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Abstract

We prove optimal radially weighted L2-norm inequalities for the Fourier extension operator associated
to the unit sphere in Rn . Such inequalities valid at all scales are well understood. The purpose of this
short paper is to establish certain more delicate single-scale versions of these.
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1. Introduction

Let n ≥ 2 and σ denote the induced Lebesgue measure on the unit sphere Sn−1
⊂ Rn .

We define the extension operator associated to Sn−1 to be the mapping g 7→ ĝdσ ,
where

ĝdσ(x) =

∫
Sn−1

g(ξ)e−2π i x ·ξ dσ(ξ),

g ∈ L1(Sn−1) and x ∈ Rn . In this note we are concerned with the validity of certain
weighted inequalities for this extension operator. The most well-known conjectured
inequality of this type is due to Mizohata and Takeuchi; see [9]. In what follows µ

will be a nonnegative Borel measure on the unit ball B of Rn . For such a measure
we define

‖|µ‖| := sup
µ(T )

w(T )n−1

where the sup is taken over all infinite rectangles T in Rn with (n − 1) short sides with
common length w(T ) and remaining side doubly infinite.
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CONJECTURE 1.1. There exists a constant C, depending at most upon n, such that if
the measure µ satisfies ‖|µ‖| < ∞ and R ≥ 1, then∫

B
|ĝdσ(Rx)|2 dµ ≤ C

‖|µ‖|

Rn−1 ‖g‖
2
L2(Sn−1)

(1.1)

for all g ∈ L2(Sn−1).

This conjecture has been verified in the case where the measure µ is radial; this is
done in both [2] and [4]. For more general weights very little is known beyond some
very special examples.

In this note we consider the versions of these inequalities which arise upon fixing
the scale R in Conjecture 1.1. (Both versions of this conjecture arise naturally in
a number of problems on the interface between harmonic analysis and geometric
measure theory; see, for example, [3–6, 13].) We now describe this set-up, beginning
with some notation.

Let R ≥ 1 be a (large) parameter which may now be considered fixed. For
R−1

≤ α ≤ R−1/2, let T (α, α2 R) denote a rectangle (or ‘tube’) of arbitrary position
and orientation in Rn , having n − 1 short sides of length α and one long side of length
α2 R; so at one extreme, T (α, α2 R) is a cube of side R−1, and at the other, T (α, α2 R)

is a rectangle of long side of length 1 and n − 1 short sides of length R−1/2.
We test our extension operator on the standard examples that generate the classical

restriction conjecture for the Fourier transform (see [10]). One simply takes the
function g to be an arbitrary (modulated) characteristic function of a δ-ball in Sn−1;
that is g(ξ) = eia·ξχ(ξ) where a ∈ Rn , and χ is the characteristic function of a δ-ball in
Sn−1 for some 0 < δ ≤ 1. The fact that |ĝdσ(Rx)| is large on a suitable tube suggests
the possibility that the inequality∫

B
|ĝdσ(Rx)|2 dµ ≤

C

Rn−1 sup
R−1≤α≤R−1/2

{
µ(T (α, α2 R))

αn−1

}
‖g‖

2
L2(Sn−1)

, (1.2)

might hold for all g ∈ L2(Sn−1). Here C is a constant depending on at most n. Observe
that this has the correct homogeneity in the sense that the multiscale inequality (1.1)
would be a consequence of this on letting R → ∞; the key point being that for any
rectangle T (α, α2 R),

µ(T (α, α2 R))

αn−1 ≤ ‖|µ‖|

uniformly in α and R.
This observation also shows that the condition ‖|µ‖| < ∞ is necessary for an

inequality of the form (1.1) to hold uniformly in R.
Unlike in the multi-scale situation, this single-scale inequality (1.2) turns out to

be false even for radial µ. Curiously, however, in the radial case, we are able to
prove a slightly weaker statement which is, nonetheless, optimal (up to multiplicative
constants). This is the content of our main theorem.
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THEOREM 1.2. Let µ be a non-negative radial Borel measure supported on B. There
exists a constant 0 < C < ∞, depending on at most n, such that∫
B

|ĝdσ(Rx)|2 dµ ≤ C
log log R

Rn−1 sup
R−1≤α≤R−1/2

{
µ(T (α, α2 R))

αn−1

}
‖g‖

2
L2(Sn−1)

(1.3)

for all g ∈ L2(Sn−1) and R ≥ 1. Conversely, there exists a constant 0 < c < ∞,
depending on at most n, such that for each R ≥ 1, there is a nonnegative radial Borel
measure µ supported on B for which∫

B
|d̂σ(Rx)|2 dµ ≥ c

log log R

Rn−1 sup
R−1≤α≤R−1/2

{
µ(T (α, α2 R))

αn−1

}
.

It should be remarked that although inequality (1.3) is sharp, it just fails to possess
the correct homogeneity to imply the corresponding multiscale inequality (inequality
(1.1) for µ radial).

Although the main result concerns radial measures, its proof contains some
inequalities for general measures which are perhaps of interest. We mention these
below as a corollary.

If we instead consider the same problem where the sphere is replaced by the base
of a paraboloid, then the analogue of (1.2) fails by a power of R rather than just by a
factor of log log R. See [1]. See also [7] for some further results.

In the next section we establish some preliminary lemmas, and in Section 3 we give
a proof of Theorem 1.2, and some further remarks concerning its formulation. Finally
in Section 4 we make some remarks on known variants of inequality (1.2) for general
(that is nonradial) measures µ in two dimensions.

Notation For nonnegative quantities X and Y we use X . Y (X & Y ) to denote
the existence of a positive constant C , depending on at most n, such that X ≤ CY
(X ≥ CY ). We write X ∼ Y if both X . Y and X & Y .

2. Lemmas

As we shall see, since our measures µ are radial, we may quickly reduce the proof of
Theorem 1.2 to certain uniform estimates for ordinary Bessel functions. The following
lemma makes a connection between the relevant Bessel function asymptotics and
expressions of a geometric nature involving tubes. Here we use dHn−2 to denote
the n − 2 dimensional Hausdorff measure on Rn .

LEMMA 2.1. Let 0 < α ≤ β, r > 0 and u, ω ∈ Sn−1 with u · ω = 0. We define a
rectangle T = Tr,ω,u(α, β) ⊂ Rn as follows:

(1) T has n − 1 short sides of length α and one long side of length β;
(2) T is centred at the point rω, and has direction u.
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If
β2 > 8rα + 4α2, (2.1)

and x ∈ Rn is such that

r + α ≤ |x | ≤

√
r2 +

β2

4
, (2.2)

then the quantity

In(x, r, α, β) :=

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

χTr,ω,u(α,β)(x)dHn−2(u) dσ(ω)

satisfies

In(x, r, α, β) ∼
αn−1

|x |n−3/2(|x | − r)1/2 . (2.3)

PROOF. We begin by observing that In(x, r, α, β) is a radial function of x , and that
the integral ∫

Sn−1
χTr,ω,u(α,β)(t |x |) dσ(t)

is independent of ω and u. Using these observations and Fubini’s theorem, we
may write

In(x, r, α, β) =
1

cn−1

∫
Sn−1

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

χTr,ω,u(α,α2 R)(t |x |)

× dHn−2(u) dσ(ω) dσ(t)

=
1

cn−1

∫
Sn−1

χTr,ω′,u′ (α,α2 R)(t |x |) dσ(t),

where cn−1 denotes the volume of the unit sphere in Rn , and ω′ and u′ are arbitrary
points on Sn−1 with u′

· ω′
= 0. For convenience we choose ω′

= (0, 0, . . . , 1) and
u′

= (1, 0, . . . , 0).
Now fix x ∈ Rn and set ρ = |x |. By (2.1) we have that√

r2 +
β2

4
> r + α.

To obtain (2.3) in the region (2.2), we must calculate the proportion of ρSn−1 that
intersects Tr,ω′,u′(α, β). This intersection is an ‘ellipsoid’ in ρSn−1 with length
|P − Q| in one direction and α in the remaining n − 2 directions. Here

P =

(√
ρ2 − (r + α)2, 0, . . . , 0, r + α

)
and Q =

(√
ρ2 − r2, 0, . . . , 0, r

)
.

Hence

In(x, r, α, β) ∼
|P − Q|αn−2

ρn−1 ,
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and since

|P − Q|
2

∼ α2
+

(√
ρ2 − r2 −

√
ρ2 − (r + α)2

)2

∼ α2
(

1 +
(2r + α)2

ρ2 − r2

)
∼

α2ρ

ρ − r
,

we obtain (2.3). 2

The following lemma summarises the relevant Bessel function estimates. See, for
example, [2] for a proof.

LEMMA 2.2. For ν ≥ 0, there exists a universal constant C > 0 such that

(1) for 0 < r ≤ 1,

|Jν(r)| ≤ C

(
r

2

)ν 1
0(ν + 1)

(2) for r ≥ 1,

|Jν(r)| ≤ Cr−1/2 min
{
ν1/6,

∣∣∣∣r + ν

r − ν

∣∣∣∣1/4}
.

Incidentally, Lemma 2.2 fails to reflect a certain exponential decay of Jν(r) present in
the region 1 ≤ r ≤ ν (see, for example, [12] for explicit details of this). Given this, it is
perhaps of little surprise that we only need to use our geometric representation (given
by Lemma 2.1) of these asymptotic estimates for Jν(r) in the region r ≥ ν.

3. The proof of Theorem 1.2

We begin by constructing an example showing that our inequality is optimal.
Let µ be a radially nonincreasing Borel measure supported in B. Observe that

the supremum in the right-hand side of (1.2) is attained by a rectangle, centred at the
origin, and whose long side is parallel to the x1-axis. For this rectangle T = T (α, α2 R)

we have that

1

αn−1 µ(T (α, α2 R)) .
1
α

∫ α

0
t dµ(t) +

∫ α2 R

α

dµ(t). (3.1)

Next we define a sequence of positive real numbers {α j }
k
j=0 by setting α0 = 0,

α1 = 2/R and

α j+1 = Rα2
j for 2 ≤ j < k,

where k is such that αk ∼ R−1/2. We now define the measure µ by

dµ(t) =

k∑
j=0

1
α j+1

χ(α j ,α j+1](t) dt.
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Observe that since α j = 22 j−1
/R, we have that

k ∼ log log R. (3.2)

Let g ≡ 1. Using the well-known asymptotic formula (see [10])

d̂σ(x) = c|x |
−(n−1)/2 cos(|x | − π/4) + O(|x |

−(n+1)/2) as |x | → ∞,

and the nature of the measure µ, we obtain the lower bound∫
|d̂σ(Rx)|2 dµ(x) &

1

Rn−1

∫
1/R≤|x |≤1

1

|x |n−1 dµ(x) &
log log R

Rn−1 . (3.3)

This gives the desired inequality since by (3.1),

sup
R−1≤α≤R−1/2

{
µ(T (α, α2 R))

αn−1

}
. 1.

In order to prove the positive part of Theorem 1.2 we decompose g into its spherical
harmonics, writing

g =

∑
`

a∑̀
m=1

c`,mY `
m,

where Y `
m denotes the mth standard basis element of the spherical harmonics of order `.

By a standard orthogonality argument it is enough to show that

J :=

∫
|x |<1

|Jν(Rx)|2

|Rx |n−2 dµ(x) .
log log R

Rn−1 ‖|µ‖|R, (3.4)

where

‖|µ‖|R := sup
R−1≤α≤R−1/2

{
µ(T (α, α2 R))

αn−1

}
and ν = ν(`) = ` + (n − 2)/2. To this end we break up J according to the behaviour
of the Bessel function Jν (see Lemma 2.2), writing J = J1 + J2 + J3 + J4 + J5,
where

J1 =

∫
|Rx |≤1

|Jν(Rx)|2

|Rx |n−2 dµ(x),

J2 =

∫
1≤|Rx |≤

ν
2 , |x |≤1

|Jν(Rx)|2

|Rx |n−2 dµ(x),

J3 =

∫
ν/2≤|Rx |≤ν−2ν1/3, |x |≤1

|Jν(Rx)|2

|Rx |n−2 dµ(x),

J4 =

∫
ν−2ν1/3≤|Rx |≤ν+2ν1/3, |x |≤1

|Jν(Rx)|2

|Rx |n−2 dµ(x)
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and

J5 =

∫
|Rx |≥ν+2ν1/3, |x |≤1

|Jν(Rx)|2

|Rx |n−2 dµ(x).

We now obtain the required bounds for each of the Ji with 1 ≤ i ≤ 5.
From our geometric point of view, the most interesting and significant term here is

J5 (see the remark after the statement of Lemma 2.2). Although the arguments for the
remaining terms are relatively straightforward, we include them for completeness.

By Lemma 2.2 and the fact that ν ≥ (n − 2)/2,

J1 ≤ µ(B(0, R−1)) .
1

Rn−1 ‖|µ‖|R .

Here we are using the fact that if α = R−1, then T (α, α2 R) is simply a ball of
radius R−1.

By a straightforward dyadic decomposition, and Lemma 2.2 again, we have that

J2 .
1
ν

∑
1≤2k≤ν/2

1

2k(n−2)
µ(B(0, R−12k)).

Covering the ball B(0, R−12k) with a union of (essentially disjoint) tubes of the form
T = T (α, α2 R), where α = 2k/2/R, of which there are a total of O(2k/2(n−2)), quickly
leads to the required bound.

We now turn to J4, and cover the annulus

� =

{
x ∈ Rn

:
ν

R
−

2ν1/3

R
≤ |x | ≤

ν

R
+

2ν1/3

R

}
with O(ν(2/3)n−1) tubes T = T (α, α2 R), where α ∼ ν1/3/R, having bounded overlap.
Thus, by Lemma 2.2,

J4 .
1

νn−(4/3)

∫
�

dµ(x) .
1

νn−(4/3)

∑
T

∫
T (α,α2 R)

dµ(x) .
1

Rn−1 ‖|µ‖|R .

In order to bound J3 we let

� j :=

{
x ∈ Rn

:
ν

R
− 2 j+1 ν1/3

R
≤ |x | ≤

ν

R
− 2 j ν

1/3

R

}
,

and, using Lemma 2.2, write

J3 .
∑

1≤2 j .ν2/3

1

Rn−2νn−4/32 j/2

∫
� j

dµ(x),

and continue as in the case of J4, where for each j the corresponding value of α is
2 jν1/3 R−1.
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We now turn to J5, where by Lemma 2.2

J5 .
1

Rn−1

∫
ν/R+2ν1/3/R≤|x |≤1

1

|x |n−3/2||x | − ν/R|1/2 dµ(x).

In order to bound this term we define a sequence {α j } by α1 = 2ν1/3/R and

α j+1 =
α4

j R2

2r
=

21/3+2/34 j
ν1/3

R
, j ≥ 1.

Let k be such that ν/R + αk ∼ R−1/2. As before we note that

k ∼ log log R.

We now write

J5 .
1

Rn−1

k∑
j=1

∫
ν/R+α j ≤|x |≤ν/R+α j+1

1

|x |n−3/2||x | − ν/R|1/2 dµ(x),

and apply Lemma 2.2 for each j , with r = ν/R, α = α j and β/2 = α2
j R, to obtain

J5 .
1

Rn−1

k∑
j=1

1

αn−1
j

∫
ν/R+α j ≤|x |≤ν/R+α j+1

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

× χTν/R,ω,u(α j ,α
2
j R)(x) dHn−2(u) dσ(ω) dµ(x)

.
1

Rn−1

k∑
j=1

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

µ(Tν/R,ω,u(α j , α2
j R))

αn−1
j

dHn−2(u) dσ(ω)

.
log log R

Rn−1 ‖|µ‖|R,

as required.

COROLLARY 3.1. For all Borel measures µ supported in B,∫
|x |<1

|Jν(Rx)|2

|Rx |n−2 dµ(x) .
log log R

Rn−1 ‖|µ‖|R .

PROOF. In the proof of (3.4) we at no point used radiality of µ. 2

In particular, taking ν = 0, we have that for arbitrary Borel measures µ,∫
|x |<1

dµ(x)

|x |n−1 . log log R ‖|µ‖|R .
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REMARK. (1) In retrospect, the conjecture that (1.2) might hold was a little hasty. It
was generated only by the single family of examples described, and we did not even
take the effect of the tails of the expressions |ĝdσ(Rx)| into account. Considering the
case δ ∼ 1, we should therefore have included ‘tail’ terms such as

sup
y

∫
1/R≤|x−y|≤1

dµ(x)

|x − y|n−1 (3.5)

into consideration of necessary conditions. The fact is that, by the remark following the
above corollary, and translation invariance of ‖| · ‖|R , this term (3.5) is automatically
controlled by ‖|µ‖|R up to a factor of log log R. When µ is radial, the tails occurring in
the (unmodulated, that is, y = 0) cases δ � 1 are controlled by the same mechanism,
using explicit rotation invariance. However, when y 6= 0, and δ � 1, it is perhaps
simplest to use the theorem itself to see that the contributions from the tails (analogous
to (3.5)) are dominated by log log R ‖|µ‖|R .

In the case of general measures, it is easy to see that all of the ‘tail’ terms such as
(3.5) are dominated by log R ‖|µ‖|R . (For (3.5) one uses a dyadic decomposition of
{1/R ≤ |x − y| ≤ 1} and then tubes pointing along rays through y.) However, as we
have noted above, (1.2) fails polynomially in R for general measures µ.

(2) If the Mizohata–Takeuchi conjecture 1.1 is correct, it can be rescaled to obtain
the scale-invariant inequality∫

Rn
|ĝdσ(x)|2 dµ ≤ C‖|µ‖| ‖g‖

2
L2(Sn−1)

for all g ∈ L2(Sn−1). (There is now no condition on the support of µ.) However, it is
not necessary that ‖|µ‖| be finite in order to have∫

Rn
|ĝdσ(x)|2 dµ ≤ K (µ)‖g‖

2
L2(Sn−1)

. (3.6)

Indeed, taking dµ(x) = w(x) dx , inequality (3.6) holds with K (µ) = ‖w‖(n+1)/2;
this is the content of the Stein–Tomas restriction theorem. Of course, the quantities
‖w‖(n+1)/2 and ‖|µ‖| are not comparable. On the other hand, testing on the usual
examples gives the necessary condition

sup
{

µ(T )

N n−1 : T an N × N · · · × N × N 2 tube, N ≥ 1
}

< ∞ (3.7)

for (3.6) to hold. The quantity ‖|µ‖| is the smallest dilation-invariant functional of µ

which is larger than that generated by (3.7). By Hölder’s inequality, the left-hand side
of (3.7) is at most ‖w‖(n+1)/2 when dµ(x) = w(x) dx . On the other hand, (3.7) is not
sufficient for (3.6) to hold, as the result of the present paper shows.

https://doi.org/10.1017/S1446788708000694 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000694
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4. Remarks on localised inequalities for general measures in two dimensions

There are certain possible variants of inequality (1.2), and here we consider two
such (the forthcoming inequalities (4.1) and (4.2)), neither one of which implies the
other. Both originate in work on the Falconer distance set conjecture (see [8]). We omit
the proofs due to their close proximity to arguments that are already well established
in the literature.

4.1. A variant based on an argument of Erdoğan A careful inspection of the
arguments in [6] (see also [5]) leads to the following two-weighted inequality for
the extension operator in two dimensions. The subsequent variant of inequality (1.2)
follows as a corollary.

In what follows T (α, β) will denote a rectangle in the plane of short side α and
long side β, and Tω(x; α, β) will be used to denote the rectangle T (α, β) centred at
x ∈ R2 and pointing in the direction ω ∈ S1. Here B denotes the unit ball in R2, and σ

the induced Lebesgue measure on the unit circle S1
⊂ R2.

THEOREM 4.1. Let µ be a Borel measure supported in B. Then there exists an
absolute constant C such that for all R ≥ 1 the a priori inequality∫

B
|ĝdσ(Rξ)|2 dµ ≤ C

log R

R

∫
S1

|g(ω)|2MRµ(ω) dσ(ω)

holds. Here the maximal functionMR is given by

MRµ(ω) = sup
R−1≤α≤R−1/2

sup
T ||ω

T =T ((αR)−1,1)

(
1

|T |

∫
T

(
µ(Tω(x; α, α2 R))

|Tω|

)2

dx

)1/2

.

COROLLARY 4.2. There exists a constant C such that∫
B

|ĝdσ(Rξ)|2 dµ ≤ C
log R

R
sup

R−1≤α≤R−1/2
sup

T =T (α,α2 R)

T ′
=T ′((αR)−1,1)
T ⊂T ′,T ||T ′

{
µ(T )µ(T ′)

|T ||T ′|

}1/2

‖g‖
2
2,

(4.1)
for all Borel measures µ supported in the unit ball, R ≥ 1 and g ∈ L2(Sn−1).

4.2. A variant based on an argument of Bourgain A careful inspection of the
arguments in [3] leads to the following variant of inequality (1.2). This observation is
due to Ana Vargas [11].

THEOREM 4.3. There exists a constant C such that∫
B

|ĝdσ(Rξ)|2 dµ ≤ C
(log R)1/3

R5/6 sup
T =T (R−1/2,1)

{
µ(T )

|T |

}1/3

‖µ‖
2/3
2 ‖g‖

2
2, (4.2)

for all Borel measures µ supported in the unit ball, R ≥ 1 and g ∈ L2(Sn−1).
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