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Introduction. According to a well-known theorem of alge-
bra [3,p.47], an integral domain can be embedded in a field,
called its field of quotients. Every freshman is familiar with
the simplest form of this theorem concerning the integers and
the rational numbers. Many generalisations have been given in
which a '"ring of quotients' is constructed for a given ring [e.g.
6,7,11, 12, 13-] . Of course, we cannot expect a ring of quotients
to be a field, or even a skew field. As Malcev [91 has shown,
there even exist rings without proper divisors of zero which
cannot be embedded isomorphically in a skew field. The most
recent construction, by Utumi [_12] , gives a ring of quotients
for any ring with zero left annihilator. We show in this paper
that this construction can be extended to arbitrary rings, in fact,
to arbitrary modules. The method used is more abstract: a
fundamental relation between rings, defined by Utumi in terms
of their elements, is here replaced by a corresponding relation
between modules, defined by means of homomorphisms.

_ As an illustration, let us see how the rational numbers
can be defined by the method of [12] , {_13] and the present

paper.

A rational number may be regarded as a linear operator,
or partial endomorphism, of the additive group of the integers,
For example, 2/3 is the mapping of the ideal (3), composed of
the multiples of 3, onto the ideal (2), which sends 3k onto 2k.

It is easily seen that 2/3, as a partial endomorphism, cannot be
extended., It is called irreducible [1-} . On the other hand, 4/6,
which sends 6k onto 4k, can be extended to the irreducible par-
tial endomorphism 2/3. This extension is unique; in fact, it can
easily be shown that any partial endomorphism of the additive
group of the integers whose domain is a non-zero ideal can be
extended in one and only one way to an irreducible partial endo-
morphism.

How are arithmetic operations performed when we use
this definition of the rational numbers?

Consider for example the addition of 1/6 and 3/10. Their
domains, (6) and (10}, have the intersection (30). Restricting
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the given summands to this domain, we obtain 5/30 +9/30 =
14/30, by the usual method of adding homomorphisms. This
result may be extended to the irreducible partial homomorphism
7/15, which is therefore the required sum.

Again, let us consider the multiplication of 35/6 by 10/7.
We must restrict the domain of 10/7 so that its image will be
contained in the domain (6) of 35/6, that is, to {7k\10ke (6)} =
(21). Then we have (35/6)(30/21) = 175/21, by the usual method
of multiplying homomorphisms. This result may be extended to
the irreducible partial homomorphism 25/3, which is therefore
the required product.

When rationals are defined as linear operators, rather
than as sets of pairs of integers [3,p.45] , the operations of
addition and multiplication need not be defined by a tour de force,
but are already determined by the corresponding definitions for
partial homomorphisms. This has the advantage that the veri-
fication of the associative and distributive laws requires little
or no computation.

If Ris a ring, and B and A are right R-modules, and if D
is any R-submodule of B, then an R-homomorphism ¢~ of D into
A is called a partial homomorphism from B into A, Its domain,
image and kernel are denoted thus: domé¢ = D, im¢, ker § =
{deD|¢d=0}. & is called irreducible if it cannot be extended
to a partial R-homomorphism from B into A, whose domain pro-
perly contains D,

We shall require a few well-known facts about partial
homomorphisms.

PROPOSITION 0.1. Every partial homomorphism can be
extended to an irreducible one.

Proof. The partial homomophisms from B into A are par-
tially ordered by the inclusion relation betwecn their graphs. It
is easily seen that the union of an increasing sequence of such
graphs is again the graph of a partial homomorphism. The
existence of irreducible partial homomorphisms extending a given
one then follows by Zorn's Lemma [2, p.42] .
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PROPOSITION 0,2. Two partial homomorphisms from
B into A possess a common extension if and only if they coincide
on the intersection of their domains.

Proof. Let¢ and { be partial homomorphisms from B

into A, such that ¢z = Yz for all z € dom¢ domyp . Put
X(ix+y)=¢x+ 9y

for x e dom$, ye dom . To show that this definition makes
sense we must verify that equal values of x + y imply equal
values of¢ x +¢y. By linearity, this is the same as showing
that x +y = 0 implies$¢x +yy = 0. Now if x +y = 0, then
y = -x ¢ dom¢ndomy, sothatPy =y = -gx. Itis easily seen
that X is a homomorphism of dom¢ + domy into A, extending both

¢ andy .
The converse is obvious,

COROLLARY 0.3. If two partial homomorphisms from
B into A coincide on the intersection of their domains, then if
one of them is irreducible it extends the other.

PROPOSITION 0.4. If ¢ is an irreducible partial homo-
morphism from B into A, C a submodule of B such that dom¢nC
= 0, then C = 0.

Proof. Lety be the zero mapping of C into A, theny
coincides with ¢ on the intersection of their domains (which is
0), hence by 0.3 C ¢ doqu, so that C = dom¢nC = 0,

1. A relation amoung three modules. In sections 1 to 4,
R denotes an associative ring, and A,B,C ..... right R-modules’,
Homomorphisms and submodules are understood to be
R-homomorphisms and R-submodules.

Let C be a submodule of B. We write C%< B (A) if every
homomorphism of C into A can be extended uniquely to an irre-
ducible partial homomorphism from B into A. That is, C &

B (A) if and only if, for any partial homomorphism ¢ from B
into A, C ¢ ker«# implies im¢ = 0.

For it is obvious that the first statement implies the
second. Assume the second statement and lettp,')( be two par-
tial homomorphisms from B into A coinciding on C. Then C&
ker (¢ -X) and so (¢ -X) (domypadomX) = 0. By 0.1and 0.2,

¢ and X possess a common irreducible extension. In particular,
if p andX are already irreducible, they must be equal.
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PROPOSITION 1.1. (i) B& B (A).
(ii) if C £« B (A) and D& A, then C &£ B (D).
(iii) if C £ B (A) and CEDE B, then C & D (A) and D € B (A).
(iv) if A 2 A', B @ B'and C 7 C', then C £ B (A) if and only
if C' =« B' (A').

These properties are immediate consequences of the defi-
nition.

PROPOSITION 1.2. If C =B (A) and  is a homomorphism
into B, then ¢ ~1C =« ¢ -1B (4).

Proof. Let ¢ be a partial homomorphism from ¢ -1B into
A such that -1C ¢ ker ¢. Then, forde ¢ -1B, deC implies
¢ d=0. Thus we can define a partial homomorphism ¢ ' from
B into A with domain C + ll.)d0m¢ by ¢'(c +pd) =¢d(ce C,
d ¢ dom¢ ). Since ¢'C =0 and C < B (A), therefore im ¢
= 0, and so im¢ = 0. ThusQ)'ICé-. Ll) -1p (A), as was to
be proved.

PROPOSITION 1.3,

(i) if C<« B (A) and D & B, then CAD & D (A).
(ii) if C« B (A) and B « E (A), then C « E (A).
(iii)if C « B (A) and D £ B (A), then CAD « B (A).

Proof. (i) is deduced from 1.2 by letting } be the injec-
tion of D into B, so that { =1C = CAD.

(ii) Let(f) be a partial homomorphism from E into A such
that Cc kerp. By 1.1 (iii), C £ dom¢~B (A), and so ¢ (dom¢
~B) = 0. But by (i) dom$~B < dom qS(A); hence im¢ = 0.

(iii) By (i), CAD £ D (A). Therefore by (ii), CAD £ B(A),

The relation C & B (A) discussed in this section can also
be defined in terms of elements rather than homomorphisms.
Let I be the ring obtained from R by formally adjoining the
integers. That is to say, if N is the ring of integers, I=R + N
as a direct sum of modules, with multiplication defined by the
rule: (r + n) (r!' +n') = (rr' +ar' +n'r) +nn' (r,r'eR;n,n' e N).

PROPOSITION 1.4. C = B (A) if and only if, for any ae
A and b e B, a ¥ 0 implies the existence of an i & I such that
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bi e C and ai+ 0.

We omit the proof of this result, as we shall make no use
of it. While 1.4 could have been used in the proofs of many pro-
positions in this paper, we have preferred to appeal to 1.2 in-
stead. 1.4 generalizes the corresponding relation between rings
given by Utumi.

2. Rational extensions. By an extension of a module C is
meant a module B together with an isomorphism of C into B.
However, there is no harm in assuming that B actually contains
C. The isomorphism is then the inclusion mapping of C into B,
and need not be specially mentioned. ’

If Ce B and C ¢ B', a homomorphism 4: of B into B! is
called a homomorphism over C if it induces the identity mapping
of C.

Eckmann and Schopf [ 5] have called B an essential exten-
sionof Cif D e Band CAD = 0 imply D =0. This is the same
as saying that the identity mapping of C is an irreducible partial
homomorphism from B into C.

For the second statement implies the first by 0.4. Con-
versely, let B be an essential extension of C and ¢ an irreducible
partial homomorphism from B into C which extends the identity
mapping of C. Then C A ker¢ = 0, and soker¢ = 0. Ifde
dom¢ then, for somec e C, ¢d=c = ¢ c, hence ¢(d-c)=0
and therefore d - ¢ = 0. It follows that dom¢> = C, and so the
identity mapping of C is irreducible.

PROPOSITION 2.1. Let A! be an essential extension of A.
Then C « B (A) if and only if C & B (A').

Proof. Assume C « B (A) and let <}>'be a partial homo-
morphism from B into A' such that C & ker¢. By 1.I1(iii),
Ce ¢ -1A (A), so that imén A = qS (¢ -1A) = 0, hence imé¢ = 0.
Therefore C £ B (A').

The converse holds by 1.1 (ii).

We shall call an extension B of C a rational extension if
C « B (B).
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PROPOSITION 2.2. B is a rational extension of C if and
only if it is an essential extension and C & B (C).

Proof. Let B be a rational extension of C and suppose |
D& B and CAD = 0. The projectionw™ of C +D onto D is a partial
endomorphism of B such that wC = 0. Hence D = imr = 0.
Therefore B is an essential extension. Moreover, C =« B (C),
by 1.1 (ii).

The converse follows from 2,1,

PROPOSITION 2.3. If A« B (B) and B « C (C), then
A= C (C). :

Proof, We have A= B (B)and B& C(C). By2.1, A«
B (C). Hence by 1.3 (ii), A « C (C).

PROPOSITION 2.4. If A and B are rational extensions of
C, then there exists exactly one irreducible partial homomorphism
da,B over C from A into B. Moreover, if also D is a rational
extension of C,

(i) oA,A is the identity mapping of A,
(ii) dB,D9A,B can be extended to daz, D,
(iii) O'A,B'l = 0p, A -

Proof. Since C s A (A) we have C £ A (C) by 2.2, hence
C A (B)by 2.2 and 2.1. The identity mapping of C is there-
fore extendible to a unique irreducible partial homomorphism
dA, B from A into B.

Since the identity mapping of A extends the identity map-
ping of C, we have (i). Since dg,DGA, B is a partial homomor-
phism from A into D inducing the identity mapping of C, its
unique irreducible extension coincides with A, D, that is (ii).

It follows from (i) and (ii) that A ,BoB,A and 6B, Ada, B can be
extended to the identity mappings of B and A respectively. From
this it is easy to deduce (iii).

Note in particular that A, B is an isomorphism in conse-
quence of (iii).
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PROPOSITION 2.5. If A — B means that dp B is a
full homomorphism, then — is a quasi-ordering of the rational
extensions of C., If we identify two rational extensions which
are isomorphic over C, — becomes a partial ordering.

Proof., In view of 2.4 we have
(i) A — A,
(ii) ifA—> Band B— D, then A— D,

(iii) A » B and B = A if and only if A and B are isomor-
phic over C.

THEOREM 2.6, Every module C has a maximal rational
extension,.

Proof, In the partially ordered system of 2.5, consider
any ascending sequence of rational extensiouns of C:

By = B2 > B3 ...iiieenns

Now the homomorphisms oB;,B; , | 2are actually isomorphisms
by 2.4. Heunce, without loss of generality, we may assume

B]S B2 &€ B3€ .vovennnns

Let B be the union of these Bi. Then B is also a rational exten-
sion of C, For let ¢ be a partial endomorphism of B such that
C s ker¢ ., Givenb ¢ dom¢ , we want to show that ¢ b = 0,
Now b e Bj and ¢b ¢ Bj for some i, and ¢ induces the partial
endomorphism ¢ i of B; with domain Bj A ¢ 'lBi. Since
$¢iC=¢C =0, therefore $ b= ¢ib=0. Thus C £ B (B).

The existence of a maximal rational extension M now
follows by Zorn's Lemma [2,p.42] .

Here "maximal' means that for any rational extension B
of C, M - B implies B > M. In view of 2.5 we can say that
M = B implies that B and M are isomorphic over C. Hence M
is also maximal in the sense that no proper extension of M is a
rational extension of C. We shall show later (4.3) that M is
unique up to isomorphism over C,

It is known that there exists a maximal essential extension
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E of C, unique up to isomorphism over C, which contains a
submodule isomorphic over C to each essential extension of C.
Moreover E is injective, that is, every partial homomorphism
from any module into E can be extended to a full homomorphism.
This has been shown when R contains a unity by Eckmann and
Schopf [5] , in general by Johnson Ls].

PROPOSITION 2.7. The intersection of all kernels of
endomorphisms of E which contain C is a maximal rational ex-
tension of C.

We omit the proof of this proposition as we shall make no
use of it, While many of the results in this paper could have
been deduced from it, we have preferred to keep the paper self-
contained.

One might perhaps think that the maximal essential exten-
sion of a module is itself a rational extension, and therefore a
maximal rational extension. While this is often the case, Utumi
[12, (1. 1)] has given an example to show that an essential
extension need not be rational, We shall present this example
here:

Let F be any field, S the ring of polynomials in the inde-
terminate x over F modulo x#. Consider the subring R of S
generated by 1, x2and x 3. It is easy to verify that, regarded
as an R-module, S is an essential extension of R but not a

rational extension.

(To be continued)
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