. T herefore, only ce rtain E values give rise to thi s in­
teresting fl ow behaviour. 

Higher harmonics 

An interesting feature of Equations (l la ) a nd (lIb ) is the 
presence of the first ha rmonic of the fundamental period . 
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A simple physical a rgument shows that one must expect fre­
quencie o th er than sin kx to appear in the solut ion, unless 
E « 1, a nd tha t they will become more prono unced as E 

becomes la rger. 
Let us suppose that there were no higher ha rmonics in 

the expressions for v.,. and vz , for all values of c, so that 

V.c = lib + Co sin kx and V z = Cl eos kx , on Z = Zo , 

(29) 

where Co and Cl a re some unknown constants. It fo llows that 

lib Co 
---+-tankx. 

V= Cl eos kx Cl 

V.r 
(30) 

On the other hand, using th e exact boundary condition (I) 
and Zo = a sin kx one obtains 

V.r I 

V z akcos kx 
(31) 

a t the base. Comparing Equ a tion (30) to Equ a tion (31) 
shows tha t Cl must be equa l to 'lJ,bak and that Co has to be 
ze ro if expression (29) is to be true. But, this m ust be true 
for all E values, because Equ a tion (31) is always valid. On 
phys ica l g round s, Co = 0 can , howe\·er, b e rej ec ted; for 
high E va lues V J: will certainl y not be a constanL on Z = Zo, 
which means that the starti ng-point of Equation (29) must 
be incorrect. The velocity will therefore, in general, not be 
a single ha rmonic, although thi s may be approxim ately true 
for small I-oughness values. 

The s tress field 

Using results from Morl a nd (1976a), the two-d imensiona l 
st ress fi eld can be ca lcu lated. D etailed resu lts have been 
given in Gudmundsson (1994b). It turns out th at, in con­
trast to Equation (31), the T does depend on x if second-or­
der corrections a re considered , as can in fact also been seen 
from Equat ion (13). Another interesting fact is th at T attains 
its largest value at kz = I independently of c. 

CONCLUSIONS 

Basal Oow has been analysed using analytical solutions for a 
two-dimensional fl ow over bedrock undu lations and criteri a 
for extrusion flow have been given. Except for some second­
order effec ts, the horizontal velocity fi eld can have at most 
three different stati onary points close to a sinusoida l bed lin e: 

If 0 < c < ~, there is a minimum point ( U;~% ) situ­
ated above the trough of the sinusoid (at X = 3 7r 12). As 
E increases from ze ro towards E = ~, the vertical position 
of U~'~i;~ m oves from Z = 1 tow~ rd s the bed line. As 
E = ~ is reached, U~~l;~ hits the bed line a nd disappears. 
Since V,,,( X , Z) increases with depth below U~~/2' a zone 
of local ex trusion Oow is found close to the bed line as 

long as U~~iJ2 ex ists. 

Above the peak of the sinusoid (at X = 7r 12 ), there is 
a point of maximum surface-parallel velocity ( U~/~'- ) , at 
which vertical position Z is a lways within the bounds of 
1 < Z < Zrrii. It is found th a t lim,~o Zcrit ~ 1.98 for 
8 = O. U~?~X moves upward s away from the bed line with 
increasing E. 

Also, above the peak of the sinusoid (a t X = 7i 12), a 
sadd le point ( u~/~dle ) of lIy(X , Z) develops, which ex­
ists for exac t ly the sa m e range of E va lue. as U~/~x . 

U~/gd I 0 is characterized by a maximum with respect to 
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X a nd a minimum with respect to Z of Vx (X , Z). Be­
tween the ve rtica l positions of u saddle and Ull1ax V , in-rr/2 rr/2' X. 
creases with depth. 

lL must be stressed that the extr usio n flow di sc ussed 
he re, which is caused by bedrock undul at ions, is of local 
cha racter. It should therefore possibly be call ed local extru­
sion fl ow, in order to distingui sh it from ex trusion fl ow en­
countered earli er in the g laciological literature, which was 
of global nature in the sense that it ex tended o\"Cr a large 
a rea. The loca l ex trusion (low does not add to the ice flu x 
as global ex trusion (low was thought to do. Local extrusion 
(l ow c lose to bedrock undulation s is understandable in 
simple physical term s and must be expected to be a general 
feature of basal fl ow. 
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