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THE GEOMETRIC THEORY OF THE FUNDAMENTAL

GERM

T. M. GENDRON

Abstract. The fundamental germ is a generalization of π1, first defined for

laminations which arise through group actions [4]. In this paper, the fundamen-

tal germ is extended to any lamination having a dense leaf admitting a smooth

structure. In addition, an amplification of the fundamental germ called the

mother germ is constructed, which is, unlike the fundamental germ, a topo-

logical invariant. The fundamental germs of the antenna lamination and the

PSL(2, Z) lamination are calculated, laminations for which the definition in [4]

was not available. The mother germ is used to give a new proof of a Nielsen

theorem for the algebraic universal cover of a closed surface of hyperbolic type.

§1. Introduction

This paper represents a continuation of our quest to extend Z-coefficient

algebraic topology to laminations through the generalization of π1 called

the fundamental germ. In this paper, we extend this construction to any

lamination admitting a smooth structure.

Let us recall briefly the intuition behind the fundamental germ. Con-

sider a suspension

Lρ =
(
B̃ × T

)/
π1B

of a representation ρ : π1B → Homeo(T), where B is a manifold. Then

π1B acts on Lρ as fiber preserving homeomorphisms. Let T ≈ T be a fiber

transversal and let x0, x,∈ T . A π1B-diophantine approximation of x ∈ T

based at x0 is a sequence {gα} ⊂ π1B with gα · x0 → x. The fundamen-

tal germ [[π]]1(L , x0, x) is then the groupoid of tail equivalence classes of

sequences of the form {gα · h
−1
α } where {gα}, {hα} are diophantine approx-

imations of x along x0 [4]. This construction is more generally available for

any lamination occurring as a quotient of a suspension, a double-coset of

a Lie group or a locally-free action of a Lie group on a space, laminations
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2 T. M. GENDRON

which we refer to collectively as algebraic. Intuitively, if L is the leaf con-

taining x0, the elements of [[π]]1(L , x0, x) can be thought of as sequences of

paths in L whose endpoints converge transversally to x. Such a sequence

can be thought of as an ideal loop based at x that records an “asymptotic

identification” within the leaf L.

For a linear foliation Fr of a torus by lines of slope r, the diophantine

analogy is literal and [[π]]1(F , x0, x) is the group of classical diophantine ap-

proximations of r. A manifold B is a supension of the trivial representation

i.e. a lamination with a single leaf and fiber transversals that are points,

which forces x0 = x. Then all sequences in π1B converge, and we find that

[[π]]1(B,x) = ∗π1(B,x) = the nonstandard fundamental group of B.

We now turn to the contents of this article. The algebraic definition

of the fundamental germ just described, while amenable to calculation, has

the following serious drawbacks:

(1) It is available only for the select family of algebraic laminations.

(2) It is an invariant only with respect to the special class of trained

lamination homeomorphisms (cf. [4]).

Addressing these flaws is the central theme of the present study. In the

summary that follows, we shall assume for simplicity that all leaves are

simply connected.

We begin with item (1). Let L be an arbitrary lamination admitting

a smooth structure, let x0, x be as above and denote by L the leaf contain-

ing x0. Equip L with a leaf-wise riemannian metric that has continuous

transverse variation. In this paper, we shall refer to such a lamination as

riemannian. The new idea here is to use the leaf-wise geometry to repre-

sent – as sequences of isometries – the diophantine approximations which

would make up [[π]]1. If L has constant curvature geometry, this prescrip-

tion may be followed word-for-word. Fixing a transversal T containing x0,

x and a continuous section of orthonormal frames f = {fy}, y ∈ T , we

define a diophantine approximation of x to be a sequence {Aα} of isome-

tries of L for which (Aα)∗fx0
belongs to f and converges transversally to

fx. The fundamental germ [[π]]1(L , x0, x, f) is then defined to be the set of

tails of sequences of the form
{
AαB−1

α

}
where {Aα}, {Bα} are diophantine

approximations of x.

In the case of non constant curvature leaf-wise geometry, it is necessary

to work within the category of virtual geometry in order to make sense of

the notion of diophantine approximation. There, a riemannian manifold M
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THE GEOMETRIC THEORY OF THE FUNDAMENTAL GERM 3

is replaced by a union of riemannian manifolds, its virtual extension •M ,

which consists of all sequences in M up to the relation of being asymptotic.

A virtual isometry between riemannian manifolds M and N consists of a

pair of isometric inclusions •M ⇆
•N . All dense leaves of a riemannian

lamination have virtually isometric universal covers, and moreover, a dense

leaf having no ordinary isometries will admit many virtual isometries.

This leads to the following definition of a diophantine approximation:

let x ∈ T , f a frame field on T and let L be any leaf accumulating on x.

Then a sequence fxα
→ fx, {xα} ⊂ L, determines an isometry •f : Lx →

U ⊂ •L, where Lx is the leaf containing x and U is a component of •L.

The fundamental germ [[π]]1(L , L, x, f) is defined to be the set of (maximal

extensions of) maps of the form

•f ◦ •g−1.

In this way, we now have a definition of the fundamental germ valid for any

lamination admitting a smooth structure along the leaves.

In order to address drawback (2), we will need the germ universal cover

[[L̃ ]] ⊂ •L,

defined to be the set of asymptotic classes of sequences in L that converge

to points of L . The germ universal cover plays the role of a unit space for

a groupoid structure on [[π]]1(L , L, x, f). It is a lamination whose leaves are

nowhere dense, and when L is dense, the canonical map [[L̃ ]]→ L is onto.

We may therefore think of [[L̃ ]] as obtained from L by “unwrapping” all

transversal topology implemented by L.

Assume now that L is dense. The mother germ [[π]]1L is defined to be

the groupoid of all partially defined maps of [[L̃ ]] that are homeomorphisms

on domains which are sublaminations of [[L̃ ]] and preserve the projection

[[L̃ ]]→ L . We have in particular that

[[π]]1L \[[L̃ ]] ∼= L .

We shall see that [[π]]1L is the receptacle of all the [[π]]1(L , L′, x, f) for

L′ dense, in that it contains subgroupoids isomorphic to each. The mother

germ is functorial with respect to topological lamination covering maps, and

is therefore, in spite of its riemannian construction, a topological invariant.

This takes care of item (2) above.
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4 T. M. GENDRON

The remainder of the paper is devoted to examples and an application.

Many examples were discussed in [4], and so for this reason we limit our-

selves to laminations which are not algebraic and hence which do not have

a fundamental germ in the sense described there.

The first example we consider is that which we call here the antenna

lamination, a surface lamination discovered by Kenyon and Ghys [6] which

has the distinction of having leaves of both parabolic and hyperbolic type.

With respect to a hyperbolic leaf, the fundamental germ is calculated as a

set to be ∗F2× (∗Z2̂⊕
∗Z2̂) where ∗F2 is the nonstandard free group on two

generators, and ∗Z2̂ is the subgroup of ∗Z isomorphic to the fundamental

germ of the dyadic solenoid. Although a product of groups, this germ is not

a group with respect to its defined multiplication.

The second example is that of the Anosov foliation of the unit tangent

bundle to the modular surface. Although this is just the suspension of the

action of PSL(2, Z) on the boundary of the hyperbolic plane, the definition

of the fundamental germ found in [4] is unavailable since it does not work

for actions with fixed points. We calculate the fundamental germ here as

a set to be PSL(2, ∗Z), but as in the case of the antenna lamination, it is

also not a group with respect to its defined multiplication.

The final result of this paper concerns the use of the fundamental germ

to calculate the mapping class group of the algebraic universal cover Σ̂ of

a closed surface Σ of hyperbolic type. Σ̂ is by definition the inverse limit

of finite covers of Σ, a compact solenoid with dense disk leaves. If L ⊂ Σ̂

is a fixed leaf, the leafed mapping class group MCG(L , L) is the quotient

Homeo+(L , L)/≃, where Homeo+(L , L) denotes the group of orientation-

preserving homeomorphisms fixing set-wise L and ≃ denotes homotopy. If

we denote by Vaut(π1Σ) the group of virtual automorphisms of π1Σ (cf.

Section 10) then

Theorem. There is an isomorphism

Θ : MCG(L , L) −→ Vaut(π1Σ).

This theorem – which is an important ingredient in the genus-indepen-

dent expression of the Ehrenpreis conjecture [5] – was first proved in [8].

We will give a new proof which uses the mother germ and germ covering

space theory.
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§2. Virtual geometry

Virtual geometry is obtained as a quotient of nonstandard geometry,

which we now review: references [7], [9], [10].

Let M be a topological space, U ⊂ 2N an ultrafilter on the natural

numbers all of whose elements have infinite cardinality. The nonstandard

space ∗M is the set of sequences in M modulo U: that is,

(1) {xi} ∼ {yi} if and only if {xi}|X = {yi}|X for some X ∈ U.

Elements of ∗M are denoted ∗x. There is a natural map M →֒ ∗M given

by the constant sequences. Modulo the continuum hypothesis, ∗M is inde-

pendent of the choice of ultrafilter.

There are two topologies on ∗M that naturally suggest themselves.

The enlargement topology is generated by sets of the form ∗O, where O

is open in M . It has the same countability as the topology of M but

is non-Hausdorff. The internal topology is generated by sets of the form

[Oα] = {∗x ∈ ∗M | ∗x is represented by a sequence {xα}, xα ∈ Oα}, where

{Oα} is any sequence of open sets of M . It is Hausdorff but has greater

countability than the topology of M .

If f : M → N is continuous, the nonstandard extension ∗f : ∗M → ∗N –

defined ∗f(∗x) = the equivalence class of {f(xi)} for {xi} any representative

of ∗x – is continuous with respect to the enlargement (internal) topology on
∗M , ∗N .

For example, if we let M = R we obtain the nonstandard reals ∗R, a to-

tally ordered, non-archemidean field. Note that ∗R is an infinite-dimensional

vector space over R. We will refer to the following substructures of the non-

standard reals:

• The subring of bounded nonstandard reals, denoted ∗Rfin, which con-

sists of all classes of sequences that are bounded.

• The additive subgroup of infinitesimals, denoted ∗Rǫ, which consists

of all classes of sequences converging to 0.
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6 T. M. GENDRON

• The cone of positive elements, denoted ∗R+, which consists of all

classes of sequences that are ≥ 0.

Note that ∗Rfin is a local topological ring in either the enlargement

or internal topology, with maximal ideal ∗Rǫ. The quotient ∗Rfin/
∗Rǫ is

isomorphic to R, homeomorphic with the quotient enlargement topology

(the quotient internal topology is discrete). The inclusion R →֒ ∗Rfin allows

us to canonically identify ∗Rfin with the product R×∗Rǫ. Taking the product

of the euclidean topology on R with the discrete topology on ∗Rǫ, we obtain

a third topology on ∗Rfin which is Hausdorff and quotients by ∗Rǫ to the

topology on R. We call this third topology the lamination topology : it may

be extended to ∗R by giving the group ∗R/R the discrete topology and

identifying ∗R ∼= R× (∗R/R).

If M is an n-manifold, then ∗M is a nonstandard manifold modelled

on ∗Rn. If we denote by ∗Mfin the points of ∗M represented by sequences

which converge to points of M , then we may choose an atlas on ∗Mfin whose

transitions preserve the lamination structure of ∗Rn
fin

i.e. ∗Mfin is an n-

lamination. Indeed, if {φ} is an atlas for the manifold structure of M ,

where the φ : U ⊂ M → O ⊂ Rn are assumed to be charts with relatively

compact domains and ranges, then the collection {∗φ} is such an atlas. In

general, ∗M is a union of laminations of dimensions ≤ n, this because of

the possibility of “dimension collapse” which we describe in the proof of

Theorem 1 below.

If d is a metric inducing the topology of M , it extends to a ∗R+-valued

metric ∗d on ∗M . Write ∗x ≃ ∗x′ if ∗d(∗x, ∗x′) ∈ ∗Rǫ.

Definition 1. The virtual extension of M is the quotient

•M = ∗M/≃ ,

equipped with the quotient lamination topology.

The virtual extension of •R of R is called the virtual reals, a totally-

ordered real vector space. The metric ∗d on ∗M induces a •R+-valued metric
•d on •M . Given •x ∈ •M , the set

U•x = {•y | •d(•x, •y) ∈ R}

is a component of •M called the galaxy of •x. Note that M is a galaxy of
•M , and •M is the union of all of its galaxies.
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The galaxies of •M can be quite different from one another. For example

if M is simply connected, then there may be galaxies that are not simply

connected. For example, suppose that M is a noncompact leaf of the Reeb

foliation, equipped with the metric induced from an embedding of the solid

2-torus in R3. Consider a sequence of points {xα} in M converging to a point

x̂ in the compact toral leaf. Let {γα} be a sequence of simple closed curves

containing the sequence {xα} and converging to the meridian through x̂.

Then the limit curve •γ is essential in the galaxy U•x. On the other hand,

if M is a riemannian homogeneous space, then the galaxies of •M are all

isometric to M .

Theorem 1. If M is a complete riemannian manifold of dimension n,

each galaxy U of •M has the structure of a complete riemannian manifold

of dimension m ≤ n.

Proof. Given a galaxy U , •x ∈ U and {xα} a representative sequence,

let m be the largest integer for which there exists a sequence of m-dimen-

sional balls {Dr(xα)} of fixed radius r about {xα}. The integer m is inde-

pendent of the representative sequence and defines an m-ball Dr(
•x) ⊂ U .

The function •x 7→ m is locally constant, thus the collection of such balls

defines on U the structure of a smooth m-manifold. Note that it is possible

to have m < n: for example, if M is a hyperbolic manifold with a cusp,

then for a class of sequence emptying into the cusp, we have m = n− 1.

Consider the nonstandard tangent bundle

T∗M := ∗(TM).

There is a natural projection of T∗M onto ∗M whose fiber T∗x
∗M – the

tangent space at ∗x – consists of classes of sequences of vectors {vα} based

at sequences {xα} belonging to the class of ∗x. It is not difficult to see that

T∗x
∗M is a real infinite-dimensional vector space. The riemannian metric

ρ extends to a ∗R-valued metric ∗ρ on T∗M in the obvious way. Denote by
∗| · | the associated norm. Define the bounded tangent bundle by

Tfin
∗M =

{
∗
v ∈ T∗M

∣∣ ∗|∗v| ∈ ∗Rfin

}
.

Given tangent vectors ∗v and ∗v′ based at ∗x and ∗x′, we write ∗v ≃ ∗v′

if

(1) ∗x ≃ ∗x′.
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(2) the Levi-Civita parallel translate of a representative {vα} of ∗v to a

representative {x′

α} of ∗x′ – along a sequence of geodesics connecting

to a representative {xα} of ∗x – is asymptotic to a representative {v′α}

of ∗v′.

Now define the bounded tangent bundle of •M to be

Tfin
•M = Tfin

∗M/≃ .

The nonstandard riemannian metric ∗ρ on Tfin
∗M descends to a riemannian

metric on Tfin
•M . If U is a galaxy, its tangent space may be identified with

the restriction of Tfin
•M to U . Now any geodesic η ⊂ U can be realized as

a sequence class of geodesics {ηα}. Since each member of such a sequence

can be continued indefinitely, the same is true of η, hence U is complete.

Definition 2. Let M , N be riemannian n-manifolds. A virtual subi-

sometry is an injective map

•f : •M −֒→ •N,

where •f maps each galaxy of •M isometrically onto a galaxy of •N . If in

addition there exists a virtual subisometry •g : •N →֒ •M , then the pair

(•f, •g) is called a virtual isometry.

We write M ≤vir N to indicate the existance of a virtual subisometry
•f and M ∼=vir N indicates the existence of a virtual isometry. The relation

≤vir defines a partial ordering on the set of all riemannian n-manifolds.

An isometry f : M → N clearly induces a virtual isometry (•f, •g) :
•M ⇆

•N with •f , •g inverse to one another. More generally, a continuous

map •f : •M → •N is called standard if it is induced by a map f : M → N

i.e. if for any •x ∈ •M and any representative {xα}, {f(xα)} is a represen-

tative of •f(•x).

Theorem 2. Let L be a dense leaf of a riemannian lamination L .

Then for every leaf L′ ⊂ L ,

L̃′ ≤vir L̃.

Proof. Fix a global metric d on L which agrees locally with the rie-

mannian metric on the leaves. (By this we mean that in sufficiently small
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flow boxes, d agrees with the distance function of ρ in any plaque.) Let

{x̃′

α} ⊂ L̃′ be any sequence, {x′

α} its projection to L′. Let {x̃α} ⊂ L̃ be a

sequence whose projection {xα} to L is d-asymptotic to {x′

α}. By transver-

sal continuity of the metric, we deduce a sequence of Kα-quasiisometries,

Kα → 1,

fα : Dδ(xα) −→ Dδ(x
′

α),

for some δ > 0, where Dδ(x) means the open ρ-ball of radius δ about

x. Then if •x̃, •x̃′ are the virtual classes of {x̃α}, {x̃
′

α}, the sequence of

quasiisometries {fα} induces an isometry Dδ(
•x̃) → Dδ(

•x̃′). Since L is

dense, we may continue these isometries along geodesics to obtain a locally

isometric surjection U → U ′, where U , U ′ are the galaxies containing •x̃,
•x̃′. But since these spaces are simply connected, and the map is isometric,

this surjection is a bijection. Hence it inverts to an isometry U ′ → U .

Repeating this for every •-class of sequence in L̃′, we obtain the desired

virtual subisometry L̃′ ≤vir L̃.

Two riemannian manifolds have the same virtual geometry if their uni-

versal covers are virtually isometric.

Corollary 1. Dense leaves of a riemannian lamination L have the

same virtual geometry.

§3. The fundamental germ

Let L be a riemannian lamination, x a point contained in a transversal

T , L a leaf accumulating at x and Lx the leaf containing x. Let f : T → F∗L

be a continuous section of the leaf-wise orthonormal frame bundle of L

over T . Fix locally isometric universal covers p : L̃→ L and px : L̃x → Lx.

Denote T0 = T ∩ L, T̃0 = p−1(T0) and let f̃ỹ denote the lift of fy to a point

ỹ ∈ T̃0 covering y. We pick a basepoint x̃ ∈ L̃x lying over x with lifted

frame f̃x̃.

Let ỹ ∈ T̃0. For r > 0, the frames f̃x̃, f̃ỹ determine polar coordinates on

the metric disks Dr(x̃), Dr(ỹ). This yields in turn a canonical quasiisometry

f : Dr(x̃) −→ Dr(ỹ)

given by the coordinate maps.

Let {xα} ⊂ T0 be a sequence converging to x, {x̃α} ⊂ T̃0 any sequence

covering {xα}. Then the frame sequence {f̃x̃α
} and the frame f̃x̃ determine
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a sequence of Kα-quasiisometries

{
fα : Drα

(x̃) −→ Drα
(x̃α)

}
.

Since L accumulates at x, we may choose the sequence of radii rα →∞ so

that Kα → 1. We deduce an isometry

•f : L̃x −→ U ⊂ •L̃

where U is the galaxy containing •x̃. The map •f is called an f-diophantine

approximation of x along L.

Definition 3. The fundamental germ of L , based at x along L and

f, is

[[π]]1(L , L, x, f) =
{

•f ◦ •g−1
∣∣ •f , •g are f-diophantine approximations

of x along L
}
.

If x ∈ L, we shorten the notation to [[π]]1(L , x, f). The groupoid struc-

ture of [[π]]1(L , L, x, f) will be described in the next section.

Note 1. Suppose that L is a constant curvature riemannian foliation

with dense leaf L modeled on the space form Mn = Rn or Hn. Then

the frame field actually determines a sequence of uniquely defined global

isometries {fα : Mn → Mn}. Given G a group, nonstandard G is the

group ∗G of all sequences {gα} ⊂ G modulo the relation ∼ described in

(1). Then an f-diophantine approximation is completely determined by the

class ∗f ∈ ∗ Isom(Mn) of {fα}. We note that ∗ Isom(Mn) is a subgroup of

Isom(•Mn) (the group of isometries of •Mn, not virtual isometries). Thus,

if Γ ∼= π1L is the deck group of Mn → L, we have

∗Γ ⊂ [[π]]1(L , L, x, f) ⊂ ∗
Isom(Mn).

The terminology f-diophantine approximation comes from the following

example.

Example 1. Let L be the irrational foliation of the torus T2 by lines

of slope r ∈ R \ Q. Define a representation ρ : Z ∼= π1S1 → Homeo(S1)

by ρn(ȳ) = y − nr, where ȳ denotes the image of y ∈ R in S1 = R/Z.

Then the suspension of ρ, Lρ = (R × S1)/Z, is homeomorphic to L . The
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map R × S1 → S1 defined by (x, ȳ) 7→ x̄ (i.e. the projection onto the first

factor composed with the universal covering R → S1) induces a projection

Lρ → S1. Let T ≈ S1 be a fiber of this projection passing through x. A

frame section f along T is determined by an orientation of L . In this case,

an f-diophantine approximation of x is just a diophantine approximation of

r. (Recall that a sequence {nα} ⊂ Z is called a diophantine approximation

of r ∈ R if {rnα} converges to 0̄ ∈ S1.) Thus if one denotes by ∗Zr the

subgroup of ∗Z consisting of classes of diophantine approximations of r, we

obtain in agreement with the construction in [4, §4.4]:

[[π]]1(L , L, x, f) = ∗Zr.

(Note: ∗Zr is an ideal if and only if r is rational.) If another frame field f ′ is

used whose domain is a transversal T ′ which is not a suspension fiber, the

set of diophantine approximations is a subset ∗Rr ⊂
∗R. This subset maps

injectively into •R with image •Zr = ∗Zr.

Example 2. Consider a nested set of Fuchsian groups G = {Γi} and

let

Σ̂G = lim
←−

H2/Γi,

be the associated hyperbolic surface solenoid. We may take T to be a fiber

p̂−1(x0) of the projection p̂ : Σ̂G → Σ0, where Σ0 = H2/Γ0 is the initial

surface. Then a frame at x0 pulls back to a frame section f along T . In this

case, we find that Definition 3 again agrees with the definition found in [4]:

[[π]]1(Σ̂G , L, x, f) =
⋂

∗Γi

=
{
{gα} ⊂ Γ0

∣∣ for all i, ∃Ni such that gα ∈ Γi when α > Ni

}/
∼ ,

a subgroup of ∗PSL(2, R) ∼= PSL(2, ∗R). If f ′ is another frame field, not

necessarily with a fiber transversal domain, then the corresponding germ

[[π]]1(Σ̂G , L, x, f ′) need not define a subgroup of PSL(2, ∗R) and particularly,

need not be isomorphic to
⋂

∗Γi (although the fundamental germs calculated

with respect to f and f ′ are in canonical bijection). The issue here is the

non-uniform nature of the action of PSL(2, R) on H2. This problem will

become moot through the replacement of the fundamental germ by the

mother germ, Section 6.

Example 3. More generally, let L be any hyperbolic surface lamina-

tion. Then the fundamental germ [[π]]1(L , L, x, f) is a subset of PSL(2, ∗R).

Equally, if L is a hyperbolic 3-lamination, [[π]]1(L , L, x, f) ⊂ PSL(2, ∗C).
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§4. The germ universal cover

Let L ⊂ L be a fixed leaf. Denote by p : L̃ → L the universal cover.

We recall the following definition [4]:

Definition 4. The germ universal cover of L along L is the subspace

[[L̃ ]] ⊂ •L̃ defined by

[[L̃ ]] =
{
{x̃α} ⊂ L̃

∣∣ {p(x̃α)} converges in L
}/
≃ .

We will denote elements of the germ universal cover by •x̃. There is a

natural projection

•p : [[L̃ ]] −→ L
•x̃ 7−→ x̂ = lim p(x̃α),

where {x̃α} is a representative sequence in the class •x̃. We will write

lim •x̃ = x̂ if •p(•x̃) = x̂. Note that •p is surjective if and only if L is dense

and in general •p maps onto the closure L of L, itself a sublamination of L .

Proposition 1. [[L̃ ]] consists of a union of galaxies of •L̃.

Proof. Let •x̃ ∈ [[L̃ ]] and denote by U the galaxy containing •x̃. If
•ỹ ∈ U , then there exists a sequence of geodesic paths {η̃α} connecting

representatives {x̃α} to {ỹα} in L̃, whose projection to L gives a convergent

sequence of paths {ηα}. It follows that the projection {p(ỹα)} converges,

and •ỹ ∈ [[L̃ ]] as well.

The galaxies that make up [[L̃ ]] will be referred to as leaves. See The-

orem 12 in [4] for a proof of the following

Theorem 3. [[L̃ ]] may be given the structure of a lamination whose

leaves are nowhere dense and such that the map •p : [[L̃ ]] → L is an open

surjection.

One can thus think of [[L̃ ]] as a the result of unwrapping all of the

diophantine approximations implied by L. The topology that [[L̃ ]] obtains

from its lamination atlas is not unique, and is called a germ universal cover

topology. It is in general coarser than the topology [[L̃ ]] induces from •L̃.

Proposition 2. If L is compact then [[L̃ ]] = •L̃.
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Proof. This follows from well-known compactness arguments e.g. see

the proof of Proposition 14 in [4].

An element •u = •f ◦ •g−1 ∈ [[π]]1(L , L, x, f) arises as the limit of a

sequence of Kα-quasiisometries

(2)
{
uα : Drα

(x̃α) −→ Drα
(ỹα)

}
,

where {x̃α}, {ỹα} ⊂ L, Kα → 1 and rα → ∞. The limit •u : V → U

is independent of the sequence {uα} and depends only on the sequences

of frames {fxα
}, {fyα

}. In particular, we could have obtained •u through

the same sequence of quasiisometries with domains extended to a sequence

of larger disks Dsα
(x̃α), sα > rα – provided that the new quasiisometry

constants converge to 1 as well.

Now for arbitrary •x̃ ∈ [[L̃ ]], the expression •u(•x) does not even make

formal sense, since •u is so far only defined on the galaxy V . We contrast

this with the constant curvature case, where, because [[π]]1(L , x, L, f) ⊂

Isom(•M), •u(•x̃) is always formally defined, although it need not define an

element of [[L̃ ]].

Let us say that •u is formally defined on an element •w̃ ∈ [[L̃ ]] if there

exists a sequence (2) giving rise to •u and a representative sequence {w̃α}

of •w̃ such that

Dr′
α

(wα) ⊂ Drα
(x̃α)

for all α, where r′α →∞. It follows then that if V ′ is the galaxy containing
•w̃, then the limit •u is defined on V ′ as well. Whenever we write •u(•w),

it will tacitly be understood that •u is formally defined at •w.

Define the domain of •u as

Dom(•u) =
{

•x̃ ∈ [[L̃ ]]
∣∣ •u(•x̃) ∈ [[L̃ ]] and lim •u(•x̃) = lim •x̃

}
,

and Ran(•u) = •u(Dom(•u)). With this definition, it follows that

[[π]]1(L , L, x, f) has the structure of a groupoid. Note that for any •u ∈

[[π]]1(L , L, x, f), Dom(•u), Ran(•u) are unions of leaves and hence induce

lamination structures from [[L̃ ]]. Moreover, on Dom(•u),

(3) •p ◦ •u = •p.

In particular we see that •u : Dom(•u) → Ran(•u) defines a lamination

homeomorphism.
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14 T. M. GENDRON

Example 4. Let L be the irrational foliation of T2 by lines of slope

r, L ≈ R any dense leaf. Then by Proposition 2, [[L̃ ]] = •R. Moreover,

for any frame field f and •u ∈ [[π]]1(L , L, x, f), it is not difficult to see that

Dom(•u) = •R. Thus, [[π]]1(L , L, x, f) is a group isomorphic to ∗Zr.

Example 5. Let L be the profinite hyperbolic surface solenoid Σ̂G of

Example 2. Then we have, again by compactness,

[[L̃ ]] = •H2.

If f is a frame field lifted from a frame on a surface occurring in the defining

inverse limit, then [[π]]1(L , L, x, f) is a group. On the other hand, if f is

a frame field not obtained in this way, then [[π]]1(L , L, x, f) need not be a

group e.g. see Section 5.

The proof of the following theorem is identical to that of Proposition 16

in [4].

Theorem 4. Let F : (L , L) → (L ′, L′) be a lamination map. Then

there exist germ universal cover topologies so that the map

[[F̃ ]] : [[L̃ ]] −→ [[L̃ ′ ]]

induced by {x̃α} 7→ {F̃ (x̃α)} is a continuous lamination map.

Note 2. It is useful here to point out that for a lamination Lρ = (B̃×

F)/π1B occurring as a suspension of a representation ρ : π1B → Homeo(F),

it is in general false that a lamination homeomorphism F : Lρ → Lρ lifts

to a homeomorphism of the “universal covering space” B̃ × F.

Now suppose that L′ is another leaf of L . Denote by [[L̃ ]]′ the germ

universal cover formed from L′.

Proposition 3. If L′ accumulates on L then there is a virtual subi-

sometry •L̃→ •L̃′ restricting to a virtual subisometry

[[L̃ ]] −→ [[L̃ ]]′

which is a homeomorphism onto its image with respect to appropriate germ

universal cover topologies.

Proof. This follows directly from the proof of Theorem 2.
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§5. Sensitivity to changes in data

In this section we shall examine the dependence of the fundamental

germ on the base point x, the accumulating leaf L and the frame field f.

Change in base point and accumulating leaf: Let us fix for the

moment the dense leaf L and consider a change of base point x 7→ x′ in

which Lx = Lx′ . Let η be a geodesic connecting x to x′ in Lx. The tangent

vector v to η at x has coordinate (a1, . . . , an) with respect to the frame

fx. At each y ∈ T = the domain of f, this coordinate determines a vector

vy using the frame fy. We obtain in this way a transversally continuous

family of geodesics {ηy}y∈T . Restricting to an open subtransversal of T if

necessary, we may parallel translate f along the geodesic family to obtain a

frame field f ′ with domain T ′ ∋ x′. The following is then immediate from

the definition of the fundamental germ.

Proposition 4. Let x′, f ′ be as in the preceding paragraph. Then

[[π]]1(L , L, x, f) = [[π]]1(L , L, x′, f ′).

If we consider a change of base point x 7→ x′, in which Lx 6= Lx′ ,

the situation becomes considerably more subtle. In fact, we shall see in

Section 7 that fundamental germs based at points on different leaves can be

nonisomorphic. For similar reasons, a change in accumulating leaf L may

yield nonisomorphic fundamental germs.

Change in frame field: Let us now fix the base point x and consider

a new frame field f ′ : T ′ → F∗L based at x. For simplicity, we again assume

that π1L = 1. Since T (the domain of f) and T ′ each contain subtransversal

neighborhoods of x lying in a common flow box, it is clear that there is a

natural bijection

[[π]]1(L , L, x, f)←→ [[π]]1(L , L, x, f ′).

The issue is then the law of composition. We will show that this map need

not be an isomorphism.

Let us consider the inverse limit solenoid Σ̂G of Example 2. Assume that

L = Lx, T = T ′ = a fiber over a point x0 ∈ Σ0 and that fx = f ′x. We will

take f to be simply the lift of a frame based at x0, so that f-diophantine ap-

proximations consist of sequences {γα} ⊂ Γ0 converging with respect to the

family {Γi}. It follows that every f ′-diophantine approximation of x may be
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16 T. M. GENDRON

written in the form {γαΘα}, where {Θα} consists of a sequence of rotations

based at x with angle going to 0 and {γα} is an f-diophantine approximation.

General elements of [[π]]1(L , L, x, f ′) are then of the form {γαΘαηα}, where

{ηα} is another f-diophantine approximation. We should not expect prod-

ucts of elements of this type to yield elements of [[π]]1(L , L, x, f ′). Indeed,

such a product would have the shape

(4) {γαΘαηα∆αωα},

for {∆α} another sequence of rotations based at x with angle going to 0

and {ωα} another f-diophantine approximation. If Θα does not converge

to the identity fast enough, Θαηα∆αωα applied to f ′x will not project to a

frame based at x0 ∈ Σ0. Hence the expression (4) is not even asymptotic to

an element of [[π]]1(L , L, x, f ′). It is not difficult to see that unless f ′ is the

pull-back of a frame on Σ0, this sort of problem always arises.

§6. The mother germ

In this section, we assume that L has a dense leaf L, with which we

define the germ universal cover [[L̃ ]], equipped with a fixed germ universal

cover topology.

While the fundamental germ [[π]]1(L , L, x, f) enjoys the property of be-

ing reasonably calculable and leaf specific, it can be sensitive to data vari-

ation. There are additional shortcomings:

• By (3), the action of the fundamental germ [[π]]1(L , L, x, f) on [[L̃ ]]

respects the germ covering •p. However it need not be the case that

every identification implied by •p is implemented by an element of

[[π]]1(L , L, x, f).

• There will be in general other maps of leaves of [[L̃ ]] that satisfy (3)

but do not appear in [[π]]1(L , L, x, f).

• It appears that [[π]]1(L , L, x, f) such as it is defined, will be functorial

only under certain types of lamination maps e.g. see Section 8 of [4].

For this reason, we will expand [[π]]1(L , L, x, f) to a larger groupoid, called

the mother germ. The mother germ will be the maximal amplification of

[[π]]1(L , L, x, f) which contains all partially defined maps of sublaminations

of [[L̃ ]] satisfying (3): in other words, it is the full deck groupoid of •p.

Let Dom, Ran be sublaminations of [[L̃ ]]. A homeomorphism

•u : Dom −→ Ran ⊂ [[L̃ ]]
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satisfying (3) is called deck. Note that condition (3) implies that a deck

homeomorphism •u is automatically an isometry along the leaves of Dom.

Definition 5. The mother germ is the groupoid

[[π]]1(L ) =
{

•u : Dom→ Ran is a deck homeomorphism
}
.

The mother germ will never be a group, since it distinguishes deck maps

obtained from others by restriction of domain. In general, however, it will

contain many interesting and calculable subgroups and subgroupoids, as the

following shows.

Proposition 5. Let L′ be any dense leaf of L . Then there is an

injective groupoid homomorphism

[[π]]1(L , L′, x, f) −֒→ [[π]]1(L ).

Proof. By Proposition 3, there exists an isometric inclusion •f :

[[L̃ ]]′ →֒ [[L̃ ]]. If •u ∈ [[π]]1(L , L′, x, f), then the map

•u 7−→ •f ◦ •u ◦ •f−1

defines an injective groupoid homomorphism.

Theorem 5. The quotient

[[π]]1(L )\[[L̃ ]],

equipped with the quotient germ universal cover topology, has the structure

of a riemannian lamination canonically isometric to L .

Proof. Let •x̃, •ỹ ∈ [[L̃ ]] be such that lim •x̃ = lim •ỹ = x. Thus

each point is represented by sequences in L̃ that project to sequences {xα},

{yα} ⊂ L having a common limit x. Let f be a frame field along a transversal

T containing x and which we may assume contains {xα} and {yα}. Then

if •f , •g are the diophantine approximations associated to {xα}, {yα} we

have •u = •g ◦ •f−1 ∈ [[π]]1(L , L, x, f) identifies •x̃ with •ỹ. Since this

latter groupoid belongs to the mother germ by Proposition 5, it follows

that [[π]]1(L )\[[L̃ ]] contains all of the identifications implied by •p and so

may be identified with L with its quotient topology.
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18 T. M. GENDRON

Let L , L ′ be riemannian laminations with dense leaves L, L′. A map

[[F̃ ]] : [[L̃ ]] → [[L̃ ′]] is called standard if it is induced by F : L̃ → L̃′

(e.g. compare with the definition found in Section 2). In addition, [[F̃ ]] is

called [[π]]1(L )-equivariant if there exists a groupoid homomorphism [[F ]]∗ :

[[π]]1(L )→ [[π]]1(L
′) such that

[[F̃ ]](•u · •x̃) = [[F ]]∗(
•u) · [[F̃ ]](•x̃)

for all •u ∈ [[π]]1(L ) and •x̃ ∈ Dom(•u).

Theorem 6. Let [[F̃ ]] : [[L̃ ]]→ [[L̃ ′]] be a standard, [[π]]1(L )-equivari-

ant map. Then [[F̃ ]] covers a unique map F : L → L ′.

Proof. By equivariance, the expression

F = •p′ ◦ [[F̃ ]] ◦ •p−1

yields a well-defined function F : L → L ′, continuous because •p, •p′ are

open maps and [[F̃ ]] is continuous.

In [4], functoriality of the fundamental germ was demonstrated only

with respect to the restricted class of trained lamination maps. The follow-

ing theorem shows that the mother germ is considerably more flexable. A

lamination covering map is a surjective lamination map which is a covering

map when restricted to any leaf.

Theorem 7. Let F : L → L ′ be a lamination covering map. Then F

induces an injective homomorphism of mother germs

[[F ]]∗ : [[π]]1(L ) −֒→ [[π]]1(L
′).

Proof. Let L ⊂ L be a dense leaf and let F̃ : L̃ → L̃′ be the leaf

universal cover lift. Then by Theorem 4, F̃ induces a standard map

[[F̃ ]] : [[L̃ ]] −→ [[L̃ ′ ]].

We note that since F̃ is injective, [[F̃ ]] is a homeomorphism onto its image

lamination. Let •u ∈ [[π]]1(L ). Then the map

[[F ]]∗(
•u) := [[F̃ ]] ◦ •u ◦ [[F̃ ]]−1,
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defined on [[F̃ ]](Dom(•u)), is deck for the germ universal covering •p′. Indeed

•p′ ◦
(
[[F̃ ]] ◦ •u ◦ [[F̃ ]]−1

)
= F ◦ (•p ◦ •u) ◦ [[F̃ ]]−1

= F ◦ •p ◦ [[F̃ ]]−1

= •p′.

Thus the map [[F ]]∗ is an injective groupoid homomorphism, and we are

done.

We have the following

Corollary 2. The mother germ [[π]]1(L ) is independent of leaf-wise

riemannian metric and smooth structure. In particular, [[π]]1(L ) is a topo-

logical invariant.

§7. The antenna lamination

In this section, we will calculate the fundamental germ of the antenna

Riemann surface lamination of Kenyon and Ghys [6]: it is distinguished by

the unusual property of having dense leaves of both planar and hyperbolic

conformal type.

We begin by constructing a graphical model of a dense leaf of the an-

tenna lamination. Let T1 be the cross with vertices V1 =
{
(0, 0), (±1, 0),

(0,±2)
}

and edges consisting of the line segments connecting (0, 0) to each

of the other four vertices. Suppose that we have constructed Tn meeting

the x-axis in the interval [−2n + 1, 2n − 1] × {0} and meeting the y-axis

in the interval {0} × [−2n, 2n]. Translate Tn vertically so that the origin

is taken to (0, 2n) and consider the images of this translate by rotations of

the plane – about the origin – of angles 0, ±π/2, π. The union of these

images forms a tree; Tn+1 is then obtained by replacing the extremal edges

[2n+1−2, 2n+1]×{0} and [−2n+1,−2n+1+2]×{0} by [2n+1−2, 2n+1−1]×{0}

and [−2n+1 + 1,−2n+1 + 2] × {0}. It follows that T1 ⊂ T2 ⊂ · · · : we then

define

T∞ = lim
−→

Tn.

See Figure 1.

Given n ∈ Z, let ord2(n) be the 2-adic order: the largest nonnegative

integer r for which 2r divides n. Then the vertex set of T∞ is

V∞ =
{
(0, 0)

}
∪
{
v = (x, y) ∈ Z⊕ Z

∣∣ ord2(x) 6= ord2(y)
}
.
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T
T2

1

T3

...

Figure 1: The Antenna Tree

We may view V∞ as a groupoid through its action on itself by addition. In

order to avoid confusion, we write v ◦ w to indicate groupoid composition,

in order to distinguish it from the element v + w ∈ Z⊕ Z.

Proposition 6. For all v,w ∈ V∞, the composition v ◦w is defined if

and only if v = −w.

Proof. Let v,w ∈ V∞. We show that Ran(w) = Dom(v) if and only if

v = −w. Suppose v 6= −w. Then we may write

v + w =

(
M∑

α=m

aα2α,

N∑

α=n

bα2α

)

where m, n are the first non-zero indices of the 2-adic expansions of the

coordinates. If v ◦ w is defined, then since 0 ∈ Dom(w), we must have

v + w ∈ V∞. In particular, at least one of m or n is nonzero. Suppose it is

n; we may assume without loss of generality that m < n. Write

w =

(
R∑

α=r

cα2α,
S∑

α=s

dα2α

)
.

Let x = (0, 2m). If r < m, then x ∈ Dom(w) but v + w + x 6∈ V∞ i.e.

Ran(w) 6= Dom(v). This is also true when r ≥ m except for two cases. If

r > m and s = m, w + x is not defined presisely when 1 = ds = · · · = dr−1

and dr = 0. Here we take x′ = (2r, 2m) ∈ Dom(w) and note that v+w+x′ 6∈
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V∞. If r = m and s > m, then w + x is not defined. In this case, it follows

from the form of v + w that if v = (v1, v2) then ord2(v1) > m, so that

x ∈ Dom(v). On the other hand, x−w /∈ Dom(w). Thus Ran(w) 6= Dom(v)

here as well.

The lines x = ±y intersect T∞ at the origin only. Each of the four

components of T∞ \ {(0, 0)} defines an end, one contained in each of the

four components of R2 \ {(x,±x) | x ∈ R}. Equipped with the path metric

induced from R2, T∞ has exactly four orientation preserving isometries,

corresponding to the rotations about the origin of angles 0, ±π/2, π (since

ends must be taken to ends). On the other hand, T∞ has many partially

defined isometries. For example, for v ∈ V∞, let Iv be the map of Z ⊕ Z

defined

Iv(x, y) = v + (x, y).

Then there is a maximal subtree T v
∞
⊂ T∞ (not necessarily connected)

for which Iv(T
v
∞

) ⊂ T∞. By definition, Iv is isometric on its domain of

definition. If v has coordinates of large 2-adic order, then Iv is defined on a

large ball about 0 in T∞. More precisely, if v = (x, y) and ord2(x), ord2(y) ≥

n then Tn ⊂ T v
∞

. Although the inverse I−1
v = I−v is always defined at 0,

the composition Iv1
◦ Iv2

= Iv1+v2
will not be defined at 0 if v1 + v2 /∈ V∞.

We now define a riemannian surface modelled on T∞, which will occur

as a dense leaf of the antenna lamination. Regarding T∞ ⊂ R2 × {0} ⊂ R3,

it is clear that

S∞ = boundary of a tubular neighborhood of T∞

is homeomorphic to a sphere with four punctures. We want to fix a par-

ticular realization of S∞ so that the partial isometries Iv of T∞ will induce

partial isometries of S∞. Torward this end, consider the surfaces shown in

Figure 2.

We assume that they are equipped with riemannian metrics and bound-

ary parametrizations so that given any pair of such surfaces and a choice

of boundary component of each, the glueings are canonical and isometric.

Each riemannian surface corresponds to a subgraph of T∞, and we may

build S∞ from these riemannian surfaces using T∞ as a template. The met-

rics on the building blocks will also be chosen so that when S∞ is assembled

within R3 it is invariant not only with respect to π/2-rotations about the

z-axis, but also π-rotations about the x and y-axes. We think of T∞ as
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4 holed sphere cylinder disk

Figure 2: Building Blocks

a spine floating inside the tubular neighborhood bounded by S∞, and we

project in the positive vertical direction a copy of T∞ onto S∞. We denote

this copy also by T∞, and use the symbols 0 and v to denote the origin and

a generic element of its vertex set as well. Having constructed S∞ in this

way, it is clear that every Iv induces a partial isometry of S∞ whose domain

is the subsurface (with boundary) of S∞ modelled on T v
∞

. We denote this

partial isometry Iv as well.

Let S+
∞

be the intersection of S∞ with the half plane z ≥ 0. The

universal cover S̃∞ of S∞ is built up from “tiles” modelled on S+
∞

, glued

together side by side according to the same pattern one uses to glue ideal

quadrilaterals to obtain the hyperbolic plane as the universal cover of the

four times punctured sphere. Fix 0̃ ∈ S̃∞ a base point lying over 0. The

deck group of the universal covering map is F3, the free group on three

generators.

Let w0 be the unit vector based at 0 which is parallel to the x-axis and

points in the positive direction. Consider the vector field W on the vertices

of T∞ obtained by parallel translating w0 along T∞. Note that the partial

isometry of S∞ induced by Iv, v ∈ V∞, takes w0 to wv = W(v). This is not

true of the rotations by angles ±π/2 and π.

Let D0̃ ⊂ S̃∞ be the fundamental domain containing 0̃. We lift T∞ to

D0̃, then translate it by F3 to obtain a (disconnected) graph T̃∞ on S̃∞. Let

W̃ be the vector field defined on the vertices of T̃∞ that is the lift of W. The

partial isometry Iv lifts to a partial isometry of S̃∞ which maps a region

of each fundamental domain D into D: we denote this privileged lift by Iv
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as well, and the set of such privileged lifts is denoted I. In addition, by

composing with elements of F3, we obtain new partial isometries covering

Iv : S∞ → S∞. We denote by Ĩ the set of partial isometries of S̃∞ obtained

in this way. Then F3, I ⊂ Ĩ, and every element of F3 commutes with every

element of I.

We are now ready to describe the antenna lamination. Consider first

the space A of all trees in R2 whose vertex set contains the origin 0 and lies

within Z ⊕ Z. Each tree T ∈ A is equipped with the path metric induced

from R2. On A, we consider the metric

d(T, T ′) = exp(−n),

where n is the largest integer such that the ball of radius n about 0 in

T coincides with that about 0 in T ′. A is a compact metric space, [6].

Two graphs T and T ′ are termed equivalent if there exists a translation by

(x, y) ∈ Z⊕ Z such that T + (x, y) = T ′.

Now for any tree T ∈ A, the ball of radius 1 about 0 is a tree P ∈ A all

of whose vertices lie in the set {(0, 0)} ∪ {(±1,±1)}. We write |P | ≤ 4 for

the number of vertices v of P different from 0. There are 16 possible such

P , and we may decompose A into a disjoint union of clopens AP , where AP

consists of those trees whose unit ball about 0 is P .

For each P , we consider in the spirit of Figure 2 a model pointed Rie-

mann surface (ΣP , zP ) homeomorphic to S2\(|P | open disks). We assume as

before that each boundary component ∂vΣP – labeled by a vertex v 6= (0, 0)

of P – has a fixed parametrization, so that any two may be identified along

their boundaries without ambiguity. Define

L =
(⋃

(AP ×ΣP )
)/

gluing,

where the gluing is performed as follows. Given T ∈ AP , v ∈ P , the

translate T + v is in AP ′ for some P ′, where −v ∈ P ′. We then glue the

boundaries ∂vΣP and ∂−vΣP ′ . These gluings are compatible with the trivial

lamination structures on the AP × ΣP and thus L has the structure of a

riemannian surface lamination. Note that there is an embedding A →֒ L

induced by AP × {zP } →֒ AP × ΣP .

Each leaf L ⊂ L corresponds to an equivalence class of graph T ∈ A,

embedded in L as a spine. Note that S∞ is the leaf corresponding to the

class of T∞. Define the antenna lamination L∞ to be the closure of S∞ in

L .
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Denote by Sn ⊂ S∞ the surface (with boundary) modelled on the sub-

graph Tn ⊂ T∞. If centered at a vertex v ∈ V∞ there is a subgraph isometric

to Tn, it models a subsurface Sn(v) containing v, and the isometry Iv maps

Sn to Sn(v).

The closure of V∞ in L∞ defines a transversal T through 0 ∈ S∞, and

the vector field W is transversally continuous with respect to the topology

of T. A point v ∈ V∞ is transversally close to 0 if and only if its coordinates

have large 2-adic order.

We are now ready to calculate the fundamental germ

[[π]]1(L∞, 0, f),

where f is the orthonormal frame field determined by W.

Define nested sets

G̃ = {G̃n} ⊂ Ĩ and G = {Gn} ⊂ I,

n = 0, 1, 2, . . . , as follows. We say that Ĩ ∈ Ĩ is n-close if the domain of

Ĩ contains the finite tree T̃n ⊂ T̃∞ ∩ D0̃ corresponding to Tn, and maps it

into the fundamental domain containing Ĩ(0̃). Then G̃n consists of the set

of n-close maps and Gn the n-close maps in I. Observe that

F3 =
⋂

G̃n.

For I ∈ Gn, I−1 ∈ Gn also. Moreover, if I ′ ∈ Gm and the composition

I ◦ I ′ is defined at 0̃, then it belongs to GN , for N = min(m,n).

Let

[[G]] =
{{

Ivα
◦ I−1

v′
α

}
=
{
Ivα−v′

α

} ∣∣∣
{
Ivα

}
,
{
Iv′

α

}
⊂ I and converge w.r.t. G

}/
∼ ,

where the relation ∼ is defined by an ultrafilter U as in (1). We denote the

elements of [[G]] by I∗v where ∗v ∈ ∗Z ⊕ ∗Z, and regard [[G]] as a groupoid

with unit space [[L̃∞ ]], in which the domains of elements are taken to be

maximal in the sense defined in Section 4.

Proposition 7. As a set, [[G]] may be identified with ∗Z2̂⊕
∗Z2̂, where

∗Z2̂ =
{
{nα} ⊂ Z

∣∣ ord2(nα)→∞ as α→∞
}/
∼ .

Given ∗v, ∗w ∈ ∗Z2̂ ⊕
∗Z2̂, the composition I∗v ◦ I∗w is defined if and only if

∗v = −∗w.
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Proof. Any element (∗n1,
∗n2) ∈

∗Z2̂ ⊕
∗Z2̂ may be written (∗n1, 0) −

(0,−∗n2) which clearly defines an element of [[G]]. Now consider ∗v, ∗w ∈
∗Z2̂ ⊕

∗Z2̂, and suppose that ∗v 6= −∗w. The 2-adic order extends to

ord2 : ∗Z2̂ −→
∗Z∞ = (∗Z \ Z) ∪ {0}.

Let ∗V∞ ⊂ ∗Z2̂ ⊕
∗Z2̂ be the subset of pairs ∗u = (∗u1,

∗u2) for which

ord2(
∗u1) 6= ord2(

∗u2). We distinguish four cases depending on whether
∗v, ∗w ∈ ∗V∞ or not. If ∗v, ∗w ∈ ∗V∞ then we may regard each as a class of

sequences {vα}, {wα} ⊂ V∞. If {mα}, {nα}, {rα}, {sα} are the sequences

of indices occurring as in Proposition 6, then their classes ∗m, ∗n, ∗r, ∗s are

totally ordered in ∗Z, hence we may assume the representative sequences are.

In particular, we may proceed with the same argument as in Proposition 6:

the sequences {xα}, {x
′

α} define elements of [[L̃∞ ]] which may be used to

show that the composition I∗v ◦ I∗w is not defined. Now suppose that ∗v /∈
∗V∞ but ∗w ∈ ∗V∞. This means that both components of ∗v have the same

order denoted ord2(
∗v). Then there exists ∗x ∈ ∗V∞ such that ∗w+∗x ∈ ∗V∞

in which the two components of ∗w + ∗x have order greater than ord2(
∗v).

Then both components of ∗v + ∗w + ∗x have equal order, which implies

that I∗v ◦ I∗w is not defined. The case where ∗v ∈ ∗V∞ but ∗w /∈ ∗V∞ is

handled similarly. Now suppose ∗v, ∗w /∈ ∗V∞. Here there are two subcases.

First suppose that the orders of the components of ∗v, ∗w are not equal.

Denote by ord2(
∗v), ord2(

∗w) the common order of the components of ∗v,
∗w. Then if say ord2(

∗v) < ord2(
∗w), we define ∗x = (0, ∗w2) where ∗w2 is

the second component of ∗w. Then I∗w(∗x) is defined but I∗v+∗w(∗x) is not.

If ord2(
∗v) > ord2(

∗w) then I∗v is defined on ∗y = (0, ∗v2) but ∗y − ∗w does

not define an element of Dom(I∗w) since it does not converge to the same

point in [[L̃∞ ]] as ∗y. What remains is the case when ord2(
∗v) = ord2(

∗w).

If ∗v + ∗w lies in ∗V∞ then ∗w ∈ Dom(I∗v) but not in Ran(I∗w). Otherwise,

if the norms of the components of ∗v + ∗w are equal, then ord2(
∗v + ∗w) >

ord2(
∗v) = ord2(

∗w). If we let ∗x = ((∗v + ∗w)1, 0) then ∗x ∈ Dom(I∗v+∗w)

but not in Dom(I∗w) so it cannot be that I∗v ◦ I∗w = I∗v+∗w.

Theorem 8. As a set

[[π]]1(L∞, 0, f) = ∗F3 × [[G]].

The composition •u ◦ •v, where •v = (∗x, I∗v),
•w = (∗y, I∗w) is defined if

and only if ∗v = −∗w.

https://doi.org/10.1017/S0027763000009545 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009545


26 T. M. GENDRON

Proof. Every element Ĩ may be written in the form Iv ◦ γ = γ ◦ Iv

for v ∈ V∞ and γ ∈ F3. Moreover, if Ĩ ∈ G̃n, then I ∈ Gn. The second

statement follows immediately from Proposition 7.

Thus, although ∗F3 × [[G]] is formally a group, [[π]]1(L∞, 0, f) is not

a group with respect to the groupoid structure defined by its action on

[[L̃∞ ]]. It has nevertheless a distinguished subgroup isomorphic to ∗F3. On

the other hand,

Theorem 9. Any two elements •v and •w of [[π]]1(L∞, 0, f) define

composable elements of the mother germ [[π]]1(L∞) by restriction of do-

mains.

Proof. Let I∗v, I∗w be the [[G]]-coordinates of •v, •w. If ∗v, ∗w and
∗v + ∗w belong to ∗V∞ then by restricting •w to the leaf S∞ and restricting
•v to the leaf of [[L̃∞ ]] containing •w, we obtain composable elements of

[[π]]1(L∞). The other cases are handled similarly and are left to the reader.

The lamination L∞ has the following property: every leaf L 6= S∞

is conformal to either C or C∗ = C \ {(0, 0)}, [6]. Hence L∞ is neither

a suspension nor a locally free action of a Lie group. In particular, the

antenna lamination is beyond the purview of the definition of [[π]]1 found in

[4].

Given any leaf L of L∞, one can obtain a graphical model T of L

as a limit of a sequence of translations of T∞. One can then repeat the

discussion leading up to Theorem 8 for L. The proof of the following is left

to the reader.

Theorem 10. Let L ⊂ L∞ be any leaf, modelled as above on a graph

T ∈ A with vertex set V . Then for v ∈ V and f constructed using a vector

field as above, [[π]]1(L∞, v, f) may be identified with

∗π1L× [[G]],

where ∗π1L × {0} is a subgroup with respect to the groupoid structure that

is ∼= 1 or ∗Z.

Corollary 3. Let v ∈ V∞ ⊂ S∞ and v′ ∈ V ′ ⊂ L′ 6= S∞. Then

choosing frame fields as above, the fundamental germs [[π]]1(L∞, v, f) and

[[π]]1(L∞, v′, f ′) are not isomorphic.
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Proof. [[π]]1(L∞, v, f) has a nonabelian subgroup whereas [[π]]1(L∞,

v′, f ′) is an abelian groupoid.

§8. The PSL(2, Z) Anosov foliation

Let Γ ⊂ PSL(2, R) be a discrete group of finite type, possibly with

elliptic elements. The quotient Σ = H2/Γ is a finite volume hyperbolic sur-

face orbifold. The unit tangent bundle T1Σ is defined to be the quotient

T1H
2/Γ. Let ρ : Γ→ Homeo(S1) be the representation obtained by extend-

ing the action of Γ to the boundary of H2. Then T1Σ may be identified

with the suspension (
H2 × S1

)/
Γ

as follows. Given (z̃, t) ∈ H2 × S1, associate vz̃ ∈ T1H
2, the vector based

at z̃ and tangent to the ray limiting to t. This association is Γ-equivariant

and descends to the desired homeomorphism. The expression of T1Σ as a

suspension defines a hyperbolic Riemann surface foliation F on T1Σ, which

is also a fiber bundle over Σ provided that Γ has no elliptic points. F is

called an Anosov foliation.

In [4], we worked with a definition of [[π]]1 that was available for sus-

pensions such as F formed from fixed point free Γ. Unfortunately, this

hypothesis excluded the most “explicit” of discrete subgroups of PSL(2, R),

the modular group Γ = PSL(2, Z). The definition provided in this paper

is clearly available in this case, and we devote the rest of this section to its

consideration.

Two elements r, s ∈ R ∪ {∞} ≈ S1 are called equivalent if there exists

A ∈ PSL(2, Z) such that A(r) = s. Every equivalence class [r] of extended

reals corresponds to a leaf L[r] of F , and since all PSL(2, Z)-orbits in S1 are

dense, all leaves are dense. If L[r] is isomorphic to the punctured hyperbolic

disk D∗, then [r] is quadratic over Q. Otherwise, L[r] is isomorphic to H2.

Let us consider the leaf L = L[0]
∼= D∗ covered by H × {0}. Choose

x ∈ L and a transversal T through x that is a fiber with respect to the

projection onto the modular surface Σ. We assume that the lift x̃ of x

to H2 is not an elliptic point for the action of PSL(2, Z). Define f to

be the lift of a frame on Σ based at the projection of T . As before, we

denote by f̃ the lift of f to T̃0 ⊂ H2 and by f̃ỹ its value at ỹ ∈ T̃0. Note

that for A ∈ PSL(2, R), A∗f̃x̃ = A∗f̃ỹ if and only if A ∈ Γ = PSL(2, Z).

A sequence {Aα} ⊂ PSL(2, Z) defines an f-diophantine approximation ⇔

(Aαx̃, 0) projects to a sequence in T converging to x⇔ (x̃, A−1
α (0)) projects
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to a sequence in T converging to x ⇔ A−1
α (0)→ 0 in S1. Note that for any

sequence {γnα
} in the deck group of H2 → L,

{
γn =

(
1 0
n 1

) ∣∣∣∣ n ∈ Z

}
,

the sequence {γαAα} also defines an f-diophantine approximation. The fun-

damental germ [[π]]1(F , x, f) is then formed from the associated sequences

{AαB−1
α } where {Bα} is another f-diophantine approximation.

Note 3. Writing

Aα =

(
aα bα

cα dα

)
,

the sequences {−bα/aα = A−1
α (0)} are hyperbolic diophantine approxima-

tions, as defined for example in [1]. See [4] for more on this point. In

the case at hand, they give bad diophantine approximations of 0 whenever

bα → ∞, in the sense that it is never true that for some c > 0 and almost

all α, ∣∣∣∣0−
(
−

bα

aα

)∣∣∣∣ <
c

a2
α

.

The f-diophantine approximations are not stable with respect to the

operation of inversion. Indeed, let r ∈ R be any real number, {mα/nα} a

sequence of rationals (written in lowest terms) converging to r. Let Mα, Nα

be such that mαMα − nαNα = 1. Assume that the indexing is such that

α + Nα/mα →∞ as α→∞. Then the sequence {Xα},

(5) Xα =

(
−(αmα + Nα) −mα

αnα + Mα nα

)
∈ PSL(2, Z),

satisfies X−1
α (0)→ 0, but Xα(0)→ −r. Using this fact, we can now show

Theorem 11. As a set,

[[π]]1(F , x, f) = PSL(2, ∗Z).

Proof. Let {Aα} be any sequence in PSL(2, ∗Z). Then after passing

to a subsequence if necessary, we find A−1
α (0) → r for some r ∈ R ∪ {∞}.

Note that r is independent of the class of {Aα} in PSL(2, ∗Z). We may

choose {nα} ⊂ Z so that γnα
A−1

α (0)→ 0. Hence

{Aα} = {Aαγ−nα
} · {γ−1

−nα

}

defines an element of [[π]]1(F , x, f).
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It is not difficult to see that with respect to its action on the germ

universal cover [[F̃ ]], [[π]]1(F , x, f) is not a group. Indeed, the class of the

sequence {X−1
α }, where {Xα} is the sequence appearing in (5), is not defined

on L̃.

§9. Mapping class group of the algebraic universal cover of a sur-

face

In this section, we use the fundamental germ to prove a Nielsen type

theorem for the algebraic universal cover of a closed surface. We begin by

recalling a few facts, referring the reader to [5] for details.

Let Σ be a closed surface and let G = {Gα} be the set of all normal finite

index subgroups. For each Gα, there exists a covering σα : Σα → Σ defined

by the condition that π1Σα maps isomorphically onto Gα. If Gα ⊂ Gβ,

there is a unique covering sαβ : Σα → Σβ for which σα = σβ ◦ sαβ. Hence

the collection of σα and sαβ forms an inverse system of surfaces by covering

maps.

Definition 6. The algebraic universal cover of Σ is the inverse limit

Σ̂ = lim
←−

Σα.

If σ : Z → Σ is any finite covering, then σ lifts to a homeomorphism

σ̂ : Ẑ −→ Σ̂.

Thus the algebraic universal cover depends only on the type of Σ (elliptic,

parabolic, hyperbolic). In fact, there are only two non-trivial examples of

algebraic universal covers of closed surfaces: that of the torus and that of a

surface of hyperbolic type.

The inverse limit

π̂1Σ = lim
←−

(
π1Σ

)
/Gα

is a Cantor group called the profinite completion of π1Σ. The homomor-

phism i : π1Σ→ π̂1Σ induced by the system of projections π1Σ→ π1Σ/Gα

has dense image. Define a representation

ς : π1Σ −→ Homeo(π̂1Σ)

ςγ(ĝ) = ĝ · i(γ)−1
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for γ ∈ π1Σ and ĝ ∈ π̂1Σ. Then we may identify Σ̂ with the suspension of

ς:

Σ̂ ≈
(
Σ̃× π̂1Σ

)/
π1Σ.

With this identification, we see that Σ̂ is a surface lamination with Cantor

transversals homeomorphic to π̂1Σ, that is, a solenoid. Moreover, it can

also be seen from this presentation that every leaf L of Σ̂ satisfies

π1L ∼=
⋂

Gα.

However for closed surfaces,
⋂

Gα = 1, so here, L is simply connected.

Each leaf L is dense and a path-component of Σ̂. For every α, the pre-

image of the projection map Σ̂ → Σα is a fiber transversal, homeomorphic

to π̂1Σα
∼= Ĝα.

Now let L be a fixed leaf of Σ̂.

Definition 7. The leafed mapping class group of Σ̂ is

MCG(Σ̂, L) = Homeo(Σ̂, L)/≃ ,

where ≃ is the relation of homotopy of homeomorphisms.

We denote by [h] the mapping class associated to a homeomorphism h.

Let G be a group.

Definition 8. The virtual automorphism group of G is

Vaut(G) =
{
φ : H → H ′

∣∣ φ an isomorphism and

H, H ′ finite index subgroups of G
}/
∼ ,

where φ1 ∼ φ2 if there exists H ′′ < G of finite index, contained in Dom(φ1)∩

Dom(φ2) and such that φ1|H′′ = φ2|H′′ .

Note that the equivalence relation ∼ is precisely what is needed to make

composition of virtual automorphisms well-defined. We point out also that

if H < G is of finite index, then Vaut(H) ∼= Vaut(G). The following theorem

is due to C. Odden [8]. We shall give a new proof using the mother germ

and germ covering space theory.

Theorem 12. MCG(Σ̂, L) ∼= Vaut(π1Σ).
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Proof. Define a homomorphism

Θ : Vaut(π1Σ) −→ MCG(Σ̂, L)

as follows. Given φ : G1 → G2 an isomorphism of finite index subgroups of

π1Σ, we may find covers σ1, σ2 : Σ′ → Σ – indexed by G1 and G2 – so that

(σ2)∗ ◦ (σ1)
−1
∗

= φ :

this follows from the classical Nielsen theorem. Then we define

Θ(φ) = [σ̂2 ◦ σ̂−1
1 ]

where for i = 1, 2, σ̂i : Σ̂′ → Σ̂ is the algebraic universal cover lift. If

G′ < Dom(φ), then Θ(φ|G′) = Θ(φ), since Θ(φ|G′) is defined by the pair

σi ◦ σ, i = 1, 2, where σ : Σ′′ → Σ′ is a cover for which σ1 ◦ σ is indexed by

G′. Thus Θ is a well-defined homomorphism.

Claim 1. Θ is onto.

Let h : (Σ̂, L) → (Σ̂, L) be a homeomorphism. After performing an

isotopy, we may arrange that h fixes a point x and fiber transversal T

containing x. Without loss of generality, we may assume that T is a fiber

transversal over Σ. Due to the suspension structure, T ≈ π̂Σ: fix this

identification so that x 7→ 1 and L ∩ T 7→ π1Σ. Since h(L) = L, we obtain

a bijection

h∗ : π1Σ −→ π1Σ

in which h(1) = 1.

Suppose that for each Gα < π1Σ, h∗|Gα is not homomorphic. This

means that for every α, there exists γα, γ′

α ∈ Gα so that

(6) h∗(γα · γ
′

α) 6= h∗(γα) · h∗(γ
′

α).

Assuming that Σ̂ has been equipped with a hyperbolic metric, say lifted

from Σ, then the sequences {γα}, {γ
′

α} define elements of the fundamental

germ
∗γ, ∗γ′ ∈ [[π]]1(Σ̂, x, f)

where f is a frame field lifted from a frame on Σ. But this fundamental

germ is a subgroup of the mother germ [[π]]1(Σ̂). By Theorem 7, h induces

a groupoid isomorphism

[[h]]∗ : [[π]]1(Σ̂) −→ [[π]]1(Σ̂),
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and so we must have

[[h]]∗(
∗γ · ∗γ′) = [[h]]∗(

∗γ) · [[h]]∗(
∗γ′).

This contradicts equation (6). Thus h∗ defines an isomorphism when re-

stricted to some Gα, and this isomorphism determines an element φ ∈

Vaut(π1Σ). Note that that φ does not depend on the isotopy used to ensure

h(x) = x since the holonomy group of Σ̂ at any point is trivial. Choose

σi : Σ′ → Σ, i = 1, 2, so that Θ(φ) = [σ̂2 ◦ σ̂−1
1 ]. To simplify notation, we

write h0 = σ̂2 ◦ σ̂−1
1 .

Recall that since Σ̂ is compact with hyperbolic leaves, the germ univer-

sal cover of Σ̂ is •H2. The homeomorphisms h and h0 lift to the standard

bijections •h and •h0 of •H2 sharing the same equivariance with respect to

the action of the mother germ [[π]]1(Σ̂). In particular, they act identically

on the set of galaxies of •H2. For this reason, we may choose a germ uni-

versal cover topology for •H2 with respect to which both •h and •h0 are

homeomorphisms.

Define a homotopy •Ht from •h to •h0 as follows. For each •z ∈ •H2,
•Ht(

•z) is the point subdividing the hyperbolic geodesic connecting •h(•z)

to •h0(
•z) into the proportion t : 1 − t. By construction, •Ht has the same

equivariance as •h and •h0 and is in particular continuous. Since its initial

and final maps are standard, so is •Ht. By Proposition 6, it descends to a

homotopy Ht of h and h0. It follows that [h] = [h0] = Θ(φ), and Θ is onto.

Claim 2. Θ is one-to-one.

If not, then there exists φ 6= the identity map with Θ(φ) = 1. But

then Θ(φ) would have to induce the identity map on the mother germ; by

construction, this can only happen if φ is trivial.

Let Mod(Σ̂, L) be the Teichmüller modular group of the pair (Σ̂, L):

the group of homotopy classes of quasiconformal homeomorphisms of Σ̂

that preserve L.

Corollary 4. Mod(Σ̂, L) = MCG(Σ̂, L).

Proof. This follows from the proof of Theorem 12 and the fact that

every finite cover of compact Riemann surfaces is homotopic to a quasicon-

formal cover.
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Theorem 12 can be used to formulate the following conjectural Nielsen-

type theorem. Given x ∈ L, the fundamental germ [[π]]1(Σ̂, x) is made up

of all sequences {γα} converging with respect to the lattice of finite index

normal subgroups G of π1Σ, so

[[π]]1(Σ̂, x) ∼=
⋂

[π1Σ:G]<∞

∗G ⊂ ∗π1Σ.

It follows then that there is a monomorphism Vaut(π1) →֒ Aut([[π]]1(Σ̂, x)),

which descends to Vaut(π1) →֒ Out([[π]]1(Σ̂, x)) upon passage to the quo-

tient. This latter map is also a monomorphism, since no nontrivial virtual

automorphism φ can induce on [[π]]1(Σ̂, x) an inner automorphism. For oth-

erwise, φ would have to be inner on some subgroup H, hence all, which is

only possible if φ is trivial. In view of these remarks we

Conjecture. The monomorphism MCG(Σ̂, L) →֒ Out([[π]]1(Σ̂, x)) is

an isomorphism.

We end this section by explaining the importance of Theorem 12 and

Corollary 4 in giving a genus independent reformulation the Ehrenpreis

conjecture. The classical Ehrenpreis conjecture is:

Given two closed hyperbolic surfaces Σ1 and Σ2 and ǫ > 0, there

exist finite, locally isometric covering surfaces Z1 and Z2 of each

which are (1 + ǫ)-quasiisometric.

We then have the following equivalent, genus independent version:

Every orbit of the action of Mod(Σ̂, L) on T (Σ̂) is dense.

In other words, the genus independent version says that, although the

moduli space

T (Σ̂)/Mod(Σ̂, L)

is uncountable, it has the “topology of a point” (i.e. the coarse topology).

If affirmed, the Ehrenpreis conjecture would thus provide an explanation

for the jump between the existence of moduli (dimension 2) and rigidity

(dimension 3 and higher) in hyperbolic geometry. See the articles [2], [5] for

more discussion.
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