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Multilocus models of inbreeding depression with synergistic
selection and partial self-fertilization
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Summary

Mean fitness and inbreeding depression values in multi-locus models of the control of fitness were
studied, using both a model of mutation to deleterious alleles, and a model of heterozygote
advantage. Synergistic fitness interactions between loci were assumed, to find out if this more
biologically plausible model altered the conclusions we obtained previously using a model of
multiplicative interactions. Systems of unlinked loci were assumed. We used deterministic computer
calculations, and approximations based on normal or Poisson theory. These approximations gave
good agreement with the exact results for some regions of the parameter space. In the mutational
model, we found that the effect of synergism was to lower the number of mutant alleles per
individual, and thus to increase the mean fitness, compared with the multiplicative case. Inbreeding
depression, however, was increased. Similar effects on mean fitness and inbreeding depression were
found for the case of heterozygote advantage. For that model, the results were qualitatively similar
to those previously obtained assuming multiplicativity. With the mutational load model, however,
the mean fitness sometimes decreased, and the inbreeding depression increased, at high selfing
rates, after declining as the selfing rate increased from zero. We also studied the behaviour of
modifier alleles that changed the selfing rate, introduced into equilibrium populations. In general,
the results were similar to those with the multiplicative model, but in some cases an ESS selfing
rate, with selfing slightly below one, existed. Finally, we derive an approximate expression for the
inbreeding depression in completely selfing populations. This depends only on the mutation rate
and the dominance coefficient and can therefore be used to obtain estimates of the mutation rate
to mildly deleterious alleles for plant species.

, T . . .. alleles, and also a high mutation rate. In that work, we
1. introduction , ... .. .. , , - .

assumed a multiplicative model of interactions be-
In previous studies (Charlesworth & Charlesworth, tween loci. This seems a natural starting point for
1990; Charlesworth, Morgan & Charlesworth, 1990) thinking about a multi-locus system that affects fitness,
of the behaviour of inbreeding depression caused by because it corresponds to the case when the loci act
overdominance or by many unlinked loci subject to independently of one another, so that survival
deleterious mutation, in partially self-fertilizing popu- probability for a genotype is given by the probabilities
lations, we concluded that large levels of inbreeding of survival associated with the genotypes at each of
depression, such as are sometimes found in real the individual loci present (Crow, 1970).
organisms, can be generated. If the magnitude of the It is, however, important to study other models of
inbreeding depression exceeded one half there could fitness interaction, because the multiplicative model is
be selection for outcrossing, when modifiers of the not necessarily the most biologically realistic. Fur-
selfing rate do not affect the contribution to the pool thermore, there is a possibility that synergistic
of male gametes involved in outcrossing. To produce interactions would lead to higher inbreeding de-
inbreeding depression in excess of one half with the pression than multiplicativity in populations with
mutational model, which is probably the more comparable mean fitness levels. If this occurs, there
biologically realistic case, it was necessary to assume could be selection to maintain outcrossing under more
quite a low degree of dominance for the deleterious permissive parameter values (i.e. lower mutation rates

and higher dominance coefficients) than we found
t Corresponding author. necessary in our previous study. There is evidence that
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mutant alleles may act synergistically in depressing
fitness (reviewed by Charlesworth & Charlesworth,
1987, and by Charlesworth, 1990), and there are
reasons to expect that the type of fitness interactions
may affect the results. Kondrashov (1985, 1988) has
emphasized the importance of truncation selection,
which can be viewed as a severe form of synergistic
interaction (where the deleterious effect of having a
mutant allele becomes increasingly severe, the more
mutations the genotype carries).

In this paper, we study two different models for the
maintenance of genetic variation in fitness. In the first
of these, mutation to deleterious alleles occurs at
many unlinked loci, and we study the effects of
changing from the multiplicative model to the syner-
gistic model of fitness interactions, on both the
mean numbers of mutant alleles maintained per
individual, and on the population mean fitness and
inbreeding depression values of equilibrium pop-
ulations with various levels of self-fertilization. With
parameter values that are plausible for this form of
selection, equilibrium populations sometimes build up
very large average numbers of mutant alleles per
individual (although these numbers are smaller than
for the multiplicative runs with similar parameter
values). The finding of large numbers of mutations per
individual in these populations suggested the pos-
sibility of deriving approximate analytical models,
and we present these for both the synergistic and
multiplicative cases. The approximations are based on
the assumption that the numbers of mutant alleles per
individual follow normal or Poisson distributions.
This permits more detailed exploration of the
parameter space than was previously possible. The
approximations are valid only for certain regions of
the parameter space, but within these regions they
give close agreement with the results of computer
calculations that do not make any simplifying assump-
tions about the distribution of numbers of mutations.

We also compare the synergistic and multiplicative
selection cases, using a model in which the variation in
fitness in the populations is due to the maintenance of
genetic variation at a number of unlinked loci whose
alleles show symmetrical overdominance. For this
model also, an approximate analytical treatment can
be derived that gives excellent agreement with the
results of computer calculations. Finally, for both
types of model, we study the behaviour of modifier
alleles that change the frequency of self-fertilization,
to investigate the relationship between inbreeding
depression and evolution of the selfing (or outcrossing)
rate.

2. Model of synergistic interactions

(i) Mutational model

The multiplicative model of interactions between loci
used by Charlesworth et al. (1990) assumes that the
fitness of a genotype is given by the expression:

w
Vz — 0 — •?)"(! — hs)z, (1)

where s is the selection coefficient against the mutant
alleles (assumed to be the same for mutants at all loci),
h is the dominance coefficient of these alleles, and y
and z are the numbers of homozygous and het-
erozygous mutations in the genotype, respectively.
Compared with this model, synergistic epistasis should
decrease the mean number of mutant alleles present
per individual in a population at equilibrium under
mutation-selection balance. Thus the genetic load due
to mutation is decreased if multiple-mutant genotypes
have lower fitness than if the loci affected fitness
independently (Kimura & Maruyama, 1966; Crow,
1970). This form of synergism should also increase the
inbreeding depression, because the effect of becoming
homozygous for deleterious alleles should cause a
greater decrease in fitness than when the fitness effect
of the genotype at one locus is independent of the
genotypes at the other loci. This can be seen by
considering the way in which synergistic epistasis for
fitness can be modelled. Charlesworth (1990) intro-
duced a model of synergistic interactions for the case
of a random-mating population, in which log fitness
was assumed to be a quadratic function of the number
of loci heterozygous for mutant alleles. In the present
paper, we wish to allow homozygosity for mutant
alleles. This model can be generalized to write:

(2)=exp -[a-n + LYj I

where n, the effective number of mutations, can be
expressed as a function of the numbers of mutations
carried in the heterozygous state and the number
homozygous, by weighting heterozygous mutations
by the dominance coefficient, so that one homozygous
mutation counts for the same as \/h heterozygous
ones (Sved & Wilton, 1989). In other words, we have
n = hz+y. As explained by Charlesworth (1990), the
coefficient a in this epistatic fitness expression can be
viewed as measuring the strength of selection and ft/a
as measuring the degree of synergism. These co-
efficients are related approximately to the parameters
in the quadratic fitness model of Kimura & Maruyama
(1966) as follows. In that model, the fitness of a
genotype with n mutations is given by wn =
1 —an — bn2 (Crow, 1970). With weak selection, ax a
and § « 2b (note that because of the difference in the
meaning of the parameter n, the a and /? parameters
are not numerically the same as in Charlesworth,
1990). In most of what follows, we based our runs on
the 'standard parameter values' of Charlesworth
(1990). In the present notation, these values are a. =
001, /? = 002, h = 0-2. On this model, where one
homozygous mutation is in a sense equivalent to
many heterozygous ones and the effects of mutations
are increasingly severe the more of them that are
present in a genotype, the effect of inbreeding on
fitness is evidently to cause a bigger decrease in fitness
than with multiplicative fitness interactions, or with a
'diminishing returns' form of epistasis in which
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additional mutations have less and less effect (Charles-
worth, 1990).

Note that the model just specified is only one
possible way in which synergism between the fitness
effects of mutations at different loci could be modelled,
and that other models might behave differently in
some ways (Sved & Wilton, 1989). However, all
models should share the properties listed earlier in this
section. The model has some convenient features,
including the property that the /?/a parameter
measures the degree of synergism, so that this can be
varied independently of the strength of selection.
When /? = 0, this model is approximately equivalent
to the multiplicative fitness function of eqn (1), such
that a x s when selection is weak. With stronger
selection, no such direct equivalence exists.

The model given above has the property in common
with truncation selection that fitness declines sharply
when a mutation occurs in a genotype that has many
mutations, but in the model described here there is no
discontinuity. Truncation selection is therefore not a
special case of this model, but must be studied
separately.

In comparing results using the multiplicative and
synergistic models, the ideal situation would be to
hold constant the intensity of selection, together with
the other important parameters, i.e. the dominance
coefficient and the mutation rate, and just change the
model of the interactions between loci. However, the
selection intensity cannot be kept constant because
with interactions in fitness between loci the selection
at each locus depends on the genotypes at other loci.
Using the synergism model specified above, it would
seem that this could be achieved by keeping a constant
and changing /?. However, we cannot compare results
with /? greater than zero with results that assume the
same selection coefficient, because the introduction of
synergism effectively changes the selection on each
locus (Sved & Wilton, 1989, p. 125). This is apparent
if one considers that, as mentioned above, the mean
number of mutant alleles per individual at equilibrium
is much lower under synergism than with multi-
plicativity (Crow, 1970; Charlesworth, 1990), im-
plying effectively stronger selection against mutant
alleles when there is synergistic epistasis. To make
comparison possible, we need to compare synergistic
and multiplicative runs where both have the same
mean number of mutations per individual at equi-
librium, n. To do this, we make use of the result that
for a random mating population at equilibrium under
the multiplicative model the selection coefficient
against heterozygotes for mutant alleles at each locus
obeys the equation

where U is the mutation rate per generation per
diploid genome (Crow, 1970). This gives us a way of
deriving a selection coefficient from the observed

value of n in a run that assumed synergistic epistasis
with given values of U and h. This can then be used in
runs with the multiplicative assumption /? = 0, to
yield the same value of n for the same value of U. This,
however, is only correct for outcrossing populations.
For the case of partial or complete selfing, the above
result does not hold true, and there is no other
comparable equivalence property, so it is not possible
to generate comparable pairs of results based on the
multiplicative and synergistic assumptions. We have
therefore proceeded to do runs with the same
parameter values as for the corresponding outcrossing
cases, other than changes in the selfing rate, S, even
though the above selection coefficient does not
correctly describe the intensity of selection against
mutant alleles in selfing populations.

For the standard parameter values specified above,
the value of s is about 014, which together with an h
value of 0-2 yields l//w = 38. Crow & Simmons
(1983, p. 27) estimated persistence times of mildly
detrimental mutations in natural populations (which
should be equal to l/hs) to be about 50, so that it
appears that our parameter values are quite reason-
able.

(ii) Symmetrical overdominance

Equal selective values at all loci were again assumed.
Fitness was assumed to be a decreasing function of the
number of loci homozygous (Charlesworth and
Charlesworth, 1990). Thus, in the above notation, y
can simply be substituted for n in eqn (2).

3. Assumptions of the population models, and
computer methods

(i) Mutational model

In the work to be described here, all loci were assumed
to be unlinked and a mutation at any of the loci was
assumed to have an equivalent effect on fitness (equal
selective values at all loci). These assumptions permit
the deterministic method of Kondrashov (1985) to be
used for the calculations. The methods used in what
follows were the same as described in our previous
paper on the case of multiplicative fitness interactions
(Charlesworth et al. 1990; Charlesworth, 1990), except
for the change in the model of fitness interactions
between the loci subject to mutation. As in our
previous work, the sequence of events in each
generation, starting from adult individuals, was
mutation, then mating, and finally selection on the
zygotes and normalization to produce the frequencies
of the genotypic classes in the adults of the new
generation. The number of new mutations per diploid
individual follows a Poisson distribution with mean
U.

Populations were run to equilibrium in the absence
of genetic variation for the selfing rate, and the
properties of the equilibrium population recorded.
These included the mean fitness, w, and the mean
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fitnesses of progeny produced by outcrossing and by
selfing (wx and, ws respectively). The inbreeding
depression (8 = 1 — wjwx) was calculated from these
fitness values. Then a modifier allele changing the
selfing rate was introduced and its frequency followed
until a steady-state rate of change was attained. In
certain cases, we also allowed the runs to continue
until the modifier allele was either fixed or lost from
the population. Modifier alleles were assumed to have
intermediate dominance. Individuals of different geno-
types at the modifier locus could be assumed to
contribute equally to the pool of pollen used in
generating the outcrossed progeny, or else the modifier
could be allowed to affect the pollen output as well as
the selfing rate. This allows for the possibility that
'pollen discounting' by genotypes with high selfing
rates might lower their pollen output (Nagylaki,
1976).

(ii) Overdominance model

This model was based on Ziehe & Roberds' (1989)
model of unlinked overdominant loci, generalized by
Charlesworth & Charlesworth (1990) to include
modifiers of the selfing rate. A number of such loci
were assumed, with equal symmetrical selection
coefficients against the homozygotes at all loci. The
assumption of symmetrical fitnesses facilitates cal-
culation of the genotypic distributions after mating,
since there is no need to distinguish between the two
homozygous genotypes. The sequence of events in
each generation was similar to that described above
for the mutational model, but there is no mutational
step. Under this model, it is well known that all loci
will have equilibrium allele frequencies of one-half.

4. Approximate analytical model of mutation-
selection balance with multiple loci and partial selfing

In this section, we will develop some approximate
analytical results that will later be compared with the
results of the computer calculations described above.

(i) General considerations

From the assumptions of the model, the state of an
individual is characterized by the vector (y, z), where
y and z are the numbers of homozygous and
heterozygous mutations carried by the individual,
respectively. The population of zygotes at the start of
a generation consists of two subpopulations, one
derived from outcrossing of the parents and the other
from selfing. The respective frequencies are 1—5 and
5. The state of these sub-populations is described by
the following variables. The number of heterozygous
mutations per individual for the outcrossed sub-
population has mean zx and variance Vzx. The number
of homozygous mutations in this sub-population is
zero, by hypothesis. The distribution of the number of

heterozygous mutations in the selfed sub-population
has mean and variance zs and Vzs, respectively.
Similarly, the distribution of the number of homo-
zygous mutations has mean and variance of ys and Vyt

respectively. The covariance between the number of
heterozygous and homozygous mutations among the
selfed sub-population.is Cyzs. Recurrence relations for
these variables can be found by making specializing
assumptions about the form of the relevant distri-
butions. Two sets of such assumptions will be
considered below.

(ii) Normal distribution model

Normal distribution theory has been found to be very
useful for dealing with the selection model of eqn (2),
in the case of a random-mating population (Charles-
worth, 1990). To apply this approach to the case of a
partially selfing population, we have to assume a
univariate normal distribution of the number of
heterozygous mutations for the outcrossed sub-popu-
lation, and a bivariate normal distribution of the
number of heterozygous and homozygous mutations
for the selfed sub-population. As will be seen below,
this assumption is approximately correct under a wide
range of conditions but tends to break down with high
rates of self-fertilization when epistasis is weak.

Given the form of the selection function used here,
the post-selection distributions within a generation
are also normal. The means, variances and covariance
of numbers of heterozygous and homozygous muta-
tions for the post-selection distributions will be
denoted by asterisks. From the results of Charles-
worth (1990) for a random-mating population, the
mean fitness of the outcrossed sub-population is

fi?xY (3)

The mean number of heterozygous loci per individual
in the post-selection outcrossed sub-population is

z*x={zx-*Vzx)/(\+fSVzx\

and the variance is

(4a)

i. (4b)

The mean fitness ws, and the post-selection means
and variances of the numbers of homozygous and
heterozygous loci, of the selfed population can be
obtained by the bivariate equivalent of the method of
Charlesworth (1990), as outlined in the Appendix.

For the population as a whole (derived partly from
outcrossing and partly from selfing), the population
mean fitness w and the parameters of the overall
distribution of numbers of mutations after selection
are given by the following expressions:

w = (\ — S)wx + Sws, (5a)

P* = S*yf, (5 b)
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(5 c)

(5d)

r*(l-S*)(zt-zT)2, (5e)

C* =

where 5* = Svvs/vv. The terms involving the factor
5*(1 — S*) in the variances and covariance arise from
the contributions of the difference in means between
the selfed and outcrossed subpopulations.

The effects of selection on the variances and
covariances within the selfed and outcrossed sub-
populations given by these equations reflect only the
effects of selection on the components of variance
contributed by deviations from random combinations
of alleles at different loci, and do not include the
changes in the genie variances contributed by the sum
of the effects of each locus in isolation (Charlesworth,
1990). It is not clear in the case of partially selfing
populations how to incorporate the effects of selection
on the genie variances of the numbers of homozygous
and heterozygous mutations. We adopt the heuristic
principle that, at equilibrium, these effects balance the
effects of mutation. (This procedure is exact in the
case of an outcrossing population, see Charlesworth,
1990.) The equilibrium variances can then be com-
puted by ignoring the effects of both selection and
mutation on the changes in the genie variances.
Accordingly, the recurrence relations given below are
only valid close to equilibrium.

The distribution of z among the progeny of
outcrossed individuals in the next generation can be
found by noting that the progeny of two randomly
chosen individuals with states (y, z) and (y', z') has
mean y+y' + |(z + z'). Segregation at each locus that
is heterozygous in either parent contributes a term of
one-quarter to the variance of z in the progeny.
Assuming free recombination, the variance of z in the
progeny of this mating is thus j(z + z'). There is an
additional contribution of U to the change in the
mean of z. (New mutations contribute solely to the
distribution of heterozygous mutations, since they are
not made homozygous immediately.) Averaging over
all pairs of parents, we obtain the following expression
for the state of the outcrossed sub-population in the
next generation:

y> —
y z x —

(6 a)

(6 b)

The parameters of progeny produced by selfing can
be determined as follows. Free recombination implies
a multinomial distribution of the numbers of
homozygous and heterozygous mutations in the
progeny of a selfed individual. The mean number of
homozygous mutations among the selfed progeny of
an individual of state (y, z) is y + \z, and the variance
is 3y/\6. The mean number of heterozygous mutations

is z/2 and the variance is z/4. The covariance between
y and z is — z/8. Averaging over the entire population
of parental genotypic classes, the following expression
describes the state of the selfed sub-population in the
next generation:

(la)

K.=

= S

(1b)

(7 c)

(Id)

(le)

Equations (6) and (7), together with the expressions
for the state of the post-selection population, provide
a complete description of the transition between
generations. These expressions cannot be solved
analytically for the equilibrium state, but are easy to
iterate on a computer. Equilibrium is reached in a few
tens of generations.

Table 1 shows the equilibrium values of these
distributional parameters for U = 1 and a/fi = 0-5,
indicating satisfactory agreement between the exact
and approximate results in this case. For weak
epistasis, this approach breaks down, due to severe
departures from normality, especially for progeny of
selfing. For this reason, we have used an approxi-
mation based on the Poisson distribution for that
case.

(iii) Poisson distribution model

In the case of the multiplicative model of eqn (1), it is
known that the numbers of mutations per individual
follow Poisson distributions in both random-mating
and wholly self-fertilising populations (Haigh, 1978;
Heller & Maynard Smith, 1979). This suggests that it
may be useful to assume Poisson distributions for the
present case with multiplicative fitnesses, where (as
discussed above) the normal approximation tends to
fail with high selfing. Assume that the distributions of
the numbers of heterozygous mutations among out-
crossed progeny, among selfed progeny, and the
distribution of the number of homozygous mutations
among selfed progeny, are each Poisson, with means
of zx, z, and yt respectively. Assume further that the
distributions of the numbers of heterozygous and
homozygous mutations among selfed progeny are
independent. Given these assumptions, it is easily seen
that (with multiplicative fitnesses) the corresponding
post-selection distributions are also Poisson. We have

wx = exp-zxhs,

z-*x=zx(\-hs),

(Sa)

(Sb)

(8 c)

(8d)
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Table 1. Results of the exact and semi-analytical methods of calculating the equilibria for the mutation-
selection balance model with synergism

s

001

01

0-2

0-5

0-7

0-8

0-9

0-99

001

01

0-2

0-5

0-7

0-8

0-9

0-99

Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.

Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.

34-796
34-857
32-361
32-729
29-492
30-179
21-376
22-513
17165
18173
15-473
16-349
14103
14-892
13-497
14-568

10-746
10-799
10062
10187
9-278
9-485
7021
7-471
5-767
6-351
5-223
5-879
4-725
5-479
4-309
5-211

a

17-369 i
17-900 !
15-863 f
16-555 f
14053
14-914
8-622 (
9-721 (
5-471
6-517
4023
5031
2-591
3-597
1-168 (
2-219 <

5-366 :
5-894 ;
4-954 ;
5-531 :
4-475 :
5109 :
3-037
3-842
2166
3-082
1-757
2-735
1-353
2-403
0-980
2102

9.

= 001,

5-713
5-478
3-248
5087
7-719
7-633
5-377
5-396
5-847
5-828
5-724
5-659
5-755
5-648
5164
5175

a. = 0-1,
'•690
2-453
'•554
2-328
2-401
H88
•992

[-814
1-800
•634

1-733
•572
•686
•538
•664
•554

v-
fi = 0-02

34010
33-884
31-811
31-246
29107
28-259
20-867
19-921
16062
15-230
13-795
13-172
11-453
10-977
8-859
8-357

10-210
10034
9-661
9-352
8-988
8-578
6-793
6-329
5-387
4-999
4-721
4-379
4067
3-764
3-471
3169

17-274 i
17195 \
18-537 i
18110 I
19-502 i
18-848
18-378
17-764
14-337 (
13-660 (
11-322
10-535
7-324
6-567
1-878 :
1 - 5 3 1 <•

5-125 :
5-029 ;
5023 :
4-786 :
4-840 :
4-478 :
3-852
3-320
2-898
2-385
2-338
1-875
1-701
1-325
1021
0-759

y~

5-639
5-648
5-433
5-294
5-187
7-984
7-290
7-181
3-452
5-469
5-896
5-969
5-147
5-279
5-980
* 109

2-620
2-603
2-478
2-437
2-317
2-263
•860

1-849
•605
•663
•489
•588
•375
•517
•267
•438

cyzt

-0-354
-0-310
-1-125
- 1 0 6 6
- 2 0 2 2
— 1-957
— 3-611
-3-676
-3-376
-3-486
-2-835
-2-926
— 1-897
-2-023
-0-312
-0-606

- 0 1 3 9
- 0 1 8 7
- 0 1 4 1
- 0 1 7 2
-0-151
- 0 1 6 9
- 0 1 8 5
-0-221
-0-177
-0-267
- 0 1 5 3
-0-288
- 0 1 0 6
-0-305
- 0 0 3 2
— 0-310

The inbreeding depression, 8 = 1 — wjwx, can be
derived from these quantities. The pre- and post-
selection variances are equal to the respective means,
by hypothesis. The post-selection means and variances
for the population as a whole are given by eqn (5). The
means in the next generation are given by eqns (6 a),
(7a) and (7b).

The variances are given by the following equations:

+ \z* + U, {9a)

^ , (9b)

z* + U, (9c)

(9d)

Inspection of these equations, together with the
corresponding equations for the means, indicates that
equality of means and variances and independence of
the distributions of numbers of homozygous and het-
erozygous mutations among selfed progeny are pre-
served only if the post-selection means and variances
for the whole population are equal. It can be seen
from eqn (5) that the mixing of selfed and outcrossed
progenies causes the means and variances to diverge,

implying that the composite population no longer
exactly follows Poisson distributions. Hence, the
Poisson model will in general deviate from the exact
results. The magnitude of the discrepancy will be
greatest for intermediate selfing rates. Numerical
studies show that in practice it provides good
approximations for the case of multiplicative fitnesses,
using the model of fitness interactions between loci
specified by eqn (1) above (see Table 2 below). For the
model used in the present paper, where heterozygous
mutations are weighted by the dominance coefficient
as explained above, it gives good agreement only for
weak selection, and is best for either low or high
selfing rates.

5. Analytical model of symmetrical overdominance
with multiple loci and partial selling

A similar method can be used to provide an analytical
approach to the case of multiple independent loci with
symmetrical overdominance and equal fitness effects,
previously studied by Ziehe & Roberds (1989) and
Charlesworth & Charlesworth (1990) for the case of
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Table 2. Results of the exact and semi-analytical methods of calculating the equilibria for the mutation-
selection balance model with multiplicative fitnesses. U = 1, h = 0-1

s

001

010

0-20

0-50

0-70

0-90

0-99

001

010

0-20

0-50

0-70

0-90

0-99

Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.

Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.

w

0-3692
0-3671
0-3742
0-3618
0-3998
0-3651
0-5194
0-4654
0-5575
0-5301
0-5764
0-5685
0-5815
0-5808

0-3674
0-3675
0-3681
0-3620
0-3717
0-3644
0-4697
0-4642
0-5490
0-5386
0-5918
0-5845
0-6001
0-5991

0-8499
0-8629
0-8301
0-8441
0-7678
0-8108
0-5064
0-5774
0-4003
0-4320
0-3325
0-3403
0-3095
0-3102

0-8628
0-8628
0-8137
0-8456
0-8080
0-8159
0-5939
0-6026
0-4418
0-4548
0-3517
0-3591
0-3267
0-3276

10-601
11042
9-978

10-325
8-359
9-237
4067
4-714
2-855
3057
2-174
2-213
1-963
1-964

49-631
49-633
41-715
46-393
40-618
41-562
20154
20-443
11-452
11-774
7-215
7-336
6001
6013

s =

5-302
5-523
4-984
5155
4174
4-606
2008
2-324
1-380
1-489
1040
1068
0-936
0-938

s =

24-804
24-803
20-688
23-044
19-937
20-413

8-794
8-916
4094
4196
1-767
1-773
1053
1053

y.

0-9

2-657
2-764
2-506
2-583
2095
2-316
1033
1-195
0-736
0-784
0-578
0-586
0-510
0-524

0-2

12-426
12-415
10-516
11-683
10-344
10-583
5-686
5-777
3-683
3-797
2-724
2-787
2-479
2-484

10-736
11042
10-268
10-325
8-962
9-237
4-621
4-714
3124
3057
2-246
2-213
1-965
1-964

49-665
49-633
41-730
46-393
41-073
41-562
21-354
20-443
12-498
11-774
7-647
7-336
6048
6013

5-375
5-523
5149
5155
4-508
4-606
2-314
2-324
1-540
1-489
1080
1068
0-932
0-938

25016
24-803
22-721
23044
24-456
20-413
15-535
8-916
7-815
4196
2-906
1-773
1168
1053

2-666
2-764
2-528
2-583
2162
2-316
1093
1195
0-763
0-784
0-575
0-586
0-516
0-524

12-438
12-415
10-709
11-683
10-811
10-583
6-403
5-777
4113
3-797
2-881
2-787
2-491
2-484

- 0 0 3 5
0

- 0 0 7 3
0

- 0 1 5 1
0

- 0 1 3 9
0

- 0 0 6 7
0

- 0 0 1 8
0

- 0 0 0 6
0

- 0 0 6 1
0

-0-695
0

-1-371
0

-1-807
0

-0-841
0

-0-225
0

- 0 0 2 2
0

multiplicative fitnesses. In this case, the fitness of an
individual homozygous at y loci can be written as

(10)

Since loci and alleles are interchangeable. Since the
number of heterozygous loci is simply m—y, where m
is the total number of loci in the genome which exhibit
heterozygote advantage, the system can be described
entirely in terms of the single variable y.

The approximate recurrence relations for this case
can be derived as follows. Following Ziehe & Roberds
(1989), the number of heterozygous loci per individual
in the outcrossed sub-population before selection is
distributed binomially, with mean and variance m/2
and m/4, respectively. (This result is independent of
the nature of the selection function.) Normal dis-
tribution theory can be used to calculate changes in
the means and variances of y among the outcrossed
and selfed sub-populations (cf. eqns (3) and (4)]. The
parameters of the post-selection distribution for the
whole population are given by eqn (5). The mean and
variance of the number of homozygous loci per
individual among the new zygotes produced by selling
can be found by the same method as before, with the
difference that homozygotes for both types of allele at
a locus contribute to y. We obtain

(lla)

These equations can be iterated to find the
composition of equilibrium populations under this
model.

6. Results

(i) Mutational model: numbers of mutations and
genetic loads in equilibrium populations

As Charlesworth (1990) found for the random-mating
case, even a slight degree of synergism (a small, but
non-zero, /? value) causes a substantial reduction in
the numbers of mutations at equilibrium compared
with the multiplicative case (/? = 0). This is evident in
our calculated results, using either the exact deter-
ministic or approximate analytical model described
above. As mentioned above, we mainly studied the
'standard parameter values' of Charlesworth (1990),
together with the effects of changes in the values of
some of the parameters. Fig. 1 shows a set of runs with
a = 001 and various values of /?, which displays the
effect of increasing the degree of synergism. As can be
seen from Fig. 1, greater synergism (i.e. higher values
of P) leads to lower numbers of mutations per
individual at equilibrium, defined as the total number
of mutant alleles per individual or, in the notation
explained above, 2y-\-z.

As in the case of multiplicative fitness interactions
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0-8 10

Fig. 1. Effect of the value of /? on the mean number of
deleterious mutant alleles per individual in equilibrium
populations. The mutation rate, U, was 1-0, and the
dominance coefficient, h, was 0-2. The solid lines refer to
the analytical approximations and the dashed lines to the
results of the computer calculations.

(Charlesworth et al. 1990), the mean number of
mutations at equilibrium always decreased with
increased selfing. This is the well-known result that
inbreeding leads to lower equilibrium frequencies of
deleterious recessive and partially recessive alleles, due
to selective removal of these alleles because of their
effect in causing low fitness of homozygotes produced
by inbreeding. It is not surprising that this result
remains true for the case of synergistic interactions.
This decrease in the genetic load has been termed
'purging' of the inbred populations (Campbell, 1986;
Lande & Schemske, 1985; see also Charlesworth et al.
1990).

Fig. 2 shows some examples of the effects of selfing
on the mean fitness and inbreeding depression values
in equilibrium populations. The mean fitness with
partial selfing is a weighted mean of the fitnesses of
outcrossed and selfed progeny. Both these increased
with the selfing rate, for low 5, but the average fitness
of selfed progeny sometimes decreased again at very
high S, and this was sometimes enough to cause the
overall population mean fitness to decrease for high S.
In other words, the synergistic model could generate
situations in which mean fitness was highest for S <
1, rather than always being highest when S = 1 as was
the case with the multiplicative model. This effect was
most evident when selection was weak (see Fig. 2).
When selection was weak, the peak in the mean fitness
was also located at a lower value of the selfing rate
than for stronger selection, keeping other parameter
values constant.

Fig. 2 shows that the mean fitness for completely
selfing populations was the same for any degree of
synergism (varying the/?parameter value from 002 to
0-2). This can be understood as follows. Mutant alleles
present in a completely selfing population will be
homozygous for most of the period of time they spend
in the population until they are eliminated, and

0-2

0-2
00 0-2 0-4 0-6 0-8

Selfing rate

Fig. 2. Effect of changing the values of a. and /? on the
mean fitness and inbreeding depression values of
equilibrium populations. The mutation rate, U, was 1-0,
and the dominance coefficient, h, was 0-2. The solid lines
refer to the analytical approximations and the dashed
lines to the results of the computer calculations.
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selection therefore acts mainly on the homozygous
genotypes. Once a selfing line is homozygous for a
mutation, all descendants of that line will have the
same genotype. The behaviour of the mean fitness of
such a population will therefore be similar to that of
an asexual population, for which it is known that the
mean fitness is given by exp — U, regardless of the
form of selection (Kimura & Maruyama, 1966). In the
case of asexual reproduction, the relevant mutation
rate is the rate per diploid genome. For the case of
complete selfing, however, the haploid mutation rate
determines the mean fitness, because a mutation in
one of the two alleles at a locus is sufficient to produce
a homozygous line carrying the mutant allele, since
homozygosity in populations with this breeding system
is due to identity by descent of the two alleles in an
individual, after a few generations of selfing. The
mean fitness should therefore be approximately equal
to exp — U/2. The values of the mean fitness were
accurately predicted by this formula. For example, the
predicted value is 0-607 for U = 1, and the mean
fitness curves in Fig. 2 all converge on this value.
However, the agreement was less good for weakly
selected alleles, presumably because the approxi-
mation represented by assuming that selective elim-
ination of alleles takes place predominantly by
inviability of homozygotes is not strictly true. Some
other examples, for various values of the inbreeding
depression and of U, are also shown in Figs. 3 and 4
below.

Fig. 3 shows the effect of changes in the mutation
rate on the mean fitness and inbreeding depression,
for various selfing rates, for the case of weak selection
(a = 001, /? = 0-02). As would be expected, more
mutations led to more mutant alleles per individual,
and thus to lower mean fitness. Some examples of the

10

2

II

II
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tn
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s
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es

SI?

0-8

0-6

0-4

0-2

Selfing rate

Fig. 3. Effect of the mutation rate, U, on the mean fitness
and inbreeding depression values of equilibrium
populations. The standard parameter values (a = 0-01,
/? = 0-02) were used, and the dominance coefficient, h, was
0-2. The solid lines refer to the analytical approximations
and the dashed lines to the results of the computer
calculations. • • , U = 0-2; AA,U = 0-5;Om,U =
10.

inbreeding depression values obtained are also shown
in Figs. 2, 3 and 4. Inbreeding depression behaved in
a converse manner to mean fitness, as the selfing rate
or the mutation rate was increased. As the mean
fitness decreased, inbreeding depression increased
(Figs. 2 and 4). With synergism, the inbreeding
depression decreased as S increased when the popu-
lations had low to moderate S values but, in contrast
to the multiplicative case studied before, it sometimes
increased again in highly selfing populations (Figs. 2
and 4). In other words, strong synergism flattened out
the relationship between inbreeding depression and
the selfing rate, compared with the curve for the
multiplicative case. In the cases described above in
which mean fitness peaks when S < 1, the same S
value that corresponds to the highest mean fitness also
yields the minimum inbreeding depression value. As
mentioned above, this selfing rate is lower with
weaker selection (lower a values).

As the figures show, the agreement between the
exact and approximate results was quite good for low
selfing rates, especially for weak selection with
synergism, and the agreement remained good even for
high mutation rates.

Fig. 4 shows the effects on mean fitness and
inbreeding depression of departure from the multi-
plicative assumption. To obtain comparable results
for the multiplicative and synergistic models, the
multiplicative case was altered from the model of eqn
(1) to a model in which the heterozygous mutations
were weighted so as to be treated as fractions of
homozygous mutations, in the way described above
for the synergistic model, i.e. /? was simply equated to
zero in eqn (2). The figure compares two synergistic
cases with multiplicative runs matched for the values
of the selection coefficients in the outcrossing popu-
lations, as described in section 2(i). One of the
comparisons shows the 'standard parameter values'

S s E

III
lii
O O O

.111

1-6

14

1-2

1-0

-> 0

D

#

•

-•

a
s =

a
s =

- -

= 001
014

= 01,
0-48

"X

, 0 = 002

0 = 0-2

3^ / '
• ^ /

O /

00 0-2 0-4 0-6 0-8 10

Selfing rate

Fig. 4. Ratios of the mean fitness and inbreeding
depression values of equilibrium populations for
synergistic models, to those of multiplicative models with
the same mean number of mutations in the outcrossing
populations. The values of 5 shown in the figure refer to
the multiplicative model. The mutation rate, U, was 10,
and the dominance coefficient, h, was 0-2.
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Table 3. Inbreeding depression values in highly selfing populations. The table shows the approximate analytical
results derived here and the results calculated by the computer runs with the stated fitness interactions

h

002
01
0-2
0-3
0-35

£7=0-5

0-213
0181
0139
0095
0072

U= 10

Analytical (S = 10)

0-381
0-330
0-259
0181
0139

£7= 1-5

0-513
0-451
0-362
0-259
0-201

S = 0-99 S = 0-95 S = 0-9 5 = 0-99 S = 0-95 5 = 0-9 S = 0-99 S = 0-95 S = 0-9

Multiplicative, selection coefficient s = 0-2

0-02
01
0-2
0-3
0-35

002
01
0-2
0-3
0-35

002
01
0-2
0-3
0-35

0-215
0179
0135
0090
0068

0-210
0198
0171
0131
0105

0-221
0-210
0-181
0-137
0111

0-224
0185
0138
0091
0069

0-201
0189
0162
0-122
0098

0-223
0-212
0181
0136
0109

0-236
0193
0-142
0094
0070

0-201
0188
0159
0199
0094

0-230
0-216
0-182
0135
0108

0-384
0-327
0-252
0-172
0131

Synergistic, a

0-373
0-355
0-311
0-240
0193

Synergistic, a.

0-392
0-372
0-318
0-236
0186

0-400
0-337
0-257
0174
0-132

= 001,

0-362
0-343
0-297
0-226
0181

= 001,

0-397
0-375
0-317
0-233
0-182

0-424
0-352
0-264
0177
0134

/? = 002

0-368
0-345
0-294
0-220
0-174

^ = 0 - 2

0-409
0-384
0-319
0-230
0-178

0-517
0-448
0-353
0-247
0190

0-502
0-481
0-426
0-333
0-270

0-526
0-500
0-428
0-316
0-244

0-539
0-461
0-359
0-249
0191

0-494
0-470
0-410
0-316
0-254

0-535
0-505
0-427
0-310
0-239

0-574
0-481
0-368
0-253
0192

0-509
0-478
0-408
0-308
0-245

0-554
0-517
0-429
0-306
0-233

defined above. This corresponds to a value of s =
014, for outcrossing. The other set of runs shown is
for a = 0-1 and /? = 0-2, corresponding to s = 048 for
outcrossing. Fig. 4 shows the results of the com-
parisons expressed as the ratios of the values in the
runs assuming synergism, to those in the corre-
sponding multiplicative runs. As would be expected
from the reduction in numbers of mutations per
individual in equilibrium populations with synergism,
the mean fitness was increased by synergism, or in
other words the genetic load decreased. There was
also an increase in the inbreeding depression with
increased synergism, especially for highly selfing
populations. Thus, although the mean fitness was
increased, so was the effect on fitness of inbreeding.
This makes sense in terms of the fact that synergistic
selection caused a greater decline in fitness for each
mutant allele than does the multiplicative assumption.

The effect of decreasing the recessivity of the
mutations was generally to reduce the level of
inbreeding depression found in equilibrium popu-
lations. Compared with the multiplicative model,
synergism reduced the fall-off of inbreeding depression
with increased selfing. Table 3 shows some examples
of the inbreeding depression values at high selfing
rates, for two of the synergistic models of Fig. 2 (the
standard parameter values, and the case of a = 001,
P = 0-2, which gave the worst agreement with the

analytical values), and for the multiplicative model
with selection coefficient 0-2. For synergistic selection
with stronger selection, the results were similar to
those shown, but the inbreeding depression values
were more similar to those predicted by the analytical
formula to be explained below than are the examples
shown in Table 3.

For the case of multiplicative fitnesses, an ap-
proximate expression for the inbreeding depression in
a completely selfing population (assumed to be largely
homozygous at all loci) can be derived as follows. Let
the mean number of homozygous mutations per
individual be n. Then with multiplicativity and a
Poisson distribution of the number of mutations (see
section 4[iii] above) the mean fitness of progeny
produced by selfing is given approximately by

(1 -sYn* ,ie-*\\+{\-s)n + - 2!

— g

For complete selfing, the mean fitness of the popu-
lation is equal to this value, and as explained above,
this is approximately equal to exp — £7/2. Therefore
n K, U/2s (see Heller & Maynard Smith, 1979, and
Hopf et al. 1988 for alternative derivations of this
result) and we can calculate ws, given U and s. To
obtain wx we note that the fitness of the progeny of
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outcrossing between two lines homozygous for «, and
nt mutations on the multiplicative assumption is

(\-hs)n<+ni,

where «, + «,- is Poisson distributed with mean U/s.
Therefore we have

wx » <r*'* = e-*",

and so the inbreeding depression is

8 = l - ^ x \ -

(12)

(13)

Some values based on this calculation are shown in
Table 3. The agreement with the exact results is good
for the multiplicative runs but less so for the synergistic
runs, especially when the dominance coefficient is
high. In those cases the inbreeding depression pre-
dicted by the formulae just given is too low. It is not
surprising that if the synergism is weak in comparison
with the strength of selection, the results are well
predicted by the multiplicative model, but the agree-
ment for the case of strong synergism is still quite
good. It is remarkable that the selection model has
only a minor effect on the inbreeding depression
values found in these highly inbred populations, and
that the values predicted for complete selfing are also
close to those calculated in the computer runs, even
for selfing rates as low as 0-9.

At low selfing rates, with some parameter values
with very low dominance coefficients, there was a
disproportionate increase in the inbreeding de-
pression, which rose to a value of 1 as S approached
zero. This was accompanied by non-monotonic
behaviour of the mean fitness (Fig. 5). These effects
were found in both the exact and the semi-analytical
approximate results, but did not occur with all
parameter values. This behaviour of the mean fitness
with very recessive mutations appears explicable in

-1
1

8-.S
g 5.5 u

00

Selfing rate

Fig. 5. Effect of the dominance coefficient, h, on the mean
fitness and inbreeding depression values of equilibrium
populations. The parameter values were a = 0-1, ft = 0-2,
U = 0-5. The solid lines refer to the analytical
approximations and the dashed lines to the results of the
computer calculations.

terms of two opposing effects of increasing population
selfing rates. Firstly, in highly outcrossing populations,
the mean fitness of progeny of selfing will be much
reduced, compared with that of outcrossed progeny
(and there will be very high inbreeding depression, as
seen in Fig. 5). For small increases in S, the
contribution of selfed progeny to the population mean
fitness increases, and these progeny have low average
fitness. This can account for the reduction in mean
fitness of the population as a whole, with small
increases in selfing. In the second place, however, the
frequencies of mutant alleles are reduced by increasing
the selfing rate, due to their expression in homo-
zygotes. Beyond some level of selfing, the second effect
on allele frequencies leads to an increase in the
population mean fitness. With less recessive alleles,
the reduction in fitness on selfing is smaller in
outcrossing populations, so the first effect is out-
weighed even for low selfing rates. It is intuitively
reasonable that the first effect should be most
pronounced with synergistic fitness interactions, when
the effect of selfing in producing homozygosity at
multiple loci should cause the greatest decrease in
fitness.

(ii) Mutational model: effects on modifiers of the
outcrossing rate

One of the reasons for studying inbreeding depression
in these runs is to ask whether it affects the evolution
of the selfing rate (Charlesworth et al. 1990). Fig. 6
shows the results of introducing modifiers of the
selfing rate into equilibrium populations with syn-
ergistic interactions. In these runs, the modifiers of the
selfing rate were assumed to leave the contribution to
the outcrossing pollen pool unchanged (no pollen
discounting). The standard parameter set was used,
with weak selection and weak synergism (a = 001 ,
/? = 002), and the mutation rate per diploid genome
(U) was assumed to be 1. As can be seen by inspection
of the results in Fig. 2, the inbreeding depression value
for a random-mating population with these parameter
values is greater than 0-5 (0-577), whereas for S = 0-5
it is 0-393. In Fig. 6, we show the asymptotic rates of
increase (measured as Ap/p, where p is the frequency
of the modifier allele) of modifier alleles that change
the selfing rate from these initial values to higher or
lower values. The modifier alleles were assumed to be
intermediate in their dominance. The sign of the
change in modifier frequency was usually consistent
throughout the course of spread, except that when
modifiers causing high selfing rates were introduced
into populations with inbreeding depression greater
than one-half, they usually decreased at firsjt, but later
changed over to increase in frequency. Transient
changes in sign were occasionally observed in other
cases, for a few generations (< 10) after the modifier
was introduced.

Fig. 6 shows that, with the parameter set assumed
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Fig. 6. Rates of change (Ap/p) in frequency of modifiers
affecting the selfing rate introduced into populations at
equilibrium under mutation and selection and with
various initial selfing rates, So. The standard parameter
values were used (a = 001, /? = 002), with the mutation
rate, U, equal to 1-0 and the dominance coefficient
h = 0-2.

here, outcrossing {S = 0) was stable to invasion by
alleles increasing the selfing rate. When, however, the
modifier caused complete selfing, a positive rate of
increase was observed, i.e. such a modifier could
invade the population. In contrast, when modifiers
were introduced into a population with an initial
selfing rate of 0-5, they invariably spread when their
effect was to increase selfing, and were eliminated
when they increased outcrossing. In other words, in
that situation, with a lower initial inbreeding de-
pression value, selfing was selectively favoured.

In general the direction of change in frequency of
modifier alleles that changed the selfing rates by small
amounts was, as in our previous studies of the
multiplicative models, well predicted by the equations
of Charlesworth (1980) which assumed a constant
value of the inbreeding depression. We also tested for
an effect of pollen discounting. We did this by setting
the level of discounting to the value that, according to
Charlesworth's equations, should just permit invasion
by an allele increasing selfing, and asking whether the
modifier did indeed increase in frequency. In most of
the cases run, the agreement with the analytical
equation was good. The modifier was prevented from
increase by a level of discounting that was within one
or two percent of the predicted value.

When an initial population with a very high selfing
rate (5 = 0-99) was studied, however, modifiers caus-
ing complete selfing were often selected against, even
though the inbreeding depression was low, and alleles
causing increased outcrossing were also eliminated.
Thus with these parameter values there could be an
evolutionarily stable (ESS) selfing rate slightly below
complete selfing. No such ESS was observed with the
multiplicative models studied by us previously
(Charlesworth et al. 1990). The existence of an ESS
was confirmed by studies of the initial rates of increase

0-003-

u -0-003 -

O So =0-94

A So = 0-96

• So = 0-98

D So = 0-99

P

P •

.O A

-0006 I
A

0-92 0-94 0-96 0-98

Selfing rate of modifier

1-00

Fig. 7. Rates of change in frequency of modifiers affecting
the selfing rate introduced into equilibrium populations
with initial selfing rates close to the ESS value of 0-98.
The standard parameter values were used, with the
mutation rate, U, equal to 1-0 and the dominance
coefficient h = 0-2.

of modifier alleles having the same small effect on the
selfing rate, in a set of runs with various initial selfing
rates close to 0-99 (Fig. 7), and by other similar runs
for various parameter sets. With some degree of
pollen discounting, the ESS was located at lower
selfing rates than without discounting, unless the level
of discounting was so high that there was no ESS, and
modifiers increasing selfing were eliminated. This is
expected, because discounting effectively reduces the
advantage of selfing (Nagylaki, 1976). However, the
ESS selfing rates were located at higher selfing rates
than the values corresponding to the maximum in the
mean fitness. The effect of pollen discounting was to
lower the ESS towards the selfing rate that yielded
maximum mean fitness. We also found that the degree
of discounting that prevented spread of a modifier
increasing the selfing rate was lower than that
predicted by Charlesworth's (1980) equation, for
populations with selfing rates in the region of the ESS
than for lower selfing rates. That equation is thus not
accurate in this region of the selfing rate range.

(iii) Overdominance model

In order to compare the results for the multiplicative
case with those with synergism, the following relation
between the single-locus selection coefficient and the
selection parameters of eqn (10) can be established for
a random-mating population. Assuming independence
of loci, the heterozygotes Aa at a given locus have a
mean number of homozygous loci of \m—\ = f(w ~ !)•
Homozygotes aa have a mean of \m —1+ 1 = K w + ')•
The difference between these is — 1. Hence, the
selective advantage of heterozygotes over homo-
zygotes can be approximated by

5 = wAa-wa
1 /dw(y)

(14a)
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Table 4. Results of the exact and semi-analytical methods of calculating
the equilibria with symmetrical over dominance. 50 loci were assumed

(a) Multiplicative fitnesses: a
(exact), wz = 0-291 (approx).

•• 005, fi = 0,yz = 25, V = 12-5, wz = 0-291

001 Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.

(b) Synergistic interactions: a
wx = 0-499 (exact), wz = 0-499

010

0-30

0-50

0-70

0-90

0-99

37-22
37-22
37-5
37-5
38-4
38-4
40-25
39-51
41-2
42.5
44-5
44-5
48-7
48-9

9-72
9-72

114
114
15-5
15-5
22-2
200
24-2
25-5
24-3
23-7

8-31
6-92

0-299
0-290
0-277
0-277
0-249
0-249
0199
0-217
0179
0157
0130
0129
0091
0090

0157
0157
0155
0155
0150
0150
0137
0142
0132
0123
0111
0111
0089
0088

0-459
0-459
0-466
0-466
0-486
0-486
0-528
0-511
0-548
0-576
0-616
0-618
0-695
0-699

001

010

0-30

0-50

0-70

0-90

0-99

Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.
Exact
Approx.

37-22
37-22
37-5
37-5
38-2
38-2
39-2
39-2
40-6
40-6
43-4
43-5
47-6
48-0

= 0005, fi = 000184, yz = 25, Vyz = 12-5,
(approx.)

9-62 0-499 0-236 0-527
9-62 0-496 0-236 0-527

111 0-472 0-232 0-535
111 0-472 0-232 0-535
14-5 0-416 0-222 0-556
14-5 0-416 0-222 0-556
18-2 0-353 0-208 0-584
18 2 0-353 0-208 0-583
21-9 0-281 0188 0-623
219 0-281 0188 0-623
23-2 0186 0151 0-697
22-7 0185 0150 0-700
11-6 0106 0102 0-796
9-41 0101 0097 0-805

Substituting from eqn (10), this reduces to

This equation allows the comparison of synergistic
and multiplicative cases with the same selection
coefficients for random-mating populations.

The parameters of some equilibrium populations
are shown in Table 4, calculated both by the exact
method of Charlesworth & Charlesworth (1990), and
by the above approximation. The selection coefficient
s is 005, and 50 loci are assumed to be segregating.
Multiplicative fitnesses and fairly strong synergism are
compared, for the same set of selfing rates. There is
good agreement between the exact and approximate
results, especially with synergism. It will be seen that
synergism has a slight effect in increasing the level of
inbreeding depression (e.g. with 50% selfing, there is
an 11 % increase in S over the value for multiplicative
fitnesses). Inbreeding depression increases with the
selfing rate with both multiplicative fitnesses and with
synergism, as previously found for multiplicative
interactions (Holsinger, 1988;Ziehe&Roberds, 1989;
Charlesworth et al. 1990). There are only minor effects
of synergism on the means and variances of the
number of homozygous mutations per individual. On

the other hand, there is a large increase in the
population mean fitness for low selfing rates, cor-
responding to a large increase in the mean fitness of
outcrossed individuals. The variances in fitness were
also larger with synergism than for the multiplicative
case (results not shown). Since it is difficult to account
for inbreeding depression in terms of loci with
overdominance, because of the large variance in
fitness that accompanies appreciable inbreeding de-
pression (Charlesworth & Charlesworth, 1990), the
introduction of synergism, with an even greater
variance in fitness, does not make such an interpret-
ation more plausible.

When modifiers of the selfing rate were also
modelled, the results were very similar to those
reported previously for the multiplicative model of
overdominance at several loci (Charlesworth &
Charlesworth, 1990). There were ESS values of the
selfing rate, at which neither alleles reducing, nor
alleles increasing it, hadi positive rates of change. The
ESS selfing rate values were located close to values
yielding an inbreeding depression of 0-5 for modifiers
with no pollen discounting.
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7. Discussion

(i) Genetic loads and inbreeding depression values

The results obtained with synergistic interactions
between loci show that the effects of synergism are
most pronounced on the numbers of mutant alleles
present in individuals in populations at equilibrium.
Increased synergism leads to the maintenance of lower
numbers of deleterious mutations for the same value
of hs, as expected (Crow, 1970), and higher mean
fitness (King, 1967; Sved et al. 1967). There is also an
effect on the shape of the relationship between
inbreeding depression and the population selfing rate.
For the mutational load model, synergistic fitness
interactions tend to slow the decline in the inbreeding
depression as the selfing rate increases, compared with
the multiplicative model. With symmetrical over-
dominance, inbreeding depression increases with the
selfing rate, as was found for multiplicative fitnesses
(Charlesworth & Charlesworth, 1990).

With mutational load, there could sometimes even
be a slight increase in inbreeding depression, and
decrease in the population mean fitness, at selfing
rates close to complete selfing. The decrease in the
fitness of progeny of selfing when S is very high
probably arises from the fact that, despite the purging
effect of selection against mutant alleles in homo-
zygotes in this type of situation (so that the number of
mutant alleles carried in the heterozygous state
decreases with 5), the number of homozygous mutants
increases with the selfing rate (Charlesworth et al.
1990). Since homozygous loci occur only in progeny
derived from selfing, this means that, in highly selfing
populations, selfed progeny may be homozygous for
more mutant alleles than in less selfing populations
with the same values of the other parameters of the
model. This can be seen in Table 1. This effect tends
to lower the fitness of selfed progeny in highly selfing
populations, but the purging of mutant alleles from
the populations means that they carry fewer mutations
in the heterozygous state, and this works in the
opposite direction. With multiplicativity, it appears
from the results of our runs that the effect of increased .
numbers of homozygous loci is not enough to
outweigh the effect of the decrease in the number of
loci heterozygous for mutations, and so the mean
fitness of progeny derived from selfing increases with
the selfing rate. With synergism, however, the lowering
of fitness in homozygotes is more severe, compared
with the effect of several heterozygous loci, than in the
multiplicative case, and this can sometimes cause a
decrease in the fitness of the progeny of selfing as the
selfing rate increases. Since in highly selfing popu-
lations the mean fitness of the population as a whole
is largely determined by that of the selfed progeny,
this accounts for the decrease in mean fitness in those
cases where it was observed.

As previously noted for the multiplicative case, the
mutational model can yield populations with high

•8

0-5 -

04-

0-3-

0-2

0 1 -

O-O

U= 10

£/= 1-5

00 01 0-2 0-3 0-4 0-5

Dominance coefficient

Fig. 8. Inbreeding depression values under the mutational
load model with three different mutation rates, in
equilibrium populations with selfing rate 0-99 (black
symbols and dotted lines). The parameter values were
a = 001, /? = 0-2. The full lines show the values
calculated by the approximation described in the text,
assuming multiplicative fitness interactions.

selfing rates and with high inbreeding depression
values, given sufficiently high per genome mutation
rates. For this to be true, the dominance coefficient
must not be too close to 0-5, but the effect of partial
dominance is less strong than for the multiplicative
case. This can be seen from Table 3, and is also
graphed in Fig. 8, which compares the inbreeding
depression values predicted by the approximate
formula derived in section 6(ii) above with the
synergistic case that gave the worst agreement with
those values. When there is disagreement between the
two curves, the synergistic results are always higher
than the predicted values (even though these are
higher than the exact multiplicative results for high h
values), whereas the values calculated on the multi-
plicative assumption were always very close to the
predicted values. The effect of synergism is therefore
to increase the level of inbreeding depression, com-
pared with the multiplicative case.

Since the magnitude of inbreeding depression in
highly selfing populations is not very sensitive to the
selection model, nor to the strength of selection, these
results suggest the possibility of using eqn (13) to
estimate the mutation rate per genome to deleterious
alleles, from data on inbreeding depression in such
populations. This would be very valuable, because
this has rarely been estimated, apart from the work
using Drosophila melanogaster (Crow & Simmons,
1983). For highly inbreeding populations, the mag-
nitude of inbreeding depression is estimated from the
degree of heterosis when lines are intercrossed. It is
reasonable to use such data to estimate the mutation
rate to mildly deleterious alleles, because it is unlikely
that populations that are highly inbred will carry any
appreciable frequency of recessive lethal mutations. It
is also unlikely that they will be polymorphic for
overdominant alleles at many loci, since such poly-
morphisms cannot be maintained in highly selfing
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populations unless the selection coefficients against
the two homozygotes are equal, which is improbable
(Kimura & Ohta, 1971).

There appear to be few data currently available that
can be used to get such an estimate. It is well
documented that heterosis between lines of
Arabidopsis thaliana is quite strong (Griffing &
Langridge, 1963; Griffing & Zsiros, 1971; Griffing,
1989), and that this plant is highly inbreeding (Abbott
& Gomes, 1988). Griffing & Langridge (1963) report
data yielding inbreeding depression values ranging
from 0037 to 0-67, depending on the temperature at
which the plants were grown. In the experiments of
Griffing (1989) involving two inbred strains, the
average inbreeding depression in yield ( = plant dry
weight) was about 0-16, with very little variation
caused by the other genotypes with which the plants
studied were competing. This value is probably an
underestimate, because it is based on comparing the
parental strains and the F2 between them, due to low
yields of Fj seeds. Riley (1956) obtained an estimate of
heterosis in both within- and between-population
crosses in Thlaspi arvense, from which inbreeding
depression values ranging from 0 to 0-32 for the
germination rate can be estimated. The ratio of
fitnesses of plants grown from seeds produced by
selfing by cleistogamous flowers and those produced
by chasmogamous flowers has been estimated for
plants from one population of Impatiens capensis
(Schmitt & Ehrhardt, 1990), and ranged from 0 to
0-155, depending on the conditions used, the stage of
the life cycle studied, and the estimation procedure
employed. For dry weight of harvested mature plants,
the value in competitive conditions was 0-265, even
after adjusting for different seed weights and collection
dates. Assuming that up to half of the seeds from
chasmogamous flowers may have been produced by
outcrossing, these data suggest an inbreeding de-
pression value of at least 0-1-0-2 (Schmitt & Ehrhardt,
1990). The breeding system of this population has not
been quantitatively estimated, but Schmitt et al.
(1987) estimate that about 10% of the seeds are
produced by chasmogamous flowers (see also Waller,
1984), so that the outcrossing rate of the population
must be less than 5 % even if the outcrossing rate of
chasmogamous flowers is as high as 0-5 (Knight &
Waller, 1986). Imam and Allard (1965) obtained
similar data from wild oats. The outcrossing rates of
different populations were estimated to be below 0-1,
ranging as low as 001. In a nursery experiment using
plants from different populations grown together,
several components of fitness were higher for plants
derived from naturally open pollinated flowers than
for progeny of hand selfing. For tiller number or
survival from emergence to flowering, the ratio of
values of these fitness components was about 11 for
these two types of progeny. If one assumes an
outcrossing rate of 0-1 for the open pollinated flowers,
this yields an inbreeding depression value of 0-53, with

higher values if the outcrossing rate were lower than
this. However, it is possible that the selfed progeny
could have lower fitness values due to some difference
caused by the bagging procedure needed to ensure
that outcrossing did not occur, so these estimates are
possibly suspect. Svensson (1988) found inbreeding
depression in a measure of male fertility of about 0-17
in the self-fertilizing species Scleranthus annuus.

Taken together, these values suggest that heterosis
in highly inbreeding plants is large enough that the
value of U must be at least 0-5, even assuming a low
h value, and could be double that if h were higher
(Table 3). It would obviously be desirable to have
estimates of h for these populations. These data,
although scanty, show that populations that are
highly selfing can have measurable inbreeding de-
pression, as the mutational model predicts. Other data
from Impatiens capensis are quite consistent with the
results cited above (Waller, 1984). Data from highly
inbreeding crops also support the view that inbreeding
depression can still be detected in these in terms of
heterosis when lines are crossed (reviewed by Wright,
1977).

(ii) Approximate analytical results

The results shown above also demonstrate that
approximate models, based on normal or Poisson
distributions of numbers of mutant alleles per in-
dividual, can provide good predictions of the mean
fitness and inbreeding depression values of popu-
lations at equilibrium under mutation at many loci,
balanced by selection. The normal approximation
fails to work well for high selfing and weak synergism,
but the Poisson approximation works for multi-
plicative fitness interactions. Good approximations
can also be obtained for the case of heterozygote
advantage. The good agreement of the normal
approximation for the mutational model with syn-
ergism is surprising, because the population in each
generation is a mixture of products of selfing and of
random outcrossing, so that the distributions of
numbers of mutations are bimodal (Fig. 9). While it is
not very surprising that the distribution of numbers of
mutant alleles carried in heterozygotes among the
outcrossed progeny, or of numbers of mutant alleles
homozygous in the inbred progeny, might approxi-
mate a Poisson or a normal distribution, it is
unexpected to get a very satisfactory approximation
to the overall distribution by any unimodal dis-
tribution. The approximate approach failed, however,
to give a satisfactory method for dealing with the
initial spread of modifier alleles affecting the selfing
rate, presumably because of this same problem of
combining different distributions of numbers of
mutations in each generation.
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Fig. 9. Distributions of the numbers of heterozygous and
homozygous mutations per individual in an equilibrium
population with selling rate 5 = 0-7. The standard
parameter values were used, with the mutation rate, U,
equal to 10 and the dominance coefficient equal to 0-2.

(iii) Effects on modifiers of the selfing rate

As we previously found (Charlesworth et al. 1990) for
multiplicative interactions between the selected loci,
the magnitude of inbreeding depression predicts
whether modifiers of small effect on the selfing rate
will increase or decrease, when introduced at low
frequency into populations at equilibrium. If the
inbreeding depression exceeded one-half (in the
absence of pollen discounting), modifiers increasing
the outcrossing rate were selected for. However we
found that, as for the multiplicative case, major
modifiers increasing the selfing rate could sometimes
spread even when the inbreeding depression was high.
This appears to be because when a modifier causing a
high selfing rate arises, it produces a highly selfing
line. Within such a line, the effect of inbreeding is to
purge the line of deleterious mutations. Its mean
fitness will therefore increase, and the allele for selfing
can after some time establish an association with a set
of genotypes of high mean fitness, and attain a
positive rate of increase. This interpretation is con-
sistent with the fact that in such cases the modifier
allele initially decreased in frequency, and then in-
creased. This is in line with discussions in Campbell
(1986), Lande & Schemske (1985) and Charlesworth
et al. (1990) and is no different from what we found in
the multiplicative case. Because synergism leads to
greater inbreeding depression than the multiplicative
model, for populations with the same mean fitness, it
should tend to yield stronger selection for outcrossing,
or to be more likely to maintain outcrossing.

Unlike our previous results with multiplicative
fitness interactions between loci, we found that with
synergism there can be evolutionarily stable states at
intermediate values of the selfing rate slightly below
complete selfing. As discussed above, these ESSs were
always at high values of the selfing rate. In every case
studied when there was an ESS for the selfing rate
there was also a maximum in the mean fitness (or
minimum in inbreeding depression) at some selfing

rate below unity. This result is in accord with a
suggestion by A. S. Kondrashov (pers. comm., cited
in Charlesworth et al. 1990) that with truncation
selection there could be a maximum in mean fitness
and that this might explain his finding of ESS selfing
rates for models with truncation selection. The present
results show that it is correct that there is a maximum
in mean fitness, and that this is not confined to the
case of truncation selection. This does not, however,
prove that the ESS in Kondrashov's results is due to
this cause, as his model included differences in
allocation patterns which would also have been
capable of generating stable intermediate selfing rates
(see Charlesworth et al. 1990). In the present case,
however, the ESS selfing rates do appear to be due to
the behaviour of the mean fitness.

The ESS selfing rates were somewhat higher than
the selfing rate corresponding to the maximum in the
mean fitness. The explanation for these ESS selfing
rates is probably as follows. When selfing is close to
total, and a modifier is introduced that increases
selfing, the modifier allele and the original allele are
each confined to an almost entirely homozygous line.
The outcome therefore depends on the mean fitnesses
of these lines, and we have seen above that this can
decrease at very high 5 values, in the synergistic model
of selection. The ESS values are higher than the S
values with maximum fitness, because the transmission
advantage to alleles that cause high selfing rates
(Fisher, 1941) can outweigh the reduction in fitness
unless this is too great. The existence of such ESS
selfing rates is interesting because it is well known that
there appears to be a tendency for even highly selfing
populations to have selfing rates just below complete
selfing. This was pointed out by Darwin (1862, p.
293), who states that nature: 'abhors perpetual self-
fertilisation '.

(iv) Evidence for synergistic interactions between loci
affecting fitness

It seems unlikely that the systems we have studied
would behave very differently if we had used another
model for the synergism, and the behaviour appears
similar even to the results obtained by Kondrashov
(1985) who assumed truncation selection. However,
there is no firm evidence for synergism as intense as
represented by a truncation model. The best evidence
that synergism occurs comes from the work of Mukai
(reviewed by Crow, 1970 and Charlesworth, 1990).
The degree of synergism estimated from Mukai's
work appeared to be slight, and the 'standard
parameter set' used here and by Charlesworth (1990)
was based on these estimates. Synergism could also be
detected by studies of the relationship between fitness
components and inbreeding coefficients, for example
by generating progeny of a set of matings between
relatives of different degrees. The results of a number
of such studies in conifers were reviewed by Griffin &
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Lindgren (1985), and appear to show some evidence
for larger declines in fitness for any given increment in
the inbreeding coefficient, the higher the inbreeding'
coefficient, suggesting synergistic interactions of the
kind postulated here. However, at high inbreeding
coefficients, the reverse was found. Much more
extensive studies of the decline in fitness with the
increasing inbreeding coefficient over successive
generations of inbreeding have been published (re-
viewed by Lynch, 1988), but these are unsatisfactory
for the present purposes, because the genetic variation
in fitness will change over the generations of such an
experiment. In particular, there will be a reduction in
the frequency of deleterious recessive and partially
recessive alleles, as inbreeding proceeds. It is therefore
not surprising that such experiments generally produce
a rapid decline in fitness at first, followed by slower
changes in later generations (Jones, 1939). This
relationship between inbreeding and fitness can not
therefore be taken as evidence of negative synergism.
If an accelerating decline is found, however, this does
suggest synergism. Some cases are known (e.g. Gallais,
1984; Bondari & Dunham, 1987).

The overall conclusion from our studies of syn-
ergistic fitness interactions is therefore that synergism
makes it somewhat easier to maintain high inbreeding
depression and to select for, or to maintain, out-
crossing under the mutational load model. This is
especially true for populations with high selling rates
(Fig. 4). Even small amounts of synergism in relation
to the strength of selection (small fi/a) are effective in
this way.

This work was supported by NSF grants BSR 8516629 and
BSR 8817976.
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standardised bivariate normal form for the integrand
can be obtained by writing u = k1{y — a^), v =
k2(z—d2), and equating the integrand to a constant
times a bivariate normal in u and v, with correlation
coefficient p. Equating coefficients on both sides, we
find that

P =
{p-[\-p>]al2)

(A 4a)

< A 4 6 )

where

Appendix. Bivariate normal approximation for
mutation-selection equilibria with partial selling

The method employed is to reduce the distribution
among the progeny produced by selfing to the
standardised bivariate normal form, exploiting the
known properties of this distribution in order to
calculate the quantities of interest. For the selfed sub-
population, the variables y = iy,—y,)/(ry, and z =
(Zs-fs)/<Tzs (where <ry, = y/Vv, and
follow such a distribution:
,,~ -v , - w , , 2N_i ((y2+z2 —

4>(y, z) = (2T7) \\-p2) 2 e x p - | ^ \,

(Al)

where the correlation coefficient p = Cyzs/ays <TZS.

The fitness of an individual with state (y, z), given by
eqn (2) of the text, can be written in terms of the
standardised variates as:

w(y,z)

where
(A 2)

+ hzsf

+ hzs), a2 = h(aaz

The mean fitness of the selfed subpopulation is
given by the expression

/*CO /*QO

" > „ = w(y,z)<p{y,z)dydz. (A3)
J -CO J -CO

A transformation to a form that is proportional to the

Using this transformation in eqn (A 3), we obtain
the following expression for the mean fitness of the
selfed sub-population:

iv. =

\ a2 + k\ al — 25k. k2 a,
^ 2(1-/5*) ( }

The parameters of the post-selection distribution
cj)* (y, z) = w(y, z) 4>{y, z)/w, can be obtained from its
moment-generating function:

M(6,,
J -CO J - <

e-WBHD y dz (A 6)

where the coefficients of 6 and £ in the expansion of M
give the changes in the means of y and z, the
coefficients of \d2 and \£2 give the respective second
moments about zero for the post-selection distri-
bution, and the coefficient of d£ gives the corre-
sponding crossproduct. We obtain

(A 7)

Transforming back to the original variables y and z,
we obtain the following equations for the post-
selection distributional parameters:

?? =y-(Tvs&i, *? = *s~o'zsS2 (A 8 a )

. 2 '
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