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1. Introduction. Let 
(W): Wo,Wu:..,Wn,... 

be a linear integral recurring sequence of order r > 2; that is, a particular 
solution of the recurrence 

(1.1) 0n + r = P i 0,+r-i + P 2 On-r-2 + . . . + Pr Q». 

where Pi , P2 , . . . , Pr 9e 0 are integers, and the initial values WV W"i, . . . , WV-i 
are integers. 

A positive integer m is said to be a divisor of (WO if it divides some term W7* 
with positive index k. 

A prime number p is said to be regular in (WO if every power of p is a divisor 
of (WO- If only a finite number of powers of p are divisors of (WO-, p is said to 
be irregular. 

If there exist in (W) s consecutive terms divisible by p, say Wk, Wk+i,. . . , 
Wk+s-i, but p never divides s + 1 consecutive terms of (WO, £ is said to be a 
divisor of (WO of order s, and & is said to be a zero of p in (WO of order s. 
Evidently 5 must be less than the order r of the recurrence. A prime of order s 
may have zeros in (WO of order less than s, and may be regular or irregular. 

A prime divisor of (WO of the maximum possible order r — 1 will be called 
maximal. 

I give in this paper a necessary condition that p shall be a maximal prime 
divisor of (WO under the assumption that the characteristic polynomial 

(1.2) f(z) = 2 ' - P l 2 ' - i - . . . _ p r 

of the recurrence has no repeated roots. When r = 2, all prime divisors of (W) 
which are not null divisors (1) are maximal, and the condition reduces to a 
criterion for a divisor due essentially to Marshall Hall (2) which is both 
necessary and sufficient. But if r is greater than two, the condition is no longer 
sufficient for p to be maximal in ( W). In order for the condition to be sufficient 
the following additional restrictions on the recurrence and the prime must be 
made: 

(i) f(z) is of odd degree and irreducible; 
(ii) The prime p is chosen so that p — 1 is prime to the degree r of f(z) ; 

(iii) f(z) is irreducible modulo p. 
As is shown in the concluding section of this paper, if these conditions fail to 

hold, the necessary condition for p to be maximal need no longer be sufficient. 
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It will be evident from the sufficiency proof given under the restrictions just 
stated that if p is unramified in the root field of f(z), a set of necessary and 
sufficient conditions can be stated in terms of the exponents to which a certain 
set of integers belong in the root field modulo all prime ideal factors of p. But 
these conditions appear too complicated to be of interest, and will not be 
developed here. 

The results of the paper are stated as theorems in §4; the next two sections 
are devoted to algebraic and arithmetical preliminaries. The proofs are given 
in §§5, 6 and 7, and the concluding section is devoted to numerical examples. 

2. Algebraic preliminaries. Let the characteristic polynomial f(z) of the 
recurrence have r distinct roots «i, a2, . . . , a r so that its discriminant D is not 
zero. 

Then the general term of (W) is of the form 

(2.1) Wn = / W r t + . . . +Pr*rn 

where the & are elements of the root-field 9Î of f(z) to be specified presently. 
Let A(W) denote the persymmetric determinant of order r in which the 

element in the ith row and jth column is PF<+i_2. The non-vanishing of A(W) 
is a necessary and sufficient condition that the recurring sequence (W) be of 
order r. Thus it easily follows from (2.1) that 

(2.2) ft... prD = A(W) 5*0. 

Define r polynomials fk(z) by fo(z) = 1, fk(z) = z* — Pi zk~x — . . . — Pk 

(k = 1, . . . , r — 1). Then the polynomial 

W{Z) - Wofr-l(z) + Wlfr-2(Z) + ...+ Wr^fo(z) 

has rational integral coefficients and is of degree less than r. Let 

7< = w(<Xi) (i = 1,2, . . . , r ) . 

Then the y are integers in the root field 3Î. Furthermore the polynomial 

(2.3) g(z) - (, - 7 l ) • • • (* ~ yr) = Z
f - &S ' - 1 - . . . -Qr 

has rational integral coefficients Q, and as we shall show in a moment, 
Cr^O. 

Let / '(*) = rz'-1 - (r - 1) Pizr~2 - . . . be the derivative of f(z). Since 
D = dzf'(ai) . . ,f(ar)y none of the numbers/ '(a) is zero. Furthermore it turns 
out that 

/5i = 777^T ( i = l , 2 , . . . , r ) . 

Hence by (2.2), no y is zero so that Qr 9^ 0, and 

(2"4) W*=fM+---+fM-
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3. The restricted period of a recurrence. Let p be a prime number which 
does not divide the constant term PT of the characteristic polynomial (1.2). 
The least positive integer n such that the congruences 

(3.1) ain = a2
n = . . . s ar

n (mod p) 

hold in the root field 9? is called the restricted period of p in the recurrence 
(1.1) or the polynomial (1.2) (3). 

If p is the restricted period of p, (3.1) holds if and only if p divides n. Fur­
thermore we have the congruence 

(3.2) Wn+P = CWn (mod p\ C & 0 (mod p), 

where the residue C depends only on p and the recurrence (1.1). Consequently, 
p is a divisor of (W) if and only if it divides one of the p numbers 

Wi, W*,..., W>-u Wp. 

Now let (L) denote that particular recurring sequence with the initial values 

L\ = Z/2 = . . . == Lr—2 == 0, LT— i = 1. 

For this sequence the polynomial w(z) is one, so that all the yt are one, and by 
(2.4) 

n n 

(3.3) Ln=^ + ...+^-y 

In case r = 2, Ln reduces to the well-known Lucas function 
it n 

Û?I — ai 

ax — a2 

We shall accordingly refer to (L) as the "Lucas sequence belonging to f(z)." 
Every prime number p not dividing Pr is a maximal divisor of (L), and the 

first zero of order r — 1 of p in (L) is simply the restricted period of f(x) 
modulo p. We accordingly call p the rank of /> in (L). Furthermore, every 
maximal divisor of (L) is regular. 

4. Statement of results. Let A(W) denote the rational integer 

(4.1) A(W) = DPrA(W). 

Evidently A(W) is not zero. Let p be any prime not dividing A(W). Let (L) 
be the Lucas sequence belonging to / (z ) , and let (M) be the Lucas sequence 
belonging to g(z) of (2.3). Since p does not divide A(W), it is a maximal prime 
divisor of both (L) and (If). 

THEOREM 4.1. Let p be a prime number not dividing A{W) of (4.1). Then a 
necessary condition that p be a maximal divisor of (W) is that its rank in (M) 
divide its rank in (L). 
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THEOREM 4.2. The condition of Theorem 4.1 is sufficient for p to be a maximal 
prime divisor of (W) provided that f(z) and p are restricted as follows: 

(i) f(z) is of odd degree and irreducible; 
(ii) p — 1 is prime to the degree r of f(z); 

(iii) f(z) is irreducible modulo p. 

5. Proof of necessity of condition. We first prove Theorem 4.1. Let p be 
any prime not dividing A(W), and assume that p is a maximal divisor of (W). 
Then there exists a positive integer k such that 

Wk s Wk+1 s . . . s Wk+r-2 s 0 (mod p), 
but 

Wk+r-i = C?*0 (modp). 

The sequence (T) defined by Tn = 1^+* — CLn satisfies the recurrence 
(1.1) and has its r initial values T0, . . . , TT-\ all divisible by p. Consequently, 
p divides every term of (T); in other words the congruences 

(5.1) Wn+k = CLn (modp) 

(5.2) C ^ O (modp) 

are necessary conditions for p to be maximal divisor of (W). For a fixed 
positive k and any rational integer C, they are also sufficient conditions for p 
to be maximal in (W) ; for since p does not divide P r , it is maximal in (L). 

Since £ does not divide the discriminant D of/(z), it is unramified in the 
root field 9?. Consequently its prime ideal factorization in dt is of the form 

(5.3) p = P1P2. . . p, 

where the p are distinct prime ideals. 
Let pj denote the restricted period of f(z) modulo p ;; that is, pj is the least 

positive integer n such that the congruences 

(5.4) <*in s a2
n = . . . = aT

n (mod py) 

hold in 9Î. Evidently the restricted period p ol f(z) modulo £ is the least com­
mon multiple of the py. 

If f(z) is normal, its Galois group is transitive over the ideals p^, and the 
Galois group is also transitive over the py if f{z) is irreducible modulo p. In 
either case, on applying the substitutions of the group to the congruences 
(5.4), we see that the pj will all be equal. Hence we may state the following 
lemma: 

LEMMA 5.1. Iff(z) = 0 is a normal equation or iff(z) is irreducible modulo p, 
then with the notations of (5.3)-(5.4), p = pj (j = 1, 2, . . * , s). 

Now let pj stand for any one of the prime ideal factors of p in the decomposi­
tion (5.3). Then the congruences (5.1) imply that for every n 

(5.5) Wn+k - CLn = 0 (mod p,), C & 0 (mod p ;). 
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On substituting for Wn+k and Ln from formulas (2.4) and (3.3) and then 
letting n range from 0 to r — 1, we obtain r homogeneous linear congruences 

Z (ym - C) $ - = 0 (mod p,) (» = 0, 1 , . . . , r - 1). 

Now the algebraic numbers a"/'(on)'1 are integers modulo py, and the 
square of their determinant is D~l which is both an integer mod py and prime 
to pj. Consequently 

(5 .6) 7 i « i* = 72 <*2k = . . . = yr OLT* = C & 0 ( m o d pj). 

Conversely these congruences imply the congruence (5.5). We may there­
fore state: 

LEMMA 5.2. If p does not divide the integer k(W), then necessary and sufficient 
conditions that p should be a maximal divisor of the sequence (W) are that for 
some fixed positive integer k, the congruences (5.6) hold for every prime ideal 
factor pj of p in the root field of f(z). 

Now let pj be the restricted period of f{x) modulo pj and o-j the restricted 
period of g{x) modulo p^; that is, <TJ is the smallest positive value of n such that 

7 l* = T2» = . . . =7r
n (modp,-). 

Then the restricted period <r of g(x) modulo p is evidently the least common 
multiple of the a> 

On raising each term in (5.6) to the p^th power, we see that <TJ must divide 
pj. Hence a must divide p, completing the proof. 

6. Proof of sufficiency. It follows from the results of § 5 that if p does 
not divide A(W)j the conditions 

(6.1) <TJ divides pj (j = 1, 2, . . . , s) 

are necessary for the congruences (5.6) to hold. To answer the question of 
when these conditions are sufficient, we begin by studying the congruence 

(6.2) 7<** = C (mod p). 

Here a as before is any root of/(s), y is an integer of the root field 9î of f(z), 
C is a rational integer, p any prime ideal of 9Î dividing neither a nor 7, and k 
is a positive integer. 

For brevity, we shall use the following special notations in this section. 
Since all congruences will be to the same modulus, we shall repress the mod p, 
writing (6.2) for example as yak .= C. 7 s ' l n t means there exists a rational 
integer g such that p divides 7 — g. Clearly 

(6.3) 7 = Int if and only if yv~l = 1. 

7 .== Pr(a) means 7 is congruent modulo p to a power of a. ex(y) means the 
exponent to which 7 belongs modulo p; that is, the least positive value of n 
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such that yn = 1. rx{y) means the restricted exponent of y modulo p; that is, 
the least positive value of n such that y = Int. Evidently 

(6.4) yn = Int if and only if rx(y) divides n. 

Let 
(6.5) v = ex(y), a = rx(y), y* = g, 5 - er[2). 

LEMMA 6.1. With the notations of (6.5), 

(6.6) v = aô 

Proof: Evidently v divides aô. Let (*>, p — 1) = / so that v = v0t and p — l = lt 
with (vo, /) = 1. Since y*>&-» = 1, y = Int by (6.3). Consequently by (6.4), 
or divides VQ. Let vo = KG. Then 

I P Vo t Kfft Kt 

= 7 = 7 = 7 = g . 
Therefore ô|/c/. Hence O-Ô|OTC/, O-5|J>0/ or o-5 divides v. Hence aô = *>, completing 
the proof. 

LEMMA 6.2. If the irreducible congruence mod p with rational integral coefficients 
of which y is a root is of degree /, and if t is prime to p — 1, where p is the rational 
prime corresponding to p, then the exponent v to which y belongs modulo p is of the 
form (6.6) with a and ô as before, but in addition a, ô are coprime, a divides 
(P% ~ ! ) / (£ — 1)» 5 divides p — 1 and 

(a, p - 1) = 1. 

Proof: Let the irreducible congruence be 

z% - R ^ 1 . . . + (-!)< Rt = 0 (mod p) 

where the R{ are rational integers. The roots of (6.6) are y, yp, yp\ . . . ypi~x 

Hence 

7 ^ - * . - I n t . 

Therefore by (6.4), a\(p* — l)/{p — 1); obviously ô divides p — 1. Now 
((£/ - D/(P - 1), P ~ 1) = (A /> - 1) = 1. Hence (<r, 8) = (0-, /> - 1) = 1 
which completes the proof. 

Under the hypotheses of lemma 6.2 it is not difficult to show that ô is the 
exponent to which Rt in (6.8) belongs modulo p. 

LEMMA 6.3. With the hypotheses of Lemma 6.2, 

ya* s= Int if and only if yp~l = Pr(a). 

Proof. If yak = Int, then 
yP-l aHP-D == 1 

which implies yp~l = Pr{ct). Assume conversely that for some integer I > 0, 
7 P - I = a1. 
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Now (o-, p — 1) = 1 by Lemma 6.2. Hence integers u and r exist such that 
wo- + r(p — 1) = 1. Hence 

y = yUff+r(p-i) — gu arl. 

Hence for some positive fe, 7a* = Int, completing the proof. 

LEMMA 6.4. If the restricted exponent a of y is prime to p — 1 and divides 
the restricted exponent of a, then yv~l = Pr(a). 

Proof. Let p =» rjc(a). Since Y*^-1* == 1, ex{yv~l) divides a. Hence ex{yv~l) 
divides rx{a) or ex{yp~l) divides ex (a) by applying Lemma 6.1 to a instead of 
to y. Hence yv~l s Pr(a); for the multiplicative group of residues prime to p 
is cyclic. 

We may draw the following conclusion from the preceding lemmas which 
completes our investigation of the congruence (6.2). 

LEMMA 6.5. If the degree of y modulo p is prime to p — 1, then a necessary and 
sufficient condition that the congruence (6.2) holds is that the restricted period of y 
modulo p divides the restricted period oj y modulo p. 

7. Proof of sufficiency concluded. We may now prove Theorem 4.2 as 
follows: Since f(z) is irreducible modulo p, p does not divide PT and p is un-
ramified. Consequently its prime ideal factorization is as in (5.3). Let py denote 
any prime ideal factor of p. By lemma 5.1, p =« pj and cr = o^ and cr divides 
p by hypothesis. Also since f(z) is irreducible modulo p, the degree / of y is a 
divisor of r, so that / is prime to p — 1. Consequently by Lemma 6.5, 

(7.1) T<** = C & 0 (mod p,). 

Here k may depend on j . 
Now raise the congruence (7.1) successively to the p, p2, . . . , pT~~l powers. 

Since f{z) is irreducible mod p> its roots mod p and mod p^ are the powers of 
any particular root a; that is, for a suitable numbering of the roots 

ai s o? ~l (mod p) (i => 1, 2, . . . , r) . 

Hence since w(z) has rational integer coefficients, 

yv%~x == Î£;(Û!P$~1) == w(cti) = y{ (modp). 

Therefore we obtain from (7.1) the congruences (5.6) and k is seen to be 
independent of j . But as was remarked in section 5, (5.6) implies congruences 
(5.1) and (5.2). Consequently p is a maximal divisor of (W), completing the 
proof. 

8. Conclusion. A numerical example. Consider any integral recurrent 
sequence (W) defined by the recurrence Wn+z = W +̂2 + &Wn+i + Wn. 

The characteristic polynomial of this recurrence zz — z — 4s2 — 1 is irredu­
cible and its discriminant is 169, a perfect square. Consequently, f(z) is normal. 
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For every prime p congruent to 5 mod 6, p — 1 is prime to r = 3. Hence all 
the restrictive hypotheses of theorem 4.2 are met except possibly the irreduci-
bility oif(z) modulo p. 

Consider the prime p = 5. Then/(s) is reducible modulo 5; in fact 

/(*) s (s - 1) (* - 2) (z - 3) (mod 5). 

Consequently the restricted period of f(z) modulo 5 (that is, the rank of 5 
in (L)) is four. Since g(z) is evidently completely reducible modulo 5, the rank 
of 5 in (M) always divides the rank of 5 in (L). 

Now suppose the initial values of (W) are chosen so that five does not divide 
A(W) of (4.1), which amounts to saying that the recurrence (W) is of order 
three modulo five. Then five may or may not be a maximal divisor of (W). 
For example, if W0 = l,.Wi = 1, W2 = 0 then A (WO = 5239. But Wz = 5 
and p is maximal. If W0 = 1, Wi = 3, W2 = 5 then A(T^) = 12337. But 
Wz = 18 and (PF) has period four modulo 5. Hence p is not maximal in this 
recurrence. 

To illustrate the possibility of an irregular maximal prime divisor, consider 
the recurrence Wn+Z = 1Wn+2 + 36Wn+i + 29Wn with W0 = 7, Wi = 7, and 
W2 = 1. Then if we take p = 7, £ is obviously maximal in (W). But p is irre­
gular. For on computing the first nineteen terms of (W) mod 49, we obtain 

7, 7, 1, 21, 43, 8, 8, 23, 44, 45, 18, 33, 28, 44, 19, 30, 14, 14, 2. 

Since the last three terms are double the first three, 

Wn+l,^2Wn (mod 49) 

so that no term of (W) is divisible by 72. 
There exist for cubic sequences fairly simple criteria distinguishing regular 

and irregular primes. These I plan to give elsewhere. 
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