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CHARACTERIZATIONS OF THE GENERALIZED 
HUGHES PLANES 

HEINZ LÙNEBURG 

Let )̂3 be a projective plane and Q a subplane of $. If / is a line of $ , we let 
7 \ G , /) denote the group of all elations in $ that have / as axis and leave Q 
invariant. In [12, p. 921], Ostrom asked for a description of all finite planes ty 
that have a Baer subplane G with the property that |T(G, l)\ = o(G) 2 for 
all lines / of G. Here o(G) denotes the order of G. Both the desarguesian planes 
of square order and the generalized Hughes planes have this property (Hughes 
[10], Ostrom [14], Dembowski [6]). One of the aims of this paper is to show 
that these are the only planes having such a Baer subplane. 

Given such a plane, we let G be the group generated by all the groups 
T(G, I). Letting q = fl(Q), we can show that, if q ^ 7, then the group G is 
isomorphic to PSL (3, q). If q = 7, then either G ^ PSL (3, 7), or G ^ SL (3, 7). 
In all cases, the plane ty is uniquely determined up to isomorphism by the 
action of G on $. For this reason, we start by describing a class of planes, using 
only the groups PSL(3, q), (or SL(3, q)), and certain of their subgroups. It is 
shown in the course of Theorem 2 and Corollary 2 that these planes are in fact 
precisely the desarguesian planes of square order and the generalized Hughes 
planes. However, the new description is more convenient for our purposes. 

The proof of Theorem 2 yields Corollaries 1 to 10. Most of the results stated 
in Corollaries 1 and 3 to 9 are already known. For example, the full collineation 
group of a generalized Hughes plane has been determined by Rosati [17; 19], 
who proved in addition, that all such planes are self-dual (Rosati [18, 19]). 
Also, Corollary 7 was already known to Ostrom [13; 14]. (In this context we 
must mention that the formulation of Theorem 5.4.3 of Dembowski [4, p. 248] 
is incorrect. It should read ''generalized Hughes plane" instead of just "Hughes 
plane". This error in Dembowski's book probably stems from the fact that 
Ostrom [13] uses the words "Hughes planes" to describe what are usually 
called "generalized Hughes planes".) Corollary 8 is found nowhere in the 
literature, while Corollary 9 was previously known only for polarities. 

Of exceptional interest is the plane of type E, for it admits a collineation 
group generated by elations and containing Baer collineations. By the same 
token, the planes of type C, G, and H are of interest, for in these cases the 
group of collineations generated by all the homologies contains Baer collinea­
tions. 

Unfortunately, I was unable to make use of the results of Dembowski [6] 
and Unkelbach [22] in proving Theorem 2, since the proofs given by both these 
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authors are incorrect, even though the results themselves are true. Yaqub [24] 
fills the gap in Dembowski's proof in the case q 4E 1 mod 3 by taking 5L(3, q) 
instead of GL(3, q). Unkelbach errs on page 156 in his exclusion of the special 
case g = 19. Also, his theorem on page 158, stating that |APfi C\ S| = 2(q + 1) 
if AP i is not cyclic is true only if q = 3 mod 4. This last error was pointed out 
to me by Mrs. Yaqub, whom I wish to thank here for the detailed conversation 
we exchanged recently at the Geometry Conference in Toronto. It was due to 
these talks that I once again turned my attention to a study of the Hughes 
planes. I also wish to thank her for her careful reading of the manuscript and 
the many valuable suggestions she made to improve the presentation of this 
paper. Finally, I would like to thank Dr. G. Gunther of Toronto for the trans­
lation of this paper. 

I refer the reader to Dembowski [4] and Huppert [11] for those concepts and 
results that I do not specifically define or quote. 

LEMMA 1. Let Vbea vector space over K. Suppose V = P © H, where P = wK 
for w 9^ 0. Suppose further that we are given p, p G TL(V) such that 

(1) wp = wpf G P, 
(2) Hp = H = Hp', and 
(3) if p p~l 9^ 1, then p p~l is not a transvection. 

If a and a' are transvections with axis H, and r and r are transvections with centre 
P, then apr = Tpa implies that a = a = 1 or r = r = 1. 

Proof. Let (p be the linear form of V into K whose kernel is H and for which 
(p(w) = 1. We can then find h, h' Ç H so that xa = x + h<p(x) and xa/ = x + 
h'(p(x) for all x G V. We can also find linear forms \j/ and yp' of V into K with 
\p(w) = 0 = \f/' (w) such that xT = x + w\p(x) and x7' = x + w\f/;(x). Since 
apr = r'p'a'i we conclude that p and p have the same companion automor­
phism a. Hence 

xapr = xp _j_ W[yp(xP) + \f/(hp)<p(x)a] + hp<p(x)a 

and 

XT'P'«' = XP' _|_ w
p'\l/'(x)a + hf[ip{xpr) + <p(wp')\pf(x)a]. 

Since apr = r'p af and wp = wpf, we deduce 

(a) xp + w[\p(xp) + \f/(hp)(p(x)a] + hp(p(x)a = xpr + wp\p' (x)a 

+ h'[<p{xp') + <p(w<>W(xy] for all x G V. 

Also, wp = wpt G P Ç ker (^) C\ ker (^r) and <p(w) = 1, and hence we obtain 
from (a) the equation 

w\p(hp) + hp = h'v(wp). 

Hence w\p(hp) G H H P = {0}, and therefore yp(hp) = 0. Thus we have 

(b) \K/*P) = 0 and hp = h'<p(wp). 
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Combining (a) and (b), we obtain 

(c) xp - xp/ + w\p(xp) — wpyp'(x)a + hp[<p(x)a - <p{wp)-l<p{xpr) — V{x)a] = 0 

for all x G V. 

As Pp = P, we know tha t wp = wk for some k G K. For x G H, we know from 
(2) t ha t xp — xp! G H, and applying (c) we deduce 

w[yp(xp) - ty(x)a] G HC\P = {0}. 

Hence <K*P) = Jty'(*Oa for all x £ H.ButP Q ker ty) Pi ker (i//) and Pp = P 
allow us to write 

(d) iA(*p) = fe^(x)« for all x G F . 

Combining (c) and (d) yields 

xp - xpf + /^[<?(x)a — ife-V(^p/) - V(xY] = 0 for all x G F. 

This implies 

xp , p - 1 = x + h[<p(x) — k-a~l<p{xp,)a~l — ^ ' ( x ) ] . 

From (b) and (d), we know k\f/f (h)a = \//(hp) = 0. Hence 

<p(h) - k-«-l<p(hpfy l - f'(h) = 0, 

implying tha t p p~l is a transvection. By (3), we therefore conclude tha t 
p p~l = 1, and so 

h[<p(x) - k-a~lip(xpfY'1 - t'(x)] = 0 for all x G V. 

If h = 0, then (b) implies t h a t h' = 0 and hence <r = o7 = 1. If h 9e 0, then 

<p(x) - k-"-1?^')"-1 - tf(x) = 0 for all x G F. 

Bu t this implies t ha t yp' (x) = 0 for all x G # . Since P Q ker (i/7), we therefore 
conclude tha t ypr = 0. But then \p = 0 from (d), and hence r = r ' = 1 in this 
case. This completes the proof. 

LEMMA 2. Let V be a vector space over K such that dim V ^ 3. Suppose V = 
P ® H with dim P = 1. Let S be a subgroup of TL(V)PtH that induces a group of 
fixed-point-free automorphisms on H. We denote by T(H) the group of all trans -
vections whose axis is H, and by T(P) the group of all transvections whose centre 
is P. Let A = T(H)S and B = T{P)S. Then AB C\ BA = A \J B. 

Proof. Certainly A U B Ç AB P\ BA. Hence we need only show tha t 
AB r\BA QAVJ B. Choose £ G AB H BA. Since S normalizes both T(H) 
and T(P), we know tha t AB = T(H)ST(P), and BA = T(P)ST(H). Hence 
we can find a, <J' G T(H), p, p G S and r, r G P ( P ) such t ha t apr = £ = 
T p <J'. From Lemma 1, it is sufficient to show tha t p = p . Suppose P = wK, 
and ^ p = wa, wpf = wb with a, b ^ K. Using the notat ion of Lemma 1, we 

https://doi.org/10.4153/CJM-1976-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-039-7


HUGHES PLANES 379 

then deduce 

and 

x'Vcr/ = X P ' + wby(x)a + ft;|>(a;p/) + 6^'(#)"]. 

Because apr = T'pfa , we therefore deduce 

(a) xp + w[^(xp) + \l/(hp)<p(x)a] + hpip(x)a = xp! + wb\p' (x)a 

+ /*'[<? (xp/) + b\l/'(x)a] for ail x Ç F . 

This implies t ha t wa + w\p(hp) + hp = wb + h'b, and so we have 

(b) \//(hp) = b — a and hp = h'b. 

Applying (a) to any x G H, we obtain 

XP _|_ w^(x
p) = xpf + wb\pf(x)a + h'b\pf(x)a. 

T h u s we have 

(c) x" = xp/ + hfb\pf(xY and ^(xp) = b\pf (x)a for ail x Ç £ 

Hence xp/p_1 = x — hx//'(x) for ail x £ H. Since dim F ^ 3, we can therefore 
find some w G ker (i//) H i f such tha t w ^ 0. For this choice of u, we have 
^p'p-1 = u. Howrever, we know tha t p p~l £ S, and by assumption, 5 induces 
a group of fixed-point-free automorphisms on if. Hence we must conclude tha t 

XP'P~1 = x for all x £ H, implying tha t h\j/'(x) = 0 for all x £ HAî h = 0, then 
hp = 0, and hence 0 = ^(/&p) = b — a from (b). But then wp/p-1 = w and so 
p ' p - 1 = 1. If h 9^ 0, then ^ ' (x ) = 0 for all x £ H. But then, from (c), we have 
0 = b0 = b\p' (h)a = \p(hp), and hence a = b also in this case, again implying 
tha t p = p. 

Now let V be a 3-dimensional vector space over the field GF(q). Suppose 
V = P 0 H with dim P = 1, and let G = SL(V). Let 5 be a subgroup of 
G P | F of order q2 — 1 which induces a group of fixed-point-free automorphisms 
on if. Let A = T(H)S and B = T(P)S. From Lemma 2, we have 4 £ P\ £.4 -
i U 5 . In addition, 

| G : 4 | = | G : P | = (g2 + g + l ) g ( g - 1). 

We also know tha t A C\ B = S, and hence 

| G : ^ H P | = (q2 + q+ l)q'{q - 1). 

We now consider the following incidence structure 3 = 3 (G , S): The points 
of 3 are the right cosets Ax for x £ G. The lines of 3 are the right cosets By 
for 3/ £ G. We say tha t Ax is incident with ffy exactly if Ax C~\ By ^ $. From 
Higman and McLaughlin [9, Lemma 2 and Lemma 4] we know tha t 3 is an in­
cidence s t ructure containing (q2 + q + l)q(q — 1) points and the same num­
ber of lines. Every line of 3 contains q2 points, and every point of 3 lies on q2 
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lines. Since AB C\ BA = A U B, we also know that two distinct points are 
joined by at most one line. Furthermore, G operates flag-transitively on 3 by 
means of the mappings Ax —> Axg and By —> Byg. 

LEMMA 3. Let Ax be a point. Then the points of 3 that are not connected with Ax, 
together with Ax, form an orbit of x~1GPiHT(H)x. 

Proof. The point Ax lies on q2 lines, each of which contains q2 — 1 points 
distinct from Ax. Hence the points of 3 not connected with Ax, together with 
Ax, form a set containing (q2 -{- q -\- l)q{q — 1) — q2(q2 — 1) = q(q — 1) 
points. Now the index of A in GPiHT{H) is q(q — 1). Let Xi, . . . , xq(q-D be a 
set of coset representatives of S in GP>H. Then it follows that Xi, . . . , xq(q-\) 
is also a set of coset representatives of A in GP<HT(H), for xtXj~l Ç A implies 
that xtxr1 G ST (H) H GP,H = S[T(H) H GPi/ /] = S. Hence x - ^ x , . . . , 
x~1Xg(î_i)X is a set of coset representatives of x~lAx in x~lGPjHT{H)x, and 
x~lAx is the stabilizer of the point Ax in G. Hence the images of Ax under 
x~lGPiHT(H)x are the points Ax\X, . . . , Axq(q-i)X. But the points AxiX and 
/±xjX are connected if and only if XfXf1 £ ABA (cf. Dembowski [4, 1.2.8]). 
Since S normalizes both T(H) and T(P), we know that ABA = ST(H)T(P)-
T(H). Thus, if XiXj~l (E ABA, then we can write XiXf1 = (JTIT^TZ, with c G 5, 
ri, r3 G T(H) and r2 G 7"(P). Then we have 

i / = Jixixi~Y = JJVT1T2T3 _ JJT2T3 

and hence £T = i7r3_1 = iJ r2, implying that r2 = 1. Also, 

p — pxiXj-l _ P<TT\TZ = priTz 

implying that TIT3 = 1. Hence x^x^-"1 = a G 5, and so ^4x* = ^4x ,̂ or equiva-
lently, Axtx = Axpc. 

Similarly, we prove 

LEMMA 4. Let By be a line. Then the lines of 3 that do not intersect By in a 
point, together with By, form an orbit of y~lGPiHT(P)y. 

Let Q be the projective plane associated with V. We combine G and 3 (G, S) 
to define the incidence structure 3̂ = $(G, 5), as follows: The points of 3̂ are 
the points of G together with the points of 3 . The lines of ^ are the lines of G 
together with the lines of 3 . Let X be a point and / be a line of ^3. 

(a) If X and / are elements of G, then X and I are incident in S]S if and only 
if they are incident in G. 

(b) If X and / are elements of 3 , then X and / are incident in $ if and only 
if they are incident in 3 . 

(c) If X = Px and / = By, then X and / are incident if and only if Px = Pv. 
(d) If X = Ax and / = Hv, then X and / are incident if and only if Hx = Hv. 
We shall denote the incidence by / , that is, P 11 if and only if P is incident 

with / and P LI otherwise. 
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Clearly, the definition of incidence given in (c) and (d) is independent of 
the choice of representatives x and y. 

T H E O R E M 1. $ (G , S) is a projective plane of order q2 and G is a subplane of 
$ ( G , S) of order q. The group G operates (not necessarily faithfully) on $ (G , S) 
as a group of collineations. For all x £ G, the groups T(HX) are groups of elations 
of ^ ( G , S) leaving Q invariant. 

Proof. From the définition of ^3(G, S), we obtain immediately tha t G operates 
as a collineation group on ty (G, S) and leaves Q invariant. Now let X and F 
be two distinct points of $ (G , 5 ) . We shall show tha t X and F have a unique 
line in common. 

Case 1: X and F are points of Q . Since G acts transitively on Q , we may 
assume tha t X = P. Then P = Pv with P^ ^ P . Trivially, X + F is the 
unique line of Q joining X and F. So suppose / is another such line. Then / = 
Bz. But then P I Bz would imply tha t P = Pz, and also P y J Bz implies t ha t 
pv = P 2 , yielding the contradiction P y = Pz = P ^ P y . 

Case 2: Suppose X = P and F = ^4x. From the definition of incidence in 
y$(G,S), we know tha t F is on a unique line of Q , namely Hx. Suppose P C 7P , 
and suppose tha t / is a second line containing both P and F. Then / = By. 
But P I By implies t ha t P = P", and 4 * I By implies tha t Ax C\ By 9^ 0. 
Hence there exist a £ A and b £ B such tha t ax = fry. But P = P&, and hence 
pby = p„ = p ? implying tha t P = PG*. On the other hand, we have Ha = H, 
implying Hax = Hx. But P £ H, and so Pax (£ Hax, or equivalently, P g i P . 
T h u s we have shown tha t if P C Hx, then P and F are joined by a unique line. 
Now suppose tha t P $£ 7P. Then Px~l g^ i / , and so we can find some a £ A 
such tha t Pa = Px~\ and so P = Pax. Let y = ax. Then P = Pv and so P / Pj>. 
Since Ax C\ By ^ 0, we conclude tha t ^4x / Ify, and therefore P and Ax have 
a t least one line in common. Now suppose Bz is a second line joining Ax and P . 
Then P = Pz and ^4x H Bz 9e 0. Thus we can find a0 6 4̂ and &0 G -S such 
tha t a0x = b0z. But then Pa»x = PbQZ = Pz = P = PGZ, and so PG°G_1 = P . 
But also 7PoG_1 = i7, and hence a^a~l Ç GP)jH- Pi 4̂ = 5. Since 5 Ç B, we can 
write a0 = ca for some c £ B. But this implies b0z = a0x = cax — cy, and 
so Bz = Bx. 

Case 3: X = Ax and F = ^4;y. Then Hx and i P are the unique lines of Q 
containing X, respectively F. If X and F are not joined in 3 , then Lemma 3 
states t h a t we can find some z £ GPjHT(H) such tha t Azx = Ay. Hence y = 
azx for some a £ A. But then Hv = i7GZ2; = i P , and so Hx is the unique line 
joining X and F. Conversely, if i P = Hx, then 3/x-1 G GPiHT(H). Then we 
can write 3/ = zx with s £ GP<HT(H), implying by Lemma 3 tha t X and F 
are not connected in 3 . 

T h u s we have shown tha t two distinct points of 3̂ (G, S) are connected by a 
unique line. Similarly, one can show tha t two distinct lines of ^ ( G , S) intersect 
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in a unique point. This is sufficient to conclude t h a t ^ ( G , S) is a projective 
plane of order q2. 

T h e only thing left to show is t ha t T(HX) has the required properties. I t is 
sufficient to show this for T(H). T h e points of G contained in H all s tay in­
var ian t under T(H). The remaining points of H are all of the form Ax where 
H* = H. In other words, these are the points Ax with x Ç T(H)GP<H. If we 
choose t G T(H), then xtx~l Ç 7"(if) for all x £ T(H)GP>Hj and hence ^4x/ = 
^4x/x-1x = ^4x, completing the proof. 

We now ask for a construction of such subgroups S of GPtH- Since G = 
5 L ( F ) , we know t h a t de t a = 1 for all cr £ 5 . Now let P = wK, and let <TQ 
be the restriction of a to i î . Then w* = w(det o-0)_1. This implies t h a t 5 operates 
faithfully on H. Since \H\ = q2 and \S\ = q2 — 1, we know therefore tha t S 
operates transit ively on i f \ { 0 } . Since 5 consists of i£-linear transformations, 
where K ~ GF(q), we see therefore t h a t 5 and H define a near-field whose 
kernel contains a subfield isomorphic to GF(q). 

Conversely, suppose H is a nearfield of order q2 whose kernel contains a 
subfield K isomorphic to GF(q). Let t ing So be the multiplicative group of H, 
we know tha t So consists of i^-linear transformations. Let V = K ® H. Given 
do Ç So, define a by (k + h)a = fe(det (Jo)-1 + ha0. Let 5 be the set of all these 
transformations a; then 5 is a group of the required kind. 

T Y P E S . — A ) Let H = GF(q2). In this case, S is cyclic of order q2 — 1. T h e 
collineation group induced by G in *$(G, S) is isomorphic to P 5 L ( 3 , ç) . This is 
trivial if q 4E 1 mod 3, as PSL(3, q) = SL(3, q) in this case. Now suppose t ha t 
q = 1 mod 3. In this case, S contains the transformation x —»xf with f Ç GF(q)* 
and o(f) = 3. Hence \S(G)\ = 3. Moreover 3 ( G ) Ç 5 = ^ n 5 . Since G/3CG) 
is simple, we know from Higman and McLaughlin [9, Prop. 1] t ha t G/£>(G) is 
isomorphic to the collineation group induced by G on ty(G, S). T h e collineation 
group induced by 5 in $ ( G , S) is also cyclic, and has order drl(q2 — 1), where 
d is the greatest common divisor of 3 and q — 1. We shall see later t ha t 
the plane $ ( G , 5) is desarguesian in this lat ter case. 

B) Suppose q is odd. Let H = GF(q2). In H, we define a new multiplication 
o by 

_ (xy if y is a square in H, 
\xQy if y is not a square in H. 

I t is well known and easily checked t ha t H(-\-, o) is a nearfield. Let So be 
the multiplicative group of i / ( + , o ) . In So, the set 

}x|x G i ? \ {0} , x is a square in GF(q2)} 

is a cyclic subgroup of index 2 containing the multiplicative group of GF(q). 
As for type A, we can show tha t the collineation group induced by G in ^ (G, S) 
is isomorphic to PSL(S, q). T h e collineation group induced by 5 has order 
d~l{q2 — 1), where d is again the greatest common divisor of 3 and q — 1. In 
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this case, 5 is not abelian; However, it contains a cyclic subgroup of index 2. 
It turns out that the planes of type B are exactly the planes constructed by 
Hughes [10]. 

For details on the exceptional nearfields used in the following examples, we 
refer the reader to Zassenhaus [25] (see also Lemma 7). 

C) Let q = 5, and let H be the exceptional nearfield of order 52. Let So be 
the multiplicative group of H. Then So is isomorphic to SL(2, 3). Since 5 4E 1 
mod 3, we know that P5L(3, 5) = SL(S, 5), and hence the collineation group 
induced by G in $(G, S) is isomorphic to PSL(3, 5). In addition, 5 9É 5L(2, 3). 

D) Let q = 11, and let H be the exceptional nearfield of order I P , whose 
multiplicative group S0 is soluble. Then we have So = Z5 X SL(2, 3), 
where Z5 is the cyclic group of order 5. As 11 ^ 1 mod 3, we know that 
G ^ PSL(3, 11), and that S operates faithfully on $(G, S). 

E) Let q = 7, and let H be the exceptional nearfleld of order 72. In this case, 
So contains a normal subgroup of index 2, which is isomorphic to SL(2, 3). 
The Sylow 3-subgroup of 50 is of order 3 and is not normal. Hence S C\ £ (G) = 
{1}. The collineation group induced by G is therefore isomorphic to SL(S, 7), 
and S operates faithfully on ^(G, S). 

F) Let q = 23, and let H be the exceptional nearfield of order 232. Since 
SL(S, 23) ~PSL(S, 23), we know that the group G operates faithfully on 
^(G, S). Furthermore, we know that 5 = Zn X So, where So is the group 
described under E). 

G) Let q = 11, and let H be the exceptional nearfield of order l l 2 whose 
multiplicative group is isomorphic to 5L(2, 5). In this case, we have G = 
PSL(3, 11) ; further, G and 5 both operate faithfully on $(G, S). 

H) Let q = 29, and let H be the exceptional nearfield of order 292. Then 
G ^ P5L(3, 29), and S ^ Z7 X SL(2, 5). 

I) Let q = 59, and let H be the exceptional nearfield of order 592. Then 
G ^ P5L(3, 59) and 5 ^ Z29 X 5L(2, 5). 

It will turn out that the planes of type B to I are precisely the generalized 
Hughes planes. 

LEMMA 5. Let q be a power of the prime p. Let 12 be a set containing q(q — 1) 
elements. Let G be a group, isomorphic to SL(2, q), operating on 12. Suppose that 
the action of the Sylow p-subgroup of G on il is regular. Then the permutation 
group H induced in 12 by G is isomorphic to PSL(2, q), except in the following 
cases: If q = 2, then \H\ = 2 and if q = 3, then \H\ = 3 or H ^ P5L(2, 3). 

Proof. Suppose p = 2. If q = 2, then |12| = 2, and hence \H\ = 2. So suppose 
q > 2. Since q is even, we know PSL(2, q) ~ SL(2, q), and since q > 2, we 
know that PSL(2, q) is simple. Since the action of G on 12 is non-trivial, we 
therefore conclude that H ^ PSX(2, q). 

Now suppose p > 2. Since G = SL(2, q), we know that G contains a unique 
involution a. If q > 3, then (a) is the only proper normal subgroup of G. If 
q = 3, then (cr) is contained in every proper normal subgroup of G. We now 
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assume tha t a does not induce the ident i ty on 12. Then G = H. Choosing 
a G 12, we then have q(q2 — 1) = |aH | | i7 a | . Bu t \aH\ ^ q(q — 1), and therefore 
|JFZ«| ^ g + 1. Fur thermore (q, \Ha\) = 1. Using this and assuming t h a t \Ha\ 
is odd, we deduce from Dickson [7, § 260] t ha t | i? a | ^ \{q + 1). Hence ffa 

has even order, implying a G i7 a . As this holds for all a G 12, we see t h a t a- does 
induce the identi ty in 12. 

If q > 3, then G/ (<r ) is simple. Hence in this case we have H ~ PSL (2, q). 
We know tha t PSL(2, 3) = A±. Hence we have in the case q = 3 t h a t either 

\H\ = 3orH^PSL(2,3). 

T h e next lemma can in essence already be found in Unkelbach [22, Lemma 
4.4]. 

L E M M A 6. Let qbe a power of 2, and let il be a set containing q(q — 1) elements. 
Suppose G is a group, operating on 12, isomorphic to PSL(2, q). Suppose further 
that the action of the Sylow 2-subgroups on 12 is regular. Then G operates transi­
tively on 12. For a G 12, the group Ga is cyclic of order q + 1, and Ga has exactly 
one other fixed point. 

Proof. Choose a G 12. Then q(q2 — 1) = |aG | |Ga | . We have \aG\ ^ q(q — 1) 
and hence \Ga\ è q + 1. Since 2 is not a divisor of \Ga\, we use Dickson [7, § 260] 
to deduce tha t Ga is cyclic of order q + 1. This implies t ha t G operates transi­
tively on 12. Fur thermore , again by Dickson (loc. cit.), we have \3lG(Ga) ' Ga\ = 
2, so consequently, Ga has exactly one more fixed point. 

We can prove an analogous lemma for odd q. However, in this case one finds 
over 30 different ways in which G can operate on 12. As most of these cases have 
no bearing on the following, we prove a lemma for odd q t h a t only yields those 
cases which are impor tan t in wha t follows. We should mention t ha t this lemma, 
too, has a predecessor in the l i terature (Prohaska [16]). 

L E M M A 7. Let qbe a power of the prime p > 2. Let &be a set containing q(q — 1 ) 
elements. Suppose G is a group operating transitively on 12. Suppose furthermore 
that G satisfies the following conditions: 

a) The action of the Sylow p-subgroups of G on il is regular. 
b) G contains a normal subgroup S which is isomorphic to SL(2, q). 
c) The group of automorphisms induced by G on S is isomorphic to PGL(2, q). 

If H is the group induced by S on 12, then either q — 3 = \H\ or H is isomorphic 
to PSL (2, q). If q — 3 = \H\, then H has exactly two orbits of length 3 in 12 and 
the Sylow 2-subgroup of G operates trivially on 12. If H = PSL (2, q), then we 
have one of the following cases: 

1) H operates transitively on 12 and for all a G 12, the group Ha is cyclic of order 
%(q + 1). In addition, Ha has exactly one more fixed point. 

2) q = 3 mod 4 with q > 7, and H is transitive on 12. The group Ha is the di­
hedral group of order \(q + 1), and Ha has exactly one more fixed point. 
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3) q > 3 and H has two orbits of length \q(q — 1). For a £ 12, the stabilizer 
Ha of a is the dihedral group of order q + 1, and Ha has exactly one other fixed 
point /3. The points a and 0 lie in distinct orbits of H. 

4) q = 11 and H has 10 orbits of length 11. Moreover, Ha~ A 5 and Ha has 
exactly five fixed points, no two of which lie in the same orbit of H. 

5) q = 19 and H has 6 orbits of length 1 9 - 3 . The stabilizer Ha is isomorphic 
to A 5 and has exactly 3 fixed points, no two of which lie in the same orbit of H. 

6) q = 29 and H has 4 orbits of length 29 • 7. Furthermore, Ha ~ A5 and Ha 

has exactly two fixed points that lie in distinct orbits of H. 
7) q = 59 and H has two orbits of length 5 9 - 2 9 . We have Ha = A5 and Ha has 

exactly one fixed point. 
8) q = 7 and H has 6 orbits of length 7. Moreover, Ha = S 4 and Ha has exactly 

3 fixed points, no two of which lie in the same orbit of H. 
9) q = 23 and H has two orbits of length 23 • 11. / / a G 12, then Ha = 5 4 and 

a is the only fixed point of Ha. 
10) q = 5 and H has 4 orbits of length 5. For a £ iï, we have Ha~ A±, and 

Ha has exactly one fixed point in each orbit of H. 
11) q = 11, and H has two orbits of length 1 1 - 5 . For a G 12, we have Ha = A4, 

and Ha has exactly one fixed point in each orbit of H. 

Proof. Since the action of the Sylow ^-subgroups of G is regular on 12, and 
since G is transitive on 12, we know tha t the Sylow ^-subgroups of G all have 
order q. Since | 5 | = q(q2 — 1), we therefore conclude tha t all the Sylow ^-sub­
groups of G lie in 6*. Hence we may use Lemma 5 to conclude tha t either 

q = 3 = \HI, or H ^ PSL (2, q). If q = 3 = \H\, then |12| = 3 • 2, and so H 
has exactly two orbits of length 3. In this case, G contains exactly one Sylow 
2-subgroup, which therefore operates trivially on 12. For the following, we 
therefore assume tha t H ^ PSL (2, q). Then we know tha t \H\ = %q(q2 - 1). 
F o r a Ç 12, we then have hq(q2 — 1) = |aH | |i?a|. Since q divides \aH\, we deduce 
tha t |ifa| ^ \(q2 — 1). Fur thermore, (q, \Ha\) = 1. On the other hand, we 
have \aH\ ^ q(q - 1), and so \Ha\ è \{q + 1). Hence, by Dickson [7, § 260], 
Ha must be one of the following: 

a) Ha is cyclic of order ^(q + 1). 
0) Ha is a dihedral group of order q + 1. 
7) ifa is a dihedral group of order q — 1. 
ô) H« is an elementary abelian group of order 4. 
e) q = 3 mod 4 with g > 3, and Ha is a dihedral group of order \{q + 1). 
f ) g2 = 1 mod 10 and ifa is isomorphic to A$. 
77) q2 = 1 mod 16 and i7 a is isomorphic to S4. 
&) Ha is isomorphic to A4. 

In all cases, we have tha t Ha and H$ are conjugate in G for all a, /3 G 12, where 
G denotes the permutat ion group induced by G on 12. Moreover, all the orbits 
of H have the same length. These two remarks follow from the fact tha t H is 
normal in G and tha t G acts transitively on 12. 
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Ad a). In this case, H is transitive on 12. We have \yiG(Ha) : Ha\ = 2, and 
hence Ha has exactly two fixed points. This yields Case 1. 

Ad ft). Here H has exactly two orbits of length \q{q — 1). If g > 3, then Ha 

is a maximal subgroup of H and hence has exactly one fixed point in of1. 
For f3 Ç 12\Û^, the group Ha and H$ are conjugate in H, and hence H« also has 
exactly one fixed point in £l\aH. If g = 3, then Ha is the normal subgroup of H 
of order 4. Since it is a characteristic subgroup of H, we know that G normalizes 
Ha. Hence Ha induces the identity in 12. But this means that the case q = 3 
cannot occur, and thus we have Case 3. 

Ad y). Here all orbits would be of length \q(q + 1), which is obviously 
impossible, unless q — 3. But q — 1 ^ 4, as Ha is a dihedral group. 

,4d <5). In this case, \(q + 1) ^ 4 , and hence g = 3, 5 or 7. If g = 3, we could 
show as above that \H\ = 3, which is not the case. Hence we are left with 
q = 5 or q = 7. If q = 5, then H would have an orbit of length 5 • 3. But 5 • 3 
is not a divisor of |12| = 5 - 4 . If q — 7, then H would be transitive on 12. 
But 7 = - 1 mod 8. Using Dickson [7, § 260], we therefore know that PSL (2, 7) 
contains two conjugate classes of Klein 4-groups which fuse under PGL (2, 7) 
into one conjugate class. Combining this with c) yields a contradiction. 

Ad e). If q = 7, then Ha is a Klein 4-group, which, as we saw, is impossible. 
Hence q > 7. But this implies that \3lH(Ha) : Ha\ = 2, and hence we have 
Case 2. 

Ad f). Here we have \{q + 1) ^ 60 ^ | (g2 - 1). Combining this with 
g2 = 1 mod 10 and (g, 60) = 1, we obtain 

q e {11, 19, 29, 31, 41, 49, 59, 61, 71, 89, 101, 109}. 

But this, together with the fact that q(q2 — 1)/120 is a divisor of q(q — 1), 
yields that g Ç {11, 19, 29, 59}. In all these cases, we know from Dickson 
[7, § 259] that PSL (2, g) contains exactly two conjugacy classes of groups that 
are isomorphic to A5. These two conjugacy classes fuse under PGL (2, q) into 
one conjugacy class. Moreover, all these groups are their own normalizers. 
Hence Ha will have a fixed point in exactly half the orbits, giving Cases 4), 
5), 6), and 7). 

Adrj). In this case, \{q + 1) g 24 S è(g2 - 1). Combining this with g2 = 1 
mod 16 yields g £ {7, 17, 23, 31, 41, 47}. But q(q2 - l ) /48 is a divisor of 
q(q — 1), and hence g = 7, 23, or 47. Now, using Dickson [7, § 257], gives us 
Cases 8) and 9). 

Ad #). Here we have J(g + 1) ^ 12 g J(?2 - 1), implying that g G 
{5, 7, 11, 13, 17, 23}. But q(q2 - l ) /24 is a divisor of q(q - 1). Therefore, 
g + 1 is a divisor of 24. Hence g G {5, 7, 11, 23}. If g = 5 or 11, then by 
Dickson [7, § 257], i J contains exactly one conjugacy class of subgroups iso­
morphic to A 4, and in addition, all these groups are their own normalizers. 
This then yields Cases 10) and 11). 

If g = 7, then H has precisely 3 orbits of length 7 • 2. Furthermore, by 
Dickson [7, § 257], H contains exactly two conjugacy classes of subgroups 
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isomorphic to A4. These two conjugacy classes fuse into one under PGL (2, 7). 
Hence Ha has exactly two fixed points in each of exactly half of the orbits 
which is impossible, as the number of orbits is odd. By similar means, we can 
show tha t q = 23 cannot arise. Thus we have proved the lemma. 

LEMMA 8. Let ^ be a projective plane. Let Q be a subplane of ^. Suppose that 
O is a Moufang plane and that every elation of tCiis induced by an elation of ty. 
Let G be the group generated by all those dations of ^ that induce dations in Q , 
and let G' be the commutator subgroup of G. Then G = G'. 

Proof. The following proof is due to P. Dembowski. He gave this proof 
several years ago a t Oberwolfach, while showing tha t the little projective 
group of a Moufang plane is simple. To the best of my knowledge, this proof 
has been published only in my lecture notes [12]. Because of the limited circula­
tion of these notes, I shall reproduce the proof here. Another proof which wrorks 
only for finite planes has been published by Hering in [8]. 

First we observe tha t G operates transitively on the set of triples (P , Q, I) 
where P and Q are distinct points of O and where / is a line of Q such tha t 
P , Q LI. Let a and r be two non-trivial da t ions of ty t ha t induce elations 
in Q . Let / be the axis of a and m be the axis of r. Choose points P and Q in Q 
with P LI and QLm. Then P ^ Pa LI and Q ^ QT Lm. Hence there exists 
y £ G with Py = Q, Pay = QT and P = m. Hence y~lay is an elation with 
axis m. Also, Qy~l<jy = P°y = QT, and hence y~lay — r. Therefore, all the non-
trivial elations in G are conjugate in G. 

Finally, let / and m be distinct lines of Q . Let B = I C\ m and choose a 
second point A ^ B in Q lying on /. Let a ^ 1 be an elation in G with centre A 
and axis /, and let r ^ 1 be an elation in G with centre B and axis m. Then 
T~1VT is an elation with axis /, and hence also G~1T~1<IT is such an elation. If we 
assume a~1r~1ar = 1, then AT = A and hence r = 1. Therefore G~1T~1<TT T^ 1. 
Hence one and therefore all elations of G are commutators , proving G = G''. 

LEMMA 9. Let q be a prime power such that q = 1 mod 3. Suppose 3 r is the 
highest power of 3 that divides q — 1. Let S be a Sylow ^-subgroup of PSL (3, q). 
Then we can find elements a, (3 G S such that 2 = (a, p ) and 

a) a' = 1. 
b ) /33r = 1. 

c) a^r~l = ^r~la. 
d) P^a-^a = a-^ap-1. 
e) a - 1 ^ - 1 ^ - 1 = aPoT1. 

If P , Q, R are three non-collinear points of the desarguesian projective plane of 
order q with {P, Q, R) s = {P, Q, R}, then we can choose the generators a and /3 
in such a way that P~la~lpa is a (P , Q + R)-homology of order 3 r _ 1 . Conversely, 
if 2 0 is a group with generators a and /3 and the presentation a) to e), then 2 0 is 
isomorphic to 2 . 
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Proof. As q = 1 mod 3 r , we have q2 + q + 1 = 3 mod 3 r . Hence q2 + q + 1 
is divisible by 3. If r > 1, then g2 + g + 1 is not divisible by 9. If r = 1, then 
g = 4 or 7 mod 9, and hence q2 + g + 1 = 3 mod 9. Thus we see that also 
in this case 9 does not divide q2 + q + 1. Since 

\PSL (3,3)1 = M<z2 + g + Ds'Ca + i)(s - D2 

we deduce that |S | = 32r . 
Let {6i, 62, ̂ 3} be a basis of the 3-dimensional vector space over K = GF(q). 

Let P = b%K, Q = b\K and R = b^K. Let f be an element of order 3 r in the 
multiplicative group of K. Let a and 0 be the collineations defined with 
respect to the given basis by the matrices 

A = 

Since det A = det B = 1, we know that a, 0 G PSL (3, g). Obviously, a3 

1 = 03r. In addition. 

0 1 0 1 0 0 
0 0 1 respectively B — 0 f 0 
1 0 0_ 0 0 r 1 

r 1 0 0 
^-!£yl = 0 1 0 

_ 0 0 r_ 

and hence 

" r 1 0 0 ' 
B-lA~lBA = A^BAB-1 = 0 r 1 0 

0 0 r2 

Consequently, fi-lorlf3a = orlf3af3-1 is a (P, Q + P)-homology. A simple check 
shows that its order is 3 r _ 1 . Similarly, it is easy to see that a~1/3~1a0~l = a^a~1. 
Hence orl(3a and (3 generate an abelian group T that is normalized by a. Since 
T leaves invariant the three points P , Q, and P , we deduce that a £ T. Hence 
the order of T (a ) is equal to 3|P|. 

From orlf3ia = 13d, we deduce 

1 0 0" 
0 r 0 

[_o 0 rJ. 

But det B = 1 = det (A~lBA), and hence ys = 1. Furthermore, we have 
f~* = 7, 1 = yÇj and f * = y£~3. But this implies that i = j and 3i = 0 mod 3r, 
and therefore i = 0 mod 3 r _ 1 . Thus we have shown that | {a_1l3a ) O (0 )| ^ 3. 
On the other hand, ilj = i = 3 r _ 1 and 7 = f~\ then clearly 

— i 0 0 " 
0 1 0 = 
0 0 r_ 

7 0 oil 
0 7 0 
0 0 7 J 

A~lB*A = 
7 0 0 
0 7 0 
.0 0 7J 

IB* 
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Hence c) holds; also | (or10a) H <0)| = 3, implying that \T\ = S2'-1. Conse­
quently T(a) is a Sylow 3-subgroup of PSL(3, g). The second assertion of 
the lemma now follows, since P5L(3, q) is transitive on the set of ordered 
triangles of the desarguesian plane of order q. 

Now suppose G is a group generated by the elements a and /3 with the 
defining relations a) to e). Then 2 is a homomorphic image of G. From d), we 
know that N = (0, a~lfia ) is an abelian subgroup of G. From b) and c) we 
deduce that the order of N is 3 2 r - 1 . From e) and a) it follows that N is a normal 
subgroup of G. Hence G = N(a), and so from a), we conclude that \G\ = 32r. 

THEOREM 2. Suppose ty is a finite projective plane. Then the following condi­
tions are equivalent: 

a) ty is isomorphic to one of the planes of type A to I. 
b) $ contains a Baer-subplane G with the property that |T(G, /) | = o (Q,)2for 

all lines I of G. 
c) $ contains a proper subplane G with the property that the subgroup of the 

full collineation group of ty which leaves invariant G operates flag-transitively 
on $ \G. 

d) ty contains a Baer-subplane G with the property that the subgroup of the 
full collineation group of ty which leaves G invariant is doubly transitive on the 
set of points of G. 

Proof. Assume that ty is a plane of one of the types A to I. Then it follows 
from Theorem 1 that $ satisfies b). c) follows from b) by Dembowski [5, (4) p. 
131]. (We note that Dembowski's proof of (4) only makes use of b).) We now 
show that d) follows from c). In this case, then, ty has a proper subplane Q 
and a collineation group G that fixes G and operates flag-transitively on 
$ \ Q . This means in particular that G is transitive on the set of lines of $ \ G . 
Let P be a point of G and let / be a line of $ \ G passing through P. Such a 
line exists, since G is a proper subplane of ty. Letting m be any line of $ \ G , 
we can find some y £ G such that ly = m. Hence m contains the point Py of G. 
This implies that every line of $ carries a point of G, and hence G is a Baer-
subplane of $. Then d) follows from c) by Dembowski [5, proof of Theorem 
5.1]. 

We now show that b) follows from d). For this, we let G be a collineation 
group of ty which leaves G invariant and which is doubly transitive on the set 
of points of G. By Ostrom & Wagner [15, Theorem 5], we know that G is 
desarguesian, and the collineation group H induced on G by G contains the 
little projective group PSL(3, g), where q is the order of G. Since PSL(3, q) 
operates doubly transitively on G, we may assume that H = PSL(3, q). 
Now let K be the kernel of the restriction of G to G. 

Case 1 : Suppose q is a power of 2. Let / be a line of G and let 2 be a Sylow 
2-subgroup of G that leaves / invariant. Then S contains a subgroup T that 
induces the group of all dations with axis I in G. We have |T| ^ q2. From 
Dembowski [5, Theorem 3.5] there exists r Ç T which induces an involution 
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in G and which in addit ion has a fixed point on / not belonging to G . Fur ther ­
more, ( r ) operates faithfully on G , implying r2 = 1. Since r has more than 
q + 1 fixed points on Z, we deduce t h a t r is not a Baer involution. Hence 
r Ç r ( Q , / ) , implying t ha t P ( G , Z) ^ {1}. 

Case 2: Suppose q is odd. We first show tha t for every non-incident point-
line pair (P , Z) of G there exists in G an involutory (P , Z)-homology of ty. 
Let S be a Sylow 2-subgroup of GPj. Let 2 r be the highest power of 2 t ha t 
divides q — 1, and 2 s the highest power of 2 t h a t divides \K\. Then we can find 
a subgroup Z of 2 such t ha t |Z| = 2*+s and Z induces a group of (P , / ) -homo­
logies of order 2r in G . There are g(g — 1) poin ts on / not belonging to G , and 
hence there exists some A on /, A not in G , such t ha t |^4Z| ^ 2r. Hence 
|ZA | ^ 2 s . Let a be an involution in ZA. As o- has more than q + 1 fixed points 
on /, we know tha t a is an involutory homology of $ , and hence <r is an involu­
tory (P , Z)-homology of $ . We may therefore assume t h a t ZA = {1} for all A. 
Hence \K\ is odd and \AZ\ = 2r for all the possible choices of A. Now 2r+1 is 
not a divisor of ç(g — 1), and so we can find some A on Z such t h a t | 2 | = 
2 r | S i l | . Since |Z H 2 A | = 1, we deduce t ha t 2 = Z 2 A . We saw tha t \K\ is odd, 
and hence t ha t 2 operates faithfully on Q . Let us now denote the groups 
induced in G by the same symbols 2 , Z and 2 A . T h e group HP>1 is isomorphic 
to a subgroup of GL(2, q) which contains SL(2,q). In part icular , Z lies in the 
centre of HPl. Since 2 splits over Z, we can use Gaschiitz ' Theorem (see, 
for example, Hupper t [11, Theorem 1.17.4]) to find a complement C of Z in 
H PI. This complement C will then contain SL(2, q). Bu t since \SL(2, q) C\ 
Z| = 2, wre then deduce the contradict ion 2 ^ | C P \ Z | = 1. This contradic­
tion shows t ha t there does exist an involutory (P , /)-homology of $ . As this 
holds for all choices of non-incident point-line pairs (P , / ) , we therefore have 
P ( G , Z) 5* {1} for all lines Z of G (André [ l ] ) . 

As we saw, H is the little projective group of G . Hence H is transit ive on 
the set of triples (P , Q, I), where P and Q are dis t inct points of G and Z is 
a line of G which contains neither P nor Q. This implies t ha t | P ( G , Z)| = g2 

for all lines Z of G , and hence we have b). 
Finally, we show tha t b) implies a ) . Let q be the order of G , so t ha t q2 is 

the order of ty. In the following, we write T(l) instead of 7"(G, I). We let 
G = (T(l)\l is a line of G ). The plane G is desarguesian, and G induces the 
little projective group of G in G . By Lemma 8, we know tha t G = G'. We let 
H be the restriction of G to G , and K the kernel of this restriction. 

(1) K = g(G). 

Since G IK ^ P 5 L ( 3 , q), and P £ L ( 3 , q) is simple, we know tha t 3 ( G ) Q 
K. On the other hand, choose r 6 P(Z) and ^ 1 Then K- 1 ™ G T(lK) = P(Z). 
If P is any point of G with P I I, then also P*"1™ = P™ = P^, and hence 
K"1TK = r, implying t ha t K G 3 ( G ) . 

Let I and m be dist inct lines of G . Suppose P = lC\m, and P ( P , w ) is the 
group of all elations in T(m) whose centre is P . Then T(P, m) normalizes 
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T(l). Hence T(P, m)T(l) is a group of order g3 which operates faithfully on Q, 
and hence its intersection with K is trivial. Now q = pr for some prime p. Let 
n 0 be a Sylow ^-subgroup of K. Then II = U0T(P, m)T(l) is a group of order 
|n0|<23, and so II is a Sylow ^-subgroup of G. By (1), n0 is an abelian normal 
subgroup of G. Also n0 has a complement in II. Hence, by Gaschutz' Theorem 
(loc. cit.), we conclude that n0 has a complement C in G. This implies by (1) 
that C is normal in G. The factor group G/C is isomorphic to n0 , and is there­
fore abelian. Hence G = G' C C, implying that n0 = {1}. Consequently, p 
does not divide \K\. 

Now let / be a line of Q. Since O is a maximal subplane of ^3, we know that 
the action of K on the set of points of / not belonging to Q is regular. Hence 
\K\ divides q(q — 1). Since p does not divide \K\, we have therefore proved 

(2) \K\ divides q - 1. 

We next observe 

(3) If q is odd, then the Sylow 2-subgroup of H is isomorphic to a Sylow 2-sub-
group of GL(2, q). 

This follows from the observation that every Sylow 2-subgroup of H leaves 
invariant a non-incident point-line pair of Q, and from the fact that the 
index of PSL(S, q) in PGL(3, q) is either 1 or 3. 

(4) If q = 3 mod 4, then \K\ is odd. 

Let 2 be a Sylow 2-subgroup of H. From (3) and from Carter & Fong [2, p. 
142], we then deduce that S is a semi-dihedral group. From Schur [21, p. 108], 
we know that the Schur multiplier of this group must be {1}. Hence the Schur 
multiplier of PSL(3, q) is of odd order (Schur [20, Theorem X, p. 49]). Since 
G = G' and K = 3(G), we therefore know from Schur [20, Theorem II, p. 31], 
that K is isomorphic to a subgroup of the Schur multiplier of PSL(3, q). 
But this implies (4). 

(5) If q = 2 or 3, then K = {1}. 

This follows at once from (2), resp. (2) and (4). 

(5) Let (P, I) be a non-incident point-line pair of Q. Let L be the group gener­
ated by all the T(Q, QP), where Q is a point of I belonging to O. Then L is iso­
morphic to SL(2, q). 

Let L be the restriction of L to O . Since Q is desarguesian, we know that 
L ^ SL(2, q). Also L ^ L/(L H K). If q = 2 or 3, then by (5) we know that 
L C\ K = {1}, and hence in these cases, we have L = SL(2, q). So assume that 
q > 3, then L' = L, implying that L = L'(Lr\K). Using (2), we then deduce 
that T(Q, QP) C V for all Q, and hence U = L. But this implies that L C\ K 
Ç L' C\ &(L). By Schur (loc. cit.) we therefore conclude that L C\ K is iso­
morphic to a subgroup of the Schur multiplier of SL(2, q). Now suppose that 
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LC\K 9^ {1}. Then from Schur [21, Theorem IX, p. 119] and the following 
remarks we could deduce that q = 4 and \L H K\ = 2, or that q = 9 and 
\L P\ K\ = 3, both in contradiction to (2). Thus L C\ K = {1}, implying that 
L^L^SL(2,q). 

Let (P, /) be a non-incident point-line pair of Q . Then Gx = T(l) GPji and 
so the groups Gx and GP)i induce the same permutation group on I. Let 12 be 
the set of points of I not belonging to Q . Then the proof of (4) in Dembowski 
[5, p. 131] shows that Gh and hence GPtt operate transitively on 12. Here one 
uses the fact that every point of 12 lies on exactly one line of Q, namely /. Let L 
be the group described in (6). Then L is normal in GP>i and the group of 
automorphisms induced in L be GPfX is isomorphic to PGL(2, q). Using (2), 
we see that the Sylow ^-subgroups of GP<i are the groups T(Q, QP). As their 
action on 12 is regular, we may apply Lemmas 5, 6 and 7. 

Our next aim is to prove 

(7) Suppose \K\ > 2. Then q = 7 or q = 19 and \K\ = 3 in either case. Let 
L be the permutation group induced on 12 by L, and choose a Ç 12. If q = 7, then 
the group La is isomorphic to S\. If q = 19, then La is isomorphic to A~0. 

To show this, we choose some a G 12. Now K = £(G), and the action of K 
on 12 is regular. Hence \K\ divides the number of fixed points of La. Using 
Lemmas 6 and 7, we therefore know that q = 11, 19, 7 or 5. If q = 7 or 19, 
then q = 3 mod 4, and hence, by (4), \K\ is odd. Thus Lemma 7 yields that 
\K\ = 3, as well as the required properties of La. 

Now suppose q = 11. By Lemma 7, we deduce that \K\ = 5. Since 1 1 ^ 1 
mod 3, we know that GPj induces GL(2, 11) on Q . Let S be the pre-image 
in G of the group of all (P, /)-homologies in Q . Let II be a Sylow 5-subgroup 
of Z. Then |XXj = 25. Since II fixes all the points of / belonging to O , we know 
that II centralizes L. Let IL be a Sylow 5-subgroup of LU. Then II Ç IIi, and 
III = n n 2 , where n 2 is a Sylow 5-subgroup of L. But |n2 | = 5, and hence 
IIi is abelian. The group II C\ K operates transitively on the five fixed points 
of La. Hence II = (II f^\ K)Ua, implying that n a n 2 is a complement of 
U(^ K in IL. We have 

|G| = 5|P5L(3, 11)| = 5(1P + 11 + 1)113(H + 1)(H - I)2 , 

and hence IL is a Sylow 5-subgroup of G. By Gaschutz' Theorem {foc. cit.) we 
therefore conclude that U C\ K has a complement in G, in contradiction to 
G = G'. 

We are left with the case q = 5. By Lemma 7, \K\ = 4 in this case. Again, 
let S be the pre-image of the group of all (P, /)-homologies of Q . Then | S| = 1 6 
and S = KXa. Furthermore, we know that S is abelian, since 2/2£ is cyclic. 
Let m be a line of Q passing through P , and let Q be a point of O on / other 
than I C\m. Define L\ with respect to Q and m the same way L was defined for 
P and /. Now J5(5 + 1) is odd, and so there exists exactly one Sylow 2-sub-
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group T of Li satisfying {P, I C\ m}T = {P, I C\ m}T. Since 2 fixes all the 
points of / belonging to Q , we therefore conclude that 2 normalizes T. Also, 
T contains a unique involution. Since this involution has Q and l H m as its 
only fixed points on /, we see that T H 2 = {1}. We know |SL(2, 5)| = 120, 
and hence |T| = 8, implying that |TS | = 16-8 . We also have 

\G\ = 4|PSL(3, 5)| = 4(52 + 5 + 1)53(5 + 1)(5 - l)2 , 

and so we know that TS is a Sylow 2-subgroup of G. But note T2 = i£(2 aT), 
and so, again using the Theorem of Gaschiitz, we obtain a contradiction. This 
completes the proof of (7). 

(8) Ifq^lor 19, then K = {1}. 

Suppose K j* {1}. Then \K\ = 2 by (7), and by (2) and (4) q = 1 mod 4. 
Let S be the pre-image of a Sylow 2-subgroup of the group of all (P, /)-homol­
ogies of Q that belong to H. Then | 2| = 2 r+1, where 2r is the highest power of 
2 that divides q — 1. Suppose there exists a 6 12 with |a2 | = 2. Then a 2 = a* 
and thus 2 = i£2a . Let m be some line of Q passing through P . On /, choose 
a point Q of Q distinct from I C\m. Define Li with respect to Q and m the 
same way L was defined for P and /. Since q = 1 mod 4, there exists a unique 
Sylow 2-subgroup T of Li satisfying {P, / P\ w}T = {P, / Pi m}. Hence T is 
normalized by 2. The group T contains a unique involution. Its only fixed 
points on I are Q and / H m. Hence S P i T = {1}. This implies that the order 
of 2 T is 22r+2. We have 

|G| = 2|P5L(3, q)\ = d-i2(q> + q + l)q*(q + l)(q - l ) 2 

where d = (3, q — 1). Hence 2T is a Sylow 2-subgroup of G. On the other 
hand, 2T = X(S a T) , and so the Theorem of Gaschiitz again provides a 
contradiction. We conclude that |a2 | is divisible by 4 for all a 6 Œ. Since S 
centralizes L, this implies that the number of fixed points of La is divisible by 4. 
Using Lemma 7, we therefore deduce that q = 5. Since the group 2/2£ is 
cyclic of order 4, we can find a G S such that S(o-) = X. If K C\ (a) = {1}, 
then the argument used above again yields a contradiction. Hence K C\ (a ) 9e 

{1}, and thus K Q (a), implying that S is a cyclic group of order 8. Since the 
unique involution of S is contained in K, we know that S has no fixed points 
in 12. But this implies that 8 divides |fi| = 5 • 4, which is a contradiction. Thus 
we have proved (8). 

(9) If q = 19, then G ^ P5L(3, 19), and for X G 12, the group Lx is not 
isomorphic to SL(2, 5). 

If G is not isomorphic to P5L(3, 19), then by (4) and (7), the order of K is 
equal to 3, and Lx ^ SL (2, 5). If G ̂  P5L(3, 19), assume that L x 9Ë S i (2 , 5). 

Let So be a Sylow 3-subgroup of Lx- Then there exist exactly two points Q 
and R of G lying on / that remain fixed by S0. Let S be a Sylow 3-subgroup 
of G[ptQtR) that contains So- Then S is also a Sylow 3-subgroup of G. Let 
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Si = T2PtQtR. Then Si is a normal subgroup of index 3 in S, and Si normalizes 
the group LQiR. But this group is cyclic of order 18, and hence Si normalizes 
S0. By Lemma 9, we know t h a t S i / i £ contains three cyclic groups of order 9, 
and thus S i / i £ contains 3 • 6 = 18 elements of order 9. Fur thermore , S i / i £ 
contains an elementary abelian 3-group A of order 9. As 18 + 9 = 27 = 
| S i / i £ | , we see therefore, t ha t 20K/K C A. Bu t S0 does not induce a group of 
homologies in Q , since S0 is a subgroup of L of order 3. Hence 20K/K = 
3(2/K). 

By Lemma 9, there exist a, P £ S and iu . . . , i5 G K so t ha t S/X" = 
(aK, f3K ) and a, p satisfy the relations: 

a) az = ii. 
b) /39 = i2. 
c) apz = i$*a. 
d) P~la~lPa = i±oTlpap-1. 

e) crlprlaprl = ib0Lpcrl. 
Also we can choose a and /3 in such a way t ha t p~la~lPa induces a (P , / ) -

homology of order 3 in Q . 
GP? ; induces a group of automorphisms in L which is isomorphic to the group 

PGL(2, 19). Moreover, GPJ C GL(2, 19). We therefore conclude from 
Dickson [7, § 259], t ha t GX,XP = Z X £x> where Z is a cyclic group of order 1 
or 3 which is contained in the centre of GPti. Since GPtt acts transit ively on &, 
we therefore conclude t ha t Z is a group of (P , /)-homologies of $ . 

Now let i£ ^ {1}. Then |Z| = 3. Hence there exists some z Ç Z and some 
i £ K such tha t P~la~lPa = zi, implying t ha t 1 = (P~la~lPa)z. This in turn 
implies t ha t 

1 = (^a-^iprior^nor^ap-1 = i$-l{orl$ap-l)crl^a$-1 

= idClfi-l{$-lcrl$OL)a-lP2ap-1 = p-2a~lPsap~l = is"1. 

Hence /33 lies in the centre of S. This conclusion is equally valid if we assume 
tha t K = {1}. Bu t then (P*)K/K C 3 ( 2 / 2 0 = 2 0 i£ / i£ , and so X0K = 
{PZ)K. T h u s 20K = 3 ( 2 ) . Bu t this implies in part icular t ha t S0

a = S0 . 
Hence S0 fixes some subplane 3î of order m pointwise, since S0 has more than 
two fixed points on /. T h e points P , Q, and R are the only fixed points of S0 

in Q and PQ, QR and RP are the only fixed lines of S0 in Q . Now suppose 
W is some point of 9Î not belonging to Q . Then W lies on a unique line of O . 
This line is fixed by S0, since both H^and G s tay invar iant under S0 . Hence W 
lies on one of the three lines PQ, QR or RP. Since these are lines of 9i, we know 
tha t each of them carries m + 1 points of sJi. Hence we have 3(m — 1) = 
m2 + m + 1 — 3 = (m — 1) (m + 2) . T h u s 3 = m + 2, or equivalently m = 
1. This is a contradiction, and hence (9) is proved. 

(10) If q j*7, then G ÊË PSL(3, q). If q = 7, *Ae» e ^ r G ^ P S L ( 3 , 7) or 
G ^ S L ( 3 , 7) . 

If G is not isomorphic to P 5 X ( 3 , g), then by (8) and (9), we know tha t 
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q = 7. Then (4) and (7) imply that \K\ = 3. Since PSL(3, 7) = PSL(3, 7)', 
we know from Schur [20, Theorem IV, p. 38] that PSL(3, 7) has exactly one 
representation group D. By Schur [21, Theorem III, p. 99], there exists a 
subgroup Z of the centre of D such that G Ç= D/Z. For the same reasons, there 
also exists a subgroup Z0 of the centre of D with SL (3, 7) = D/ZQ. We must 
show Z = Z0. Certainly, Z C\ Z§ contains all elements of &(D) whose orders 
are not divisible by 3. Furthermore, 3|Z| = 3|Z0| = 13(^)1- Hence we need 
only show that 9 is not a divisor of 1S (D) |. By Lemma 9, the Sylow 3-subgroup 
2 of PSL(3, 7) is an elementary abelian group of order 9. By Schur [21, 
Theorem VIII, p. 113], we know that the Schur multiplier of 2 is of order 3. 
Again by Schur [20, Theorem X, p. 49], we therefore conclude that 9 is not a 
divisor of | «3(^)1- This proves (10). 

From Dembowski [5, (4) p. 131], we know that G is flag transitive on 
$ \ Q . Let (X, y) be a flag of $ \ G . Let A = Gx, B = Gv and C = Gx>y. Let / 
be the unique line of Q through X, and let P be the unique point of G on y. 
Then P (G , /) C A and P ( Q , P) C B, where P (G, P) denotes the group of 
all dations with centre P that leave Q invariant. Thus A = P ( Q , l)C, B = 
P ( Q , P)C and AH B = C. By Higman & McLaughlin [9] we see therefore 
that ^)3\0 is uniquely determined by C. But by Dembowski [4, p. 317, footnote 
1], we know that $ is uniquely determined by ^3\Q up to isomorphism. Hence, 
all we must show is that there exists a plane $(G, S) of type A to I, so that C 
is conjugate in GPj to the collineation group induced by 5 on ^(G, S). 

UG^PSL (3,g), then \C\ = (3, g - l ) " 1 ^ - 1), if G ̂ 5 L ( 3 , 7), then 
|C| = 72 — 1. Furthermore, L x = C C\ L, and Lx is normal in C since L is 
normal in GPtî. 

If g is even, then by Lemma 6, \LX\ = \LX\ = q + 1 and L x is cyclic. The 
normalize! of Lx in GPti has order 2(3, g — l)_1(g2 — 1) (by Dickson [7, 
§ 260]), and is a dihedral group. But C is contained in this normalizer and is of 
order (3, q — l ) - 1 ^ 2 — 1), and hence is cyclic of this order. It follows from 
Dickson [7, § 260], that all the cyclic subgroups of order (3, q — l)~l(q2 — 1) 
are conjugate in GP< t. Hence ty is of type A in this case. 

Now suppose q is odd. The involutions of G are all contained in the same 
conjugacy class. By Lemma 5, the only involution in L is a (P, /)-homology. 
Hence all the involutions in G are homologies, that also induce homologies in Q . 
Now let a be an involution in C. Then Xa = X, and hence a is a (P, /)-homol­
ogy. Thus C contains exactly one involution. This implies that the Sylow 
2-subgroups of Care either cyclic, or generalized quaternion groups. 

Suppose q = 1 mod 4. Let a be an element of order 4 in C. Then a2 = 

. Since q = 1 mod 4, we know that a operates reducibly, and 

hence there exists an element f of order 4 in GF(q), so that a is conjugate to 

y ^ . This implies that f2 = - 1 = f2î. Hence i = 1 or î = 3. If i = 3, 

then det c = 1, and so a Ç L x . 
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Now suppose Lx is of type 3) as in Lemma 7. Then the order of Lx is 
2(g + 1), and Lx contains elements of order 4. Choose some a £ C\LX such 

t ha t o(a) = 4. Then by the above argument , a = 
f 01 

and hence a lies 

in the centre of C. On the other hand, Lx contains cyclic groups of order 4, and 
this implies t ha t the Sylow 2-subgroups of C are neither cyclic nor generalized 
quaternion groups. This is a contradiction. Consequently, all elements of order 
4 belong to Lx. Since \Lx\ = 2(g + 1), the Sylow 2-subgroups of Lx have 
order 4 and hence are cyclic. Since the elements of order 4 in C a lready lie in 
LXl we deduce t ha t the Sylow 2-subgroups of C are also cyclic. Suppose 2 r is 
the highest power of 2 t ha t divides q — 1. Then C contains an element p = 

7 of order 2 r + 1 . This element must operate irreducibly, whereas p2 acts 

reducibly. Hence we have 

b l Ya bl = T a2 + be (a + d)bl . 
Ĵ Lc d\ La(a + d) cb + d2 J 

Where X is an element of GF(q)* of order 2 r . If a + d ^ 0, then & = c = 0, 

implying t ha t p is reducible. Hence a = —d, and so X = X*. Bu t the element 

|~X 0] = [a 
[_o x*J U 

fX2r"2 0 "1 
L 0 X2r"2J 

is of order 4, and hence lies in Lx. Therefore, the de te rminan t of this matr ix is 1. 
Bu t this yields 1 = X2r_1 = — 1, a contradiction. T h u s Lx is not of type 3) . 

If Lx is of type 1), then Lx is a cyclic group of order q + 1, and hence con­
tains no element of order 4. Therefore, the elements of order 4 in C lie in the 
centre of C, implying tha t the Sylow 2-subgroups of C are cyclic. If C itself is 
cyclic, then as above, we show tha t ^ is of type A. So assume tha t C is not 
cyclic, and choose some element p in C such t ha t the order of p is 2 r + 1 . Again 
as above, we see t ha t p2 lies in the centre of GP>i. Moreover, p2 generates the 
Sylow 2-subgroup of 3(GPji). Hence, as Lx has precisely two fixed points in 12, 
we have £(GPfi) C C. T h e group C/£{GPiï) is not cyclic, as otherwise C 
would be abelian, and hence cyclic. Therefore, C/£(GP>i) is a dihedral group 
of order q + 1. The group PGL(2, q) contains exactly two conjugacy classes of 
dihedral groups of order q + 1, the groups of one of these classes all lie in 
PSL(2, q), whereas the groups of the other class do not. Now p£(GP,i) & 
L£(Gpti)/£(GPti)j and hence all the groups C in question are conjugate in 
GP)i. T h u s ty is of type B. 

Now suppose q = 3 mod 4. In this case the Sylow 2-subgroups of GPyi are 
quasidihedral groups by Carter & Fong [2, p . 142]. These contain only one 
generalized quaternion group of index 2, which consequently lies in L. If Lx 

is a dihedral group, then the Sylow 2-subgroup of C is a generalized quaternion 
group, which therefore must lie in Lx, implying by comparing orders t h a t Lx 

cannot be of type 2) in Lemma 7. Assume for the moment t h a t q = 3. Then 
\C\ = 8. If C is a quaternion group, then C = LXj i.e. C is a Sylow 2-subgroup 
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of L. Hence ty is of type B. If C is cyclic, then $ is of type A, since all the 
cyclic subgroups of order 8 are conjugate in GL{2, 3). So suppose q > 3, and 
suppose Lx is of type 1), 2) or 3) of Lemma 7. Then by the above, Lx is of 
type 1) or 3). Suppose Lx is of type 3). Then \LX\ — 2{q + 1) and \LX H 
B(Gp,i)\ = 2. This implies by Lemma 7, that 3(GPtî) Q C, and hence C = 
£(GPji)Lx. Since all subgroups of L that are isomorphic to Lx are conjugate 
to LX in L, we deduce that all the groups C under discussion are conjugate in 
GPti. Hence $ is of type B. 

Now suppose Lx is cyclic of order J(g + 1). Then Lx is cyclic of order 
q + 1, and the Sylow 2-subgroups of C are cyclic. Let S be a Sylow 2-subgroup 
of C. Since 2 operates irreducibly, we know that the centralizer D of 2 in 
GPti has order (3, q — \)~l(q2 — 1) (see, for example, Huppert [11, II.7.3]). 
Furthermore, D is cyclic. The number of fixed points of S in 12 is even, as \Q\ is 
even. It is actually 2. This can be seen as follows: Since all the cyclic subgroups 
of order %(q + 1) of PSL(2} q) are conjugate within PSL(2, q), the group L 
acts on / as a subgroup of PGL(2, q2) in its usual action on the projective line 
over GF(q2). Hence the identity is the only permutation in L fixing more than 
two points on /. From this we infer that 2 C\ Lx and hence 2 has exactly two 
fixed points in Œ. Hence both these fixed points are fixed points of D. Thus D 
and C are conjugate in GPih implying that C is cyclic. Hence ^ is of type A. 

We are left with a discussion of types 4) to 11) of Lemma 7. 
Ad 4: Here LX^SL(2, 5) and \C\ = l l 2 — 1 = \LX\. Hence C = Lx. 

From Dickson [7, § 259], we deduce that $ is of type G. 
Ad 5: By (9), this case does not occur. 
Ad 6: Here LX^SL(2, 5), and \C\ = 292 - 1 = 7\LX\. From Dickson 

[7, § 259] and GPtt C GL(2, 29), we deduce C — ZLX, where Z is the subgroup 
of order 7 in the centre of GPiX. Since all subgroups of SL(2, 29) that are iso­
morphic to SL(2, 5) are conjugate to Lx [7, § 259], we know that $ is of type H. 

Ad 7: Here LX^SL(2, 5), and \C\ = 29\LX\. Asunder Ad 6, we deduce that 
$ is of type I. 

Ad 8: Here Lx ^ 54, and \C\ = \d(l2 - 1), where d = 1 if G ̂  P5L(3, 7) 
and d = 3 if G ̂  5L(3, 7). Since |54 | = 24, we know that \C\ is divisible by 3. 
Hence d = 3, and so G ^ 5 L ( 3 , 7). From Dickson [7, §257] and GPtl C 
GL (2, 7) we deduce that 5̂ is of type E. 

Ad 9: Again, LX~S^ Further, we have \C\ = 232 — 1 = 11|LX|. From 
Dickson [7, § 257] and GP>1 C GL(2, 11), we deduce that C = ZLX, where Z 
is the subgroup of order 11 of £(GPti). Hence we have type F. 

Ad 10: We have Lx ^ SL(2} 3), and \C\ = 24 = \LX\. Then Dickson 
[7, § 257] implies that we have type C. 

Ad 11: We have LX^SL(2, 3) and |C| = l l 2 - 1 = 5\LX\. Hence, C = 
ZLX, where Z is the subgroup of order 5 of &(GPti). This yields type D. 

This completes the proof of the theorem. 

The proof of Theorem 2 also yields: 
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COROLLARY 1. Let tyt(i = 1, 2) be two projective planes of order q2. Let G* be 
a Baer subplane of tyi} and let Gt = (T(G*, l)\l is a line of Q j ) . Let Si be the 
stabilizer in Gt of a flag of ^XG*. If Gi acts flag-transitively on ^XG*, then 
^ i and ^ 2 are isomorphic if and only if Si and S2 are isomorphic. 

From Corollary 1 and Dembowski [6, Theorem 5.7], we obtain: 

COROLLARY 2. The planes of type A are the desarguesian planes of square order 
and the planes of type B toi are the generalized Hughes planes. 

The next corollary is a direct consequence of Corollary 1. It was proved by 
Rosati [18; 19]. 

COROLLARY 3. If ty is a generalized Hughes plane, then $ is self-dual. 

COROLLARY 4. Let C and L be defined as above. Then C has exactly two fixed 
points on 12, except in the following cases: 

a) q = 11, and C = Lx ~ SL (2, 5). In this case, C has exactly five fixed points. 
b) q = 59, and Lx = SL(2, 5). In this case, C has exactly one fixed point. 
c) q = 7, and Lx = S^ Then C has exactly three fixed points. 
d) q = 23, and Lx = SA. Then C has exactly one fixed point. 
e) q = 5, and C = Lx ~ SL(2, 3). Then C has exactly four fixed points. 
f) q = 3, and C = Lx is the quaternion group of order 8. Then C has exactly 

six fixed points. 

With the exception of Case f), all this was shown in the proof of Theorem 2. 
But f) follows from the fact that SL(2, 3) contains precisely one quaternion 
group, and that Lx ^ LY for all X, Y £ 12. 

COROLLARY 5 (Rosati). Let K be the group of all collineations of ty which fix 
G pointwise. Then \K\ = 2, unless we have: 

a) q = 11, and Lx 9É SL{2, 5). Then \K\ = 5. 
b) q = 59, and_Lx ^ SL(2, 5). Then \K\ = 1. 
c) q = 7, and Lx ^ 54. Then \K\ = 3. 
d) q = 23, and Lx ^ 54. Then \K\ = 1. 
e) q = 5, and Lx =^ SL(2, 3). T ^ n i£ is c^c/ic of order 4. 
f) g = 3, a?zd Lx is the quaternion group of order 8. Then K = <S3. 

Proof. K centralizes G (see the proof of (1) in the proof of Theorem 2). 
Further, the action of K on 12 is regular. Hence \K\ divides the number of 
fixed points of C in 12. Let X, Y be two fixed points of C in 12. Then A = 
Gx = T (G, l)C = GY, and 5 = GPX = T(G, P ) C = GPY. By Higman & 
McLaughlin [9], we can therefore find an isomorphism a of ^ \ G onto 3(G, C) 
with (X^Y = Ay, and an isomorphism r from $ \ G onto 3(G, C) with (F^) r = 
Ay for all 7 G G. Thus, ar'1 is a collineation of $ \ G such that X^aT~l = Y^ 
for all 7 G G. But Z* = Z^F* = X^X^7"1. Since ar"1 has an extension to a 
collineation of $ (by Dembowski [4, p. 317, footnote 1]), we deduce that or - 1 
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is a collineation fixing all the lines of Q , as there passes exactly one line of Q 
through each point of $ \ Q . Since X and Y were arbitrarily chosen fixed 
points of C in 12, we conclude t ha t \K\ is the number of fixed points of C in 12. 
This , combined with Corollary 3, yields the result except for showing tha t K 
is cyclic in Case e) , and isomorphic to 53 in Case f). 

In Case e) , G ^ PGL(3, 5) . By Dickson [7, § 257], we can find a 2-element 
£ in the normalizer of C which induces an involutory automorphism in C such 
t ha t £ £(GPil) (Z L3(GP,l)/3(GPil). Hence o({) = 8 and £2 G 3 (G P , z ) . Thus 
the fixed points of C are the points X, X*, X*2 and X^, if ^ is a fixed point of C. 
Now we can find K £ K such tha t X* = X*. Since X centralizes the group G, 
we know tha t X*1" = X^* = X*t-+1. Hence O(K) = 4. So we see tha t K is indeed 
cyclic in this case. 

In Case f), \K\ = 6. Also, C = Lx, and C fixes all the points of 12. The 
group GPti/C is of order 6, and is not abelian, and so GPti/C is isomorphic to 
6*3. If we identify the action of GPti/C on 12 with the right regular representa­
tion of GPii/C, then the transi t ivi ty of K on 12 together with the fact t ha t K 
centralizes GPti imply tha t the action of K on 12 is similar to the left regular 
representation of GPti/C. Hence K is isomorphic to S3, and this completes 
the proof. 

The full collineation group of the generalized Hughes planes were also 
determined by Rosati [17; 19]. 

COROLLARY 6. Let $ be a generalized Hughes plane of order q2. Let II be the 
full collineation group of $ , and let K be the collineation group of 3̂ which fix 
Q pointwise. Then we have: 

a) If G ~ PSL(3, q), then U = T X K, where T is a group isomorphic to 
PTL(S,q). 

b) If G^ 5 L ( 3 , 7), then \U : G\ = 3, and U induces the group P G L ( 3 , 7) 
on Q . Also, we have K = 3 ( G ) = , 3 ( n ) . 

Proof. I t follows from Wagner 's celebrated theorem [23, Theorem 1] tha t 
II fixes the subplane Q . 

a) Let TV be the normalizer of C in PTL(3, q). Since P and / are the only 
fixed elements of C in the desarguesian plane Q , we have N C PTL(3, q)P,i-
Hence we see tha t N normalizes the groups T ( Q , /) and T(£l, P), implying 
tha t N is a group of collineations of <Ç. But all the subgroups of GPtt t ha t are 
isomorphic to C, and tha t were used in the construction of the generalized 
Hughes planes, are already conjugate to C in GPj. Hence, using the Fra t t in i 
argument , we deduce tha t NG = PTL(3, q), and so we see tha t II really con­
tains a subgroup F which is isomorphic to PTL(3, q). Since V induces in Q 
the full collineation group of Q , we conclude tha t II = TK. If \K\ ^ 2, then 
r is normal in II. Also, r Pi K = {1}, and hence II = T X K. So suppose 
\K\ ^ 3. By Corollaries 5 and 4, we then know tha t q = 11, 5 or 3. In all three 
cases, wre have T = G, and thus we always have II = T X K. 
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b) T h e group GL(3, 7) contains a subgroup n 0 of index 2. This contains 
5 L ( 3 , 7) . As in a ) , we deduce t ha t the normalizer N of C in ÏI0 normalizes 
the groups P ( G , /) and P ( G , P ) , and hence is a subgroup of the collineation 
group of ty. Again, we have n 0 = NG, implying t h a t n 0 is a collineation 
group of ty which induces the group P G L ( 3 , 7) on Q . T h u s II = n0.K = 
NGK = NG. 

COROLLARY 7 (Ostrom [13; 14]). Let $ be a generalized Hughes plane. Let Q 
be defined as above. Then every homology of G can be extended to a homology of $ . 

Proof. This is certainly correct if o(ty) = 9, since 3 — 1 = 2. So assume 
a > 3. Let G be the collineation group of $ which is generated by all the 
elations, and suppose first t ha t G ~ P 5 L ( 3 , q). Then G C r . Also, T contains 
a group G* such t ha t G Ç G * = P S L ( 3 , q). Let C* be the stabilizer in G* of a 
flag of $ \ Q . Then |C*| = ç2 - 1. Bu t also, |C* : C| = (3, q - 1). If $ is of 
type B, then C 2 3(Gp.z)- Since GPj operates transit ively on ft, we conclude 
t h a t the elements of S(Gp,i) a r e all (P , /)-homologies. We also know t h a t in 
this case, C has exactly two fixed points in ft. Since \£(GPt*) : £(GPti)\

 = 

(3, g — 1), we conclude t ha t the fixed points of C are also fixed points of 
c3(Gp,j*). Hence âCGp.i*) is a group of (P , /)-homologies. T h e order of this 
group is q — 1, which completes the proof in this case. 

If *§ is of type D, F or I, then £(GPtî) Ç C. In these cases \C\ = q2 — 1, 
and so the assertion follows. 

If ty is of type C, we have q = 5, and |3(Gp,z) O C| = 2. Choose ô G 
c3(Gp,0 with o(8) = 4, and let X be a fixed point of C in ft. Then there exists 
X G K such tha t XÔX = X. Now 5X centralizes the group GP)Z, and GP ) Z is 
t ransit ive on ft. Hence <5X is a (P , /)-homology. Also, 3 and <5X induce the same 
collineation on Q . Hence 5X is a homology of order 4. This proves Corollary 6 in 
this case. Moreover, since \£(GPti) C\ C\ = 2, we know tha t <52 lies in C, and 
hence ô2 is the only involutory (P , /)-homology of ty. On the other hand, we 
know tha t (<5X)2 = <52X2 is also an involutory (P , I)-homology. Hence X2 = 1. 
Since G ~PGL (3, 5), we therefore know t h a t the index of G (X) in GK is 2, and 
t h a t G (X) is the group generated by all homologies. 

Similarly, for types G and H, we deduce t ha t all (P , /)-homologies of O can 
be extended to (P , /)-homologies of ^3. Also we obtain in both cases t h a t the 
full collineation group of ty is generated by homologies. 

We are left with the case t h a t $ is of type E. In this case G ^ SL(3, 7) . I t 
is easily seen t ha t GP>z* = £(G)L, where L ~ GL(2, 7) and where G* is the 
full collineation group of $ . Th is again yields t ha t all homologies of Q can be 
extended to homologies of $ , and t ha t the full collineation group of ty is 
generated by homologies. This proves Corollary 7. 

Also, we have proved 

COROLLARY 8. Let $ be a generalized Hughes plane of order q2. Then the 
collineation group A generated by all the homologies of Ĵ3 is isomorphic to 
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PGL (3, q), unless ty is of type C, E, G or H. If ^ is of type C, then A has index 2 
in the full collineation group. In the remaining cases, A is the full collineation 
group of 93. 

The next corollary was proved by Ostrom [14] for orthogonal polarities of O . 

COROLLARY 9. Let 93 be a generalized Hughes plane. Let 80 be a duality of Q. 
Then 80 can be extended to a duality 8 of ^ such that o (8) = o(ôo). In particular, 
every polarity of Q extends to a polarity of 93. 

Proof. We consider the group PT*L(3, q), consisting of all collineations and 
dualities of Q . If G == PSL(3, q), then, again by using the Frattini argument, 
we deduce that PT*L(3, q) = N*G, where N* is the normalizer of C in 
Pr*L(3, q). Also, we see that {P, l\N* = {P, I}, and hence N* is a group of 
collineations and dualities of 93. This implies that Pr*L(3, q) is a group of 
collineations and dualities of $. Thus the corollary holds in this case. 

Now suppose that G = SL(3, 7). By Corollary 2, we can find some duality 
e of 93- This must leave Q invariant. Since the full collineation group II of 93 
induces the group PGL{3, 7) on Q, we can find a collineation T G II such that 
d0 and ex induce the same duality on Q. Hence <50 can be extended to a duality 
oof $. 

If 3 does not divide o(ôo), then (50 ) = (do3), and of course, o(d0) = o(ô0
3). 

Hence there exists some i, such that do and ôsi induce the same duality on Q . 
Moreover, o(ô0) = o(ôdi). 

Finally, we have to consider the case, where 3 divides o(ô0). From Daues & 
Heineken [3] we then know that O(8Q) = 3 or o(ôo) = 12. Choose j in such 
a way that o(8j) = 3. Again by [3], we know that <V 6 PSL(3, q)p,i for a 
suitable, non-incident point-line pair (P, I) of Q. Hence dj £ SL(3, q), and 
5j can be written as 

a 0 0~| 
Ob c\. 
Ode] 

7 0 0] 
0 / 0 , 
_0 0 /J 

where /3 = 1. Hence we have a3 = / , and so a9 = 1. Therefore, a3 = 1, im­
plying t h a t / = 1. Hence 9 does not divide o(8). But this implies that o(8o) = 
o(6). 

COROLLARY 10. Suppose q is a prime power, and suppose q = 1 mod 3. 
Let $ be a projective plane of order q2, and suppose that G is a group of collinea­
tions of $ which is isomorphic to SL(3, q). Then q = 7, and 93 is the plane of 
type E. 

8j = 

Also, 

Ô 3 ' = 
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Proof. G fixes a Baer subplane O of $ . The proof of this is precisely the same 
as the proof of Theorem 1 in Unkelbach [22]. This proof also shows that G acts 
doubly transitively on the set of points of Q . By Theorem 2, we therefore 
know that $ is either desarguesian, or a generalized Hughes plane. Since 
q = 1 mod 3, we have \£(G)\ — 3, and thus q = 7 and $ is of type E. 
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