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Basal-flow characteristics of a linear medium sliding
frictionless over small bedrock undulations
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Versuchsanstalt fiir Wasserbau, Hydrologie und Glaziologie, ETH Zentrum, Gloriastrasse 37/39, CH-8092 Ziirich, Switzerland

ABSTRACT. The hasal deformation of a gravity-driven linear creeping flow sliding
[rictionless over slowly varying bed undulations in two dimensions is analysed analyt-
ically, using results from second-order perturbation theory. One of the key results is that,
close to sinusoidal bedrock undulations, up to two different spatial regions of local extru-
sion flow may arise. The offset and onset of extrusion flow is controlled primarily by the
amplitude-to-wavelength ratio. Above the crest of a sinusoidal bed line, a local maximum
of the surface-parallel velocity develops for € : = ak < 0138, where a is the amplitude and
k is the wave number. As £ increases from zero to this critical value, the vertical position of
the velocity maximum moves from kz = 1 1o kz = 1.98, where z is the vertical distance
above the mean bed line. Within and ahove the trough of a sinusoid, a region of local
minimum of the surface-parallel velocity component develops, which shifts from kz = 1
towards the bed line as = increases [rom zero to % Below this velocity minimum, and for
some distance above the velocity maximum, the surface-parallel velocity increases with
depth. This type of extrusion flow will cause a reversal of borehole-inclination profiles
close to the bedrock.

INTRODUCTION P Mean normal pressure
Pa Atmospheric pressure
Most of the internal deformation of glaciers takes place in a P Overburden pressure
relatively narrow region close to the base. One must, in gen- r Roughness; r : = a/A
eral, expect small local bedrock undulations, which pro- s(z.6,n) Sliding function;
trude into the ice, to affect the basal flow and possibly 1o s(e, b,m) : = " kuy(e, 6,n) /(2 An®)
causc a flow pattern considerably different from the one pre- Uy, Basal sliding velocity
dicted by the well-known plane-slab solution. Knowledge of Uy Non-dimensional sliding velocity,
the flow perturbations associated with bedrock undulations U = AP,
is, among other things, important for the interpretation of U Surface velocity
slope measurements in ice, and because of their possible [Q_’;i‘,x The local maximum of v, at ka = /2
effect on ice stratigraphy. saddle : ?
= ANBFRS - N : Ui}f}'“‘ The saddle pointof v, at kz = 7/2
This paper develops an analytical solution for a highly el A . i
. . g ) : : : U The local minimum of v, at kx = 3r/2
viscous medium flowing over a perfectly lubricated sinusoi- 3m/2

: : - Vy, Vz  Scaled velocities, defined as
dal bed and analyses its properties. A numerical treatment Vg B ; .

r r
i " - - = (7. 1.
of the problem for high roughness values, where the rough- ((L-\' Vz) : (\r s 1 _)/U&_.
ness 1 is defined as the ratio of the bed’s amplitude a to its vi Sl P 0}{ the velocity vector
wavelength A (r : = a/X) and using Glen’s flow law, is the = W= A A - /R
subject of a further paper (Gudmundsson, 1997). 215 2 -_SP?“T "‘—"—”dlf'ﬂl“»“' )
X, Z Scaled coordinates; (X, Z) = k(z, z)
Zeri The Z coordinate of U151 and UM at e = £}
NOTATION z0 Vertical position of glacier bed
: s Q Mean surface slope
A Morland’s A parameter, defined through : I ‘ .
S B(x) Local bedrock slope; tan () = dzy(x)/d=

Equation (18) 3 3y 1= (@ + 1)

a Amplitude of a sinusoidal wave })l :l"ll L ' 5= (kh)~"
: i : linness parameter; 6 : = (kh
Cy Clausius—Clapeyron constant ¥ I '
. : : Gii Kronecker delta

q Acceleration of gravity i " - ) ;
h Meam placier thickness €] Second invariant of the strain-rate tensor;

g €11 1= 5 €ii€i
k Wave number . AP Ry
A.* Um]tmlling wave number, delined |)). €y (,‘nm])nnvnls ol stram-rate tensor

Equation (17) € Effective strain rate; € : = 4 /5 €€
K Thermal conductivity 5 Local bed-slope parameter, £ : = ak

) ] S5.0PE]
L Latent heat of fusion per unit volume of ice = Iors < :"‘T'/l.‘,, vy (7, z) has a stationary point
N Set of integers somewhere along the vertical line bz = 7/2
¢ S
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5‘}:}2 Fore < C‘#;_,, v, (@, ) has a stationary point
somewhere along the vertical line kz = 37/2

n Viscosity

A Wavelength

Al Transition wavelength

P Specific density

U}I Su;(md devrial’orir stress invariant;
I

G5 Components of the stress tensor

(r: i Components of the deviatoric stress tensor;
CT:-J- =0 %6,-jo‘;,,;¢

T Effective stress; 7 : = 0"”

T Driving stress; 7, : = prghsina

Suffixes

I Properties of ice

B Properties of bedrock

b Basal properties

Dimensional quantities are usually in lower-case letters
and non-dimensional quantities are in capital letters.

PREVIOUS WORK

Theoretical treatment of flow over undulating bed is diffi-
cult and only a few analytical solutions exist (Nye, 1969,
1970; Kamb, 1970; Morland, 1976a, b; Fowler, 1979, 1981).
These solutions often apply to somewhat idealized condi-
tions at the glacier bed but nevertheless give a valuable in-
sight into the nature of the flow. Numerical work has so far
been limited to a few cases (Meyssonnier, 1983; Schweizer,
1989; Schweizer and Iken, 1992; Raymond, unpublished).

Nye (1969) and Kamb (1970) found an approximate solu-
tion for a highly viscous Newtonian fluid sliding over a per-
fectly lubricated bed. They used a perturbation approach
and calculated the flow field to first order in £ := ak,
where the vertical position of the bed line is given by 2z, =
asin k.

Ignoring the elfect of regelation and assuming no tan-
gential traction, the boundary conditions along the bed

— U, % +v.=0, on B= fy (1)

and
Op: =5 (00e — 022) tan2p3(z), on il I )
where tan 3(z) : = dzy(x)/dz. The problem is depicted in

Figure | and the variables have been defined above under
Notation.

The field perturbations are to first order (Nye, 1969;
Kamb, 1970);

ve(z,z) = up + wpak’ ze~ " sin kx + O(.-:Q]‘ (3a)

(7, 2) = upk(1 + kz)e *a cos kx + O(e* (3b)

)
p(z. 2) = pe + 2nupk’e Ma cos ka + 0(e*), (3c)

r

o, (x,2) = —0,, = ZpupkPze Macoskz + O(e?), (3d)
Ora(,2) = —2nupk’ze M asin kx + O(e?), (3e)

o z ke o Qp
il 2) =2nupaktae™™ = Qn,ae +0(%), (3f)

where 7:= \KJTI, which is sometimes called the effective
stress, Po is the pressure applied at the upper boundary of
the medium, o;; are the components of the stress tensor and
{T:J are the components of the deviatoric stress tensor. The
driving force of the motion is a constant shear stress ap-
plied at the upper boundary. The basal sliding velocity, up,
is given by
Th
Ty = TR (4)
where 1 s the viscosity of the ice, and 7y, the driving stress.
Expressions (3a)(30) display some interesting features.
One of them is the fact that 7, in Equation (3f), shows no
dependence on . This will of course also apply to the sec-
ond invariant of the strain-rate tensor. Another interesting
feature of the linear solutions given above is the occurrence
of extrusion flow, which is here defined as an increase of the
horizontal flow-velocity component with depth. At the
point kz = 37/2 + 2rl where [ € N, where N is the set of

line are integers and 2 = Zmiy ¢ = 1/k, v, has a local minimum:
z
A
)
1
‘
= AV
h T
a P
¥ >
X
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Fig. 1. Flow over a sinusoidal bed. The coordinate system makes the angle acwith respect to the horizontal. The vertical position of
the bed line zp. is zg = a sin kx. The sine wave has the wavelength X\ = 27 [k and amplitude a. The surface velocity is denoted

by us and the sliding velocity by wy,. h is the glacier thickness.

https://doi.org/i®.3189/50022143000002823 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000002823

3 1 ak
Unin ¢ = Uy (‘T =S ﬂ.' &= Z) = Up (1 =3 F) 2 (5)

Irom z = z,;, downwards to the bed the horizontal velocity
increases. Note that, since ak <€ 1, it follows that z,,i, = a.

Extrusion flow, a term introduced by Demorest (1941,
1942), has been a subject of some debate in the glaciological
literature. On theoretical grounds, it can easily be shown
that a global extrusion flow, that is an increase of the hori-
zontal velocity with depth throughout an entire glacier, is
impossible since the overlying mass will then experience a
force in the main direction of flow, which is not counter-
balanced by any other force, leading to an accelerating ve-
locity (Nye, 1952). There are, on the other hand, claims of
extrusion flow having been directly observed by borehole
deformation measurements (Hooke and others, 1987) and
by observations within subglacial caves close to the bed-
rock interface (Carol, 1947). Extrusive flow has also been
observed within subglacial sediments (Blake and others,
1992). Arguments supporting (global) extrusion flow based
on mass-balance measurements have also been given
(Streiff-Becker, 1938; Seligman, 1947).

Morland (1976a) derived second-order solutions for flow
over bedrock undulations using boundary conditions (1)
and (2), and calculated explicit solutions valid along the
bed line of a sinusoidal bed. Solutions based on his work,
which are valid for the half-space above the bed, are given
below and discussed.

Meyssonnier (1983) and Schweizer (1989) did FE calcu-
lations of flow over a sinusoidal bed. Meyssonnier obtained,
in some of his numerical calculations, a point of maximum
relative horizontal velocity that was situated above the peak
of the sine wave, and some of Schweizer’s calculations show
a point of relative horizontal velocity minimum situated
above the trough of the sine wave.

SECOND-ORDER SOLUTIONS FOR A GRAVITY-
DRIVEN FLOW

Morland (1976a) incorporated gravity as the driving force
of the motion and caleculated terms to second order in &
For the special case of a sinusoidal bed, he gave expressions
valid for the pressure field and for the velocity components
along the bed line, i.e. at z = 0. Using Morlands results, one
can calculate the velocity and the stress field as functions of
x and z only somewhat laborious work is involved. All
equations in this section follow from Morland (1976a).
The basal sliding velocity wy, is

Gudmundsson: Basal-flow characteristics of a linear medium

v (B +1)
netk  w?

. D 1+ik
T et \k ko k)’

where the controlling wave number k, is defined by Equa-
tion (17), and w is defined as w : = k./k. Table | compares
the notation that is used here with the notation of several
other authors.

If k/k. < 1. the effects of regelation are negligible and
the basal sliding velocity is given by

(6)

Th
Uy =

(7)

On the other hand, it k/ k. > 1, which is the pure regelation
limit,

nke?

Lk
Uy = ——— .
I n=2k,?

(8)

up, has a minimum at k& = k,. For a given amplitude-to-
wavelength ratio the largest part of the drag is contributed
by the Fourier components of the bed with wavelengths
around A,, where A, = 27/k, is given by Equation (15)
(Nye, 1969). Note that

‘ ot
V= —= 9
up, 3 -y (9}
where
&‘2
T B 10
=g (10)

Equation (9) is a useful relation that can be used to eliminate
the sliding velocity from the following equations.
The velocity field is given by
 h 2\ 2
Upl, 2) = up+—— |1 — (1 ——)
2(2,2) T { h
+ up By kze ¥ (sinkz — A,, cos kix)e

+ up B e_“’(cos 2kx + Ay, sin 2 kx) (% - %:) =

+ O(e*), (11a)
and
ve(z, 2) = wy, By e ¥ (cos kz + A, sin ka)(1+kz)e
+ %uh B kze 2% (sin2kx — A, cos2 kx)e?
+0(e%), (11h)
where Ay, is defined through Equation (18), and h is the
mean glacier thickness,

Table 1. Notation used here and that used by several different authors. k. is the controlling wave number and N, the transition

wavelength, A, = 2w /k., with k, = \/L/2nCy (K1 + Kgp). 1 = a/X is the single wavelength roughness and = : =
ak = 27 is the (local bed) slope number. L is the latent heat of fusion per unit volume of ice

This paper Nye (1969, 1970) Kamb (1970) Lithoutry (1987) Morland (1976a )
k. K ly w. 1/,

/\, 2‘4T/}m r‘\u 27\'/”‘_ 2?’?),

L L H pL o

k k h w k

i V2r £ /2w
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For the special case of z = 0, Equations (11a) and (11h)
reduce to solutions for the velocity field along the bed line
given earlier by Morland (1976a). Note that for z = 0 the
first-order term in Equation (11a) vanishes.

Equations (Ila) and (11b) lead to the following expres-
sions for the strain rates:

¥ (cos kx + A sinkz)e
+ up, By ke 25 (sin2 kx — Ay, cos2kx) (kz — 1) £
+0 (53) i (12a)

. - A
€rp = Up ;[)'1 zk7e

de= (11— j—:i)uzks‘u],
+ uy, 2k%e”
+ up, By ke 2% (kz — L) (cos 2kz + Ay sin 2 kz) €
+0(). (12b)

The second invariant of the strain-rate tensor is then found

(A, coskr —sinkx)e

Lo be

& = %(1 - ]i)zuik“uhg
+w,? By (
+ w2 A% (An® +1)2°Ke Fiai
+wy? B (1 ) (kz—13)

(A sin2kz + cos 2 kr)a’k'e 2" &
+up? B (A’ +1)(2kz — 1) sinkz zkBe 3k gl
+up? B (ke —1)* (Aw? + 1)Re et
+0(£%). (13)

Equation (17) shows that. to second order, €1 depends on
both x and z and not only on z as is the case in the first-
order Nye/Kamb solution.

3 E 0 =
1-— ) m cos kx — sinkz)zk’a’e e

Finally, the pressure distribution is given by

plx, z) = pa + pg cos ('l — %)

+ 2uy, 1 nke'k:(cos kz + Ay, sinkx)e

+ up, By ke ™2 k2 (gin 2 kz — Ay cos 2 kx) £*

+ 0. (14)
These expressions can be used to calculate the flow and the
sliding velocity fora general bed geometry as longase < 1.

The effect of regelation on the flow field

Regelation is only important at wavelengths comparable to
or smaller than the transition wavelength A, (Weertman,
1957, 1964, 1979; Nye, 1969; Kamb, 1970), where

) = \/871'-7/ Co {;’u + Kg) , (15)

and where K7 and Kp are the thermal conductivities of the

ice and bed, respectively.

Two parameters (w and Ay,) enter the flow solutions
(Equations (11a) and (11b)) that describe the relative impor-
tance of regelation to viscous flow (Morland, 1976a). w is the
ratio of the bed wavelength to the transition wavelength, i.e.

£

e é 2‘ A_,. __ L
s (A) - (A) =G K K )

where k. is the controlling wave number, given by
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In the no-regelation limit 3; = 1 (/3 is defined by Equation
(10)) and in the pure-regelation limit 3; = 0. Ay, is given by
(Morland, 1976a)

(K + Kg)cos(a)pg Co +2Q
LUh
_ @Ky (c., (K1 + Kp) cot(a) | @) . (18)
T h Th

The effect of freezing and melting on the flow field is negli-
gible if A, < 1 and that is almost always the case (Mor-
land, 1976a), which is the reason for ignoring the effect of
regelation on the flow field in the following discussion of
the properties of Equations (lla) and(11h).

(-]

(17)

Am =

Dimensionless form of the flow solutions

For the following discussion, it is of advantage to rescale the
dimensional quantities and to put the equations in a dimen-
sionless form. To this end, dimensionless vertical and hori-
zontal length scales, denoted by capital letters, are defined
by

= and Zi=Re, (19)
where the wave number k is used as a scaling factor. The
velocity field is scaled by the sliding velocity, so that

e
Vy:=— and VW: :
Uy, Uy,

1,,.

(20)

The dimensionless parameters which enter the problem are
the slope parameter € and the thinness parameter 6 : =
(kh) ™. Regelation will be ignored so that the following dis-
cussion is only valid for A = A..

Using the above-defined scalings, the velocity field is

Vel X, Z)—1+26(1—(1—6Z)2)

+eZe%sin X

ozl
Aol BB
e (4

Vel X8 =e(l+ Ble Zcos X
+3e°Ze” 2Z75in2X +0(%), (21b)

g) cos2X + 0(63) (21a)

and

where use has been made of Equation (7).

OVERALL FEATURES OF THE HORIZONTAL
VELOCITY FIELD

Before going into a somewhat tedious mathematical discus-
sion of the properties of the flow field, let us look at some
contour plots of the horizontal velocity field to get an over-
all idea of the flow perturbations caused by the sinusoidal
bed.

Figure 2 depicts Vy(X, Z) as a function of X and Z, for
£ = 00l and & = 0, according to Equation (l1a). The bed
line is flat, since in the mathematical solution the sinusoidal
bed profile has been projected on to the line Z = 0. Note
that(X/m, Z) = (3,0) and (X/7, Z) = (3,0) correspond,
respectively, to the peak and the trough of the sinusoid.
The most conspicuous features of the figure are the station-
ary points situated above the peak and the trough of the
sinusoidal curve at Z = L.
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Fig. 2. The horizontal velocity, Vi, as a function of X and Z

Jore =000 and & = 0. The velocity maximum at X /7 = %
and Z = 1 is referred to in the text as U™5¥. The minimum
velocity at X /m = 3 and Z = 1 is called l.f;;‘;i}fz.

In Figure 3, the value of £ has been changed from e =
0.01 to € = 0.1 as compared to Figure 2. The effect of this
increase in € is to move the local maximum of the horizon-
tal velocity field upward away from the bed, and the mini-
mum of the velocity field down towards the bed. The
amplitudes of the velocity perturbations are also consider-
ably larger. Furthermore, a saddle point, where there is a
local maximum in horizontal direction but a local mini-
mum in vertical direction, can be seen above the velocity
maximum at X/7 = .

Fig. 3. Vi as a fimction of X and Z for £ =01 and & =10,
U5 has moved uproards and U3YY, dowonwwards with respect
to Figure 2. The point U3 can also be seen. As = increases

T2
JSurther, USES and U

raddic e towards Z = Zorip 198,
which they reach for e = ) 2 0.138. Simultaneously, [-’;';'ll}!)
crit L

/2 >

)& Z

moves downwards and reaches Z = 0 for e =

Increasing the value of £ even further, as has been done
in Figure 4, where £ = 13 brings the minimum towards the
bed line. The maximum point and the saddle point at
X /7 =1 have disappeared. As will be shown below, the
maximum point and the saddle point cancel each other for
6 =0ate =~ 0.138.

The effect of changing the value of & somewhat on the
horizontal velocity field can seen by comparing Figure 5,
where € = (0.1 and § = 0.1, to Figure 3, where £ = 0.1 but
6 = 0.0. The velocity maximum moves slightly towards the
bed line and the saddle point further away from the bed as &
is increased from 0 to 0.1. Increase in & causes the local
minimum of the horizontal velocity field to move away
from the bed line.

https://doi.org/10.3189/50022143000002823 Published online by Cambridge University Press

Gudmundsson: Basal-fTow characteristics of a linear medium

(

w

%2

m\

Y/ &
&

1.925

=
©
N
3]

Z
o \"]
y T
2 /

)0"
L 7.\ &
1‘045 \
) 6; é\\‘

: /_\ f 705
7
4705 ﬁ -595

0.0 0.5 1.0 15 2.0

Fig. 4. Vix as a function of X and Z for e = 0.5 and & =10,

The points U and U ;Z‘;f}'”" can no longer be seen and point
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Uyl isat Z =0.

45
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Fig. 5. Vx as a function of X and Z forc =01 and 6 = (.1
By comparing this figure with Figure 3, the influence of 6 can
he seen.

One of the interesting features of Figures 2, 3 and 5 is
that above the velocity maximum and below the velocity
minimum a region where the horizontal velocity increases
with depth (extrusion flow) is found. In the next section,
the exact conditions under which extrusion flow develops
are determined. Since the following discussion is somewhat
tedious, the reader who is not interested in the fine details of
the matter may find it better to skip the next section and
read the summary of the results given in the last section of
the paper.

EXTRUSION FLOW

It is of particular interest to know when extrusion flow oc-
curs according to Equation (11a). This question can be
answered by investigating when Vy (X, Z) has a local max-
imum or minimum for Z > 0. A necessary criterion for a

stationary point of Vy (X, Z) is that VVx (X, Z) = 0.
The horizontal positions of the stationary points
Differentiation of Equation (11a) gives

aVy
i) /Y

(X,Z)=¢eZe Zcos X

D

y 7, 2Z - ¢
+%(5— Z)e ¥ sin2X, (22)
and shows that OVy(X, Z)/0X = 0 has as solutions X =
m/2 and X = 37/2 with no restrictions on Z. (It is to be
understood that because of the periodicity of the sine func-

75
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tion, an integer multiple of 27 can always be added to the
values of X, although it will not he explicitly so written,)
T'here is another interesting set of solutions given by

O 23

A 1—22)" (23)
Tt can be shown that this solution set is a second-order effect
which is only important in the immediate vicinity of the bed
line. This solution branch will not be discussed here further.
The interested reader can find a detailed analysis of this
solution set out in Gudmundsson (1994a). Ignoring this sec-
ond-order effect there are, hence, only two stationary
points. One is located above the peak of the sinusoidal
curve, at X = m/2, and can be shown to be a point of max-
imum velocity with respect to X. The other stationary point
is situated above the trough, at X = 37/2, and is a point of
minimum horizontal velocity with respect to X

The vertical positions of the stationary points

Differentiating Vy (X, Z) with respect to Z and setting the
resulting expression equal to zero gives

1-62 = %(Z- 1JeZsinX + (1 — Z)e # cos2X .

(24)

The interesting cases to be considered are X = 7/2 and
X = 37/2, but there are also solutions at X = Oand X =7
with Z = 0. These two solution points, situated at the bed-
rock interface, are saddle points, where the horizontal velo-
city obtains a maximum with respect to X but a minimum
with respect to Z. The existence of these points is a second-
order effect (Gudmundsson, 1994b) and they will not be dis-
cussed further.

Stationary points situated above the peak of a sinusoid
Let us begin with the case X = 7/21in Equation (24) and see
if there is a solution to the resulting equation

1 ; :
1— R —=={F= D ® B 1. (25)
N e’ £
=:L(x/2.2,6) ~~ #
=:R(7/2,Z5)

This is a non-linear equation that does not have a solution in
a closed form. By plottim1 the lefthand side (L(7/2, Z,6))
and the righthand side (R(7/2, Z, €)) separately, as is done
in Figure 6, one sees that there will be a solution to Equation
(25) if the righthand side, for at least one value of Z, be-

comes greater than, or equal to, 1 — 8Z. This will happen if

¢ is less than some particular value, that will now be called

E“/'é There will, hence, only be stationary puimq at

X = 7/2 for some §if e < &7 "t To determine €75, write £
/2

in Equation (25) as a fuuuwn on and &

Z -1
(1—62)e?
Then E“/" can be found by maximizing &(Z, 6) given by
Equation (26) subjected to Z > 0 and 0 < é < 1. By sol-
ving d¢(Z,6)/0% = 0 numerically, & '/ can be calculated
as a function of 8. The details of these calculations can be
found in Gudmundsson (1994h).

It is found that there are in general two stationary points

e(Z,6) = 00— B, (26)

along the line X = 7/2. An inspection of the determinant of

the Hessian matrix of Vi (X, Z) at the point X = 7/2 shows
that one of the stationary points is a point of relative max-

imum. This velocity maximum will now be called { },’;é‘
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Fig. 6. L(m/2. Z,6) and R(w/2, Z, ) as functions of Z.
The solid lines represent the lefthand side of Equation (23)

for a_few different values of & and the dotted lines show the
righthand side of that same equation for different £ values.

The other stationary point is a saddle point, where
Vy (X, Z) has a maximum with respect to X, but a mini-
mum with respect to Z. The horizontal velocity component
at this point will be called U“'/" e

e“/“ is depicted in Figure 7 as a function of 8. For 6 = 0,
Uy and U;F/“}dle exist as long as £ < “l,—.lflé 72 (0.138. The fig-
ure also shows that the value of £, above which the horizon-
tal velocity has no stationary points at X = 7/2, increases
with 6.

0.180f = | |
0.170

=« 0.160
&5

0.150

0.140

0.130
0.

© [T T T T I

0 002 004 5 006 008 010

Fig. 7. €% as a function of 6. For & and & values below the line
there sz' be at least two solutions to Equation (25). One of
these twwo solutions corresponds to a local maximum of the hor-
izontal velocities above the peak of the sinusoidal bed and s
called UT5". The other solution is situated above UZ75* and
corresponds to a saddle point of the horizontal velocities, where
Vix has a local maximum with respect to X but a local mini-
mum with respect to Z and is called U“‘"l‘”' 4

The changes in the vertical coordinates of both U
cmd U‘“‘I‘ﬂ‘ as £ increases from zero are interesting. For

=il U“"‘" is at Z=1 and U""‘l'“‘ at Z=1/6. As e in-
‘_rr/“,, L IT’}“,‘ moves upwards
away from the bed, while U“ “1‘“‘ moves downward towards
the bed line. Both slauonary points then unite at Z =
Zairs 1.98 for e= 5“/"2, and disappear (Gudmundsson,
1994b). These changes in the vertical coordinates of U” “““ 5 and

U:"Ezldl“ are illustrated in Figure 8.

nax
/2

Creases fl‘OIT] zero towards € = ¢
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Fig. 8. The vertical positions of U5 and U“*"l‘ as func-

tions of € for 6 =0 and 6 = 0.1, Zml mm’s‘ i 5 are the points

where the the stopes of the two lines are vertic m' The branches

above and below Zip give the i'(’?fl:‘m’ positions of U;‘}le‘ le
€r1

and U“‘"". respectively. For £ = "1 there are no U™ and
14l 5 * o xj
L5 jmmts

w/2

The stationary points U:f',‘.}"’ and U;‘/‘f_,i’“" are not the only
possible stationary points above the peak of the sinusoid
which the horizontal velocity field can have. Figure 6
shows that the curvature of R(7/2, Z, ) curves (dotted
lines) can change, in which case the L(w/2, Z.6) curves

(solid lines) can cross the dotted ones not only t“u e but
three times. In this case, a third stationary point, U‘ /o2 will
be found along the line X' = 7/2 together with U“"‘ and
U:/“,"“‘ It can be showu (Gudmundsson, 1994b) that the
vertical position of U , will always be above Z = 3 and
that it will in general hc found close to the surface. This sta-
tionary point may appear because of the assumption, made
in the derivation of the flow solutions, that the surface re-
mains flat at all times. This assumption will only be ap-
proximately true when the bedrock is undulated. The
properties of this stationary point will, hence, not be dis-
cussed further.

Stationary points situated above the trough of a sinusoid

The other possible X value, beside X = 7/2, fm‘ a station-

ary point of Vx(X, Z) is X = 3r/2, Inserting X = 37/2
into Equation (24) leads to
1-6Z =e™%(1 —Z)(j—o"f). (27)

The lefthand side will always be greater than or equal to
zero, because Z must always he
0<Z <kh. The l/e — ¢
will always be positive. There is therefore no solution possi-
ble for Z > 1, but for Z < 1 thcrc‘ will always be a solution
to Equation (27) as long as £ < £, This limiting value for &
will be called 5 ‘},. so that E‘;'}, = % ford < 1. Fore — (,
lhc vertical mm(lmalc- of this stationary point will be at

=1, and fore =3 L the point will be situated at Z = 0 in-
dcpcndeml) ol the value of 6. By looking at the determinant
of the Hessian matrix, one finds that this stationary point is
a point of relative minimum, and it will be referred to as
UIIH“

dm/2:

Equation (27) can be solved for &, giving

within the range
Z term on the righthand side
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- 1-Z2
T (1-62)ef4+(1-Z)e %"

As 6 varies, the position of U‘”i/” changes somewhat. This is
depicted in Figure 9, which shows the position of U““/“2 asa
function of £ for two different & values. For a given ¢ value
and & > 0, there will be two solutions for Z of Equation
(28). Only one of these solution points will be situated be-
low Z = 1/6 (the other one is above the surface, and is a
mathematical artifact) and it is this solution that is de-
picted in Figure 9.

(28)

1 op ;

0.8
0.6
0.4

0.2

T T
i
1

0.0 1 1 L 1 " PP | 1 N
0.00 0.10 0.20 o 0.30 0.40 0.50

Fig. 9. The vertical position of U;’:/”, as a_function of  for

6=0and 6 =02 U. ”“”, is the local minimum of the hori-
zontal velocities above Hw trough of the sinusoidal curve
(where & = 37/2). For £ = (), U“"“, is situated at Z = 1.
As & increases, it approaches the bed and di sappears al € =

Note that & has almost no effect on the position of Ul’;_lr‘/“,

B3l=

Note that the perturbation approach is only valid as long
ase <€ 1. Avalue of e ‘“‘}, = %is, in this respect, rather large.
It is therefore not clear whether the prediction thart the sta-
tionary point dl)O\ e the trough of the sinusoid exists as long
as€ < E‘;‘r';z = 3 can be trusted. Numerical approach seems
to be the only possibility of getting a definitive answer.

The existence of the stationary ]mm[s Ums's U“*“]'“‘ and
U”"”) shows that there will be two regions ofu.lruslon flow.
Om is at X = 7/2, which extends over the region that lies
between the saddle point (U‘“}'i‘”"J and the maximum point

U’j}"; ), and another one at X = 37/2 that extends from the
bed towards the point of local velocity minimum UI;I:H)
The region of extrusion flow along the line X = 7/2 will
onl\ exist if € < "_‘,'5 (scc Iig. 7) and the extrusion flow at

=3n/2onlyife < 3.

DISCUSSION

Comparison of the first- and the second-order
velocity solutions

The solution of Nye and of Kamb predicts, as said earlier,
regions of extrusion flow. In this solution, the vertical posi-
tions of the local maximum of the horizontal velocity ficld
above the peak of the sinusoid, Uﬁ‘_":,".u}x._ and the local mini-
mum above the trough, U. ‘{'”/“,, are always at Z = 1 indepen-
dent of the value of &. The solutions of Nye and of Kamb have
no saddle point. These findings of the first-order solution are
reproduced by the second-order solution in the limit £ — (),
asis to be expected. As £ increases somewhat, there are, how-
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ever, profound differences between these two solutions. The
inclusion of the effects of gravity on the flow field limits the
occurrence of extrusion flow to a certain range of € values,

and causes the vertical positions of the stationary points of

the horizontal velocity field to depend on the amplitude-to-
wavelength ratio of the bedrock undulations.

Implications for borehole deformation

The influence of the wavy nature of the bed on the flow 1s
not largest at the bed but at some distance above it. Typi-
cally, this distance will be about 1 (or z = 1/k). Often the
deformation of a borehole is used to get information on the
rheological behaviour of the ice. One must interpret care-
fully the data from the lowest part of a horehole, since the
exact form of the bedrock, which is usually not known, can
have a large effect on the flow. Figure 3, for example, shows

that the perturbed flow (the second and the third terms of

Equation (2la)) dominates the gravity-driven plane flow
(the first term of Equation (2la)) in the region kz < 3.

The effect of extrusion flow on the deformation profile
with depth will be to reverse it with respect to what one
would expect from a simple plane-slab flow. Although the

discussion here has been limited to one particular type of

boundary condition (free-slip), extrusion flow can be ex-
pected to occur under other types of boundary conditions
as well. Tt will, in general, be the lowest section of the bore-
hole, within the vertical distance A/2m, where A is the wave-
length of a typical bedrock undulation, which will be
alfected by extrusion flow.

A physical explanation for extrusion flow

Upon reflection, it becomes evident that the vertical con-
traction and expansion of the ice close to the bed is respon-
sible for the extrusion flow. At some distance sufficiently far
above the bed, let us say at z = z1, the ice moves parallel to
the mean bed slope. For kz = 7/2, a high-pressure zone de-
velops above the bed, which causes a Poiseuille flow, super-
imposed on the gravity-driven plane flow (GDPF) solution.
The maximum of the Poiseuille velocity profile is at
(21 — 20)/2 and, if its decrease above that point is faster
than the increase of the GDPF velocity profile, a velocity
maximum will be found. Since the influence of the bed pro-
file on the velocity field is (because of the factor e ~3 Hars
ited to a zone of height proportional to 1/k, z; will be
proportional to 1/k and one will expect the position of this

maximum also to be proportional to 1/k. As a a matter of

fact Equation (3a) has a maximum at z = 1/k for kx =
7/2. At kz = 37/2, the ice is expanded vertically and the
Poiscuille flow profile reverses, causing a velocity mini-
mum, againat z = 1/k.

The Nye and Kamb solution ignores GDPFand actually
expresses nothing but this contraction and expansion due to
the wavy nature of the bed. The velocity minimum and
maximum therefore never disappears no matter how £ is
varied. If, on the other hand, the GDPF is present, it in-
duces a subtle interplay between the Poiseuille flow and the
GDPF. Therefore, only certain £ values give rise to this in-
teresting flow behaviour,

Higher harmonics

An interesting feature of Equations (1la) and (l1h) is the
presence of the first harmonic of the fundamental period.

https://doi.org/T§3189/50022143000002823 Published online by Cambridge University Press

A simple physical argument shows that one must expect fre-
quencies other than sin kz to appear in the solution, unless
£ < 1, and that they will become more pronounced as &
becomes larger,

Let us suppose that there were no higher harmonics in
the expressions for v, and v., for all values of €, so that

= ¢ coskx, om ===y,
(29)

where ¢ and ¢ are some unknown constants. It follows that

Uy = up + éysinkr and v

Uy ) co
— = ———+ —tankz. (30)
U e coskx &
On the other hand, using the exact boundary condition (1)
and zg = asin kz one obtains

i 1 ;

Z T akcos kx L
at the base. Comparing Equation (30) to Equation (31)
shows that ¢; must be equal to w,ak and that ¢ has to be
zero if expression (29) is to be true. But, this must be true
for all £ values, hecause Equation (31) is always valid. On
physical grounds, ¢ = 0 can, however, be rejected; for
high = values v, will certainly not be a constant on z = 2,
which means that the starting-point of Equation (29) must
he incorrect. The velocity will therefore, in general, not be
a single harmonic, although this may be approximately true
for small roughness values.

The stress field

Using results from Morland (1976a), the two-dimensional
stress field can be calculated. Detailed results have been
given in Gudmundsson (1994b). It turns out that. in con-
trast to Equation (30), the 7 does depend on z if second-or-
der corrections are considered, as can in fact also been seen
from Equation (13). Another interesting fact is that 7 attains
its largest value at kz = 1 independently of &.

CONCLUSIONS

Basal flow has been analysed using analytical solutions for a
two-dimensional flow over bedrock undulations and criteria
for extrusion flow have been given. Except for some sccond-
order effects, the horizontal velocity field can have at most
three different stationary points close to a sinusoidal bed line:
K e % there is a minimum point (U:‘;;}‘z) situ-

ated above the trough of the sinusoid (at X = 37/2). As

g increases [rom zero towards £ = ]E the vertical position

of U.;';;; moves from Z = 1 towards the bed line. As

B i 7min

€ = 5 is reached, L-“ﬁ/Z hits the bed line and disappears.
Since Vi (X, Z) increases with depth below é‘;‘}!ﬁ a zone
ol local extrusion flow is found close to the bed line as

long as Uy, exists.

Above the peak of the sinusoid (at X = 7/2), there is
a point of maximum surface-parallel velocity (UZ5), at
which vertical position Z is always within the bounds of
1< Z < Zeit. It is found that lime g Zepe == 1.98 for
6 = 0. U2J5" moves upwards away from the bed line with
increasing .

Also, above the peak of the sinusoid (at X = 7/2), a
saddle point {U;"}T_,"l“') of Vx (X, Z) develops, which ex-
ists for exactly the same range of £ values as UZ5.
U?)‘gl‘““ is characterized by a maximum with respect to
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X and a minimum with respect to Z of Vy(X, Z). Be-
tween the vertical positions of U;‘/"._)l‘““ and U‘F‘/‘;“, Vy in-
creases with depth.

It must be stressed that the extrusion flow discussed
here, which is caused by bedrock undulations, is of local
character. It should therefore possibly be called local extru-
sion flow, in order to distinguish it from extrusion flow en-
countered carlier in the glaciological literature, which was
of global nature in the sense that it extended over a large
area. The local extrusion flow does not add to the ice flux
as global extrusion flow was thought to do. Local extrusion
flow close to bedrock undulations is understandable in
simple physical terms and must be expected o be a general
feature of basal flow.
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