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1. Introduction

Although varieties of groups can in theory be determined as well by
the identical relations which the groups all satisfy as by some structural
property inherited by subgroups, factor groups and cartesian products
which the groups have in common, it seems in practice just as hard to
answer questions about properties of a group from knowledge of identical
relations as it is from, say, a presentation. Many of the important questions
connected with Burnside's problems exemplify this difficulty: we still do
not know if there is a bound on the derived length of finite groups of ex-
ponent 4, nor whether there is a bound on the nilpotency class of finite
groups of exponent p {p ^ 5, a fixed prime).

In this note we describe two procedures:

1. to decide whether or not every finite group satisfying a given law
w(x1, • • ', xn) = 1 is nilpotent;

2. to decide whether or not every finite group satisfying the law w = 1
is soluble.

These two questions have formed the starting point for a study of
groups satisfying certain special laws (see papers by N. D. Gupta and H.
Heineken [2], [3]) and this note arose from the observation that ad hoc
methods described there could be greatly generalised. The restriction to
just one law is unnecessary, our procedures will work for any finite number
of laws. But such generalisation is, in the case of groups, equally un-
necessary: as is well known, any finite number of laws wi = 1, i = 1, • • •, N
is equivalent to just one law obtained by forming the product w±w2 • • • wN

with variables so chosen that no variable occurs in more than one of the
factors.

In § 4 we describe four more significant problems, two of which we can
show to be recursively soluble, the other two we conjecture to be recursively

1 The authors would like to use this opportunity to express their gratitude to Monasb
University for such splendid hospitality during the third term, 1966.
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insoluble. One of these, the question whether two finite sets of laws determine
the same variety, is meaningful as it stands for varieties of any species of
algebraic system, and we show that for algebras with two unary operators
it is, in general, recursively undecidable.

NOTATION. We will write SB for the variety determined by w; that is,
if G is a group then G e SB if and only if w{gx, • • •, gn) = 1 for all choices
of gi,- ••, gn from G.

The length of w will be denoted by I; that is, if

»(*i. ••*.*•) = *£*?;•••*£ e,-±i
and the expression on the right is a reduced word (no cancellations are
possible) then / = 2V.

2. Nilpotence of finite groups in SB

The variety SB will contain finite non-nilpotent groups if and only
if it contains a finite non-nilpotent group all whose proper subgroups and
proper factor groups are nilpotent. These minimal non-nilpotent groups
are well-known (see, for example, L. Re"dei [4; Satz 1], and [3; Lemma 2.5]).
Such a group is metabelian, its derived group is an elementary abelian q-
group for some prime q and is complemented by a cyclic group of prime
order p. For convenience we describe the groups as matrix groups — they
are subgroups of the group of the affine line over a finite field of char-
acteristic q. Let p, q be distinct prime numbers, let m be the least positive
integer such that p \ qm—1, and put

CM.-O
where a, 0 are elements of GF(qm), the field with qm elements. Then

is a minimal non-nilpotent group and conversely, every minimal non-
nilpotent group is isomorphic to G(j>, q) for some ordered pair of distinct
primes p, q.

The first step of the procedure is this. Take matrices

where alt • • •, an, tlt • • •, tn are commuting indeterminates (so that Xt is
to be considered as a matrix over Z[alt ••- ,«„, tlt • • •, tn], the polynomial
ring in 2n indeterminates over the ring of integers). Put
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- U °J
and compute the matrix w*(X1, • • •, Xn) which is obtained from w(x1, • • •, xn)
by replacing x{ by Xf, xj1 by X* for all i. Then

where 7\ and T2 are monomials in tlt • • •, tn; A is a polynomial in
ai> " ' '• an> h> ' ' '• tn'> *n e degrees of 7 \ , T2, .4 are at most I, and 4̂ is
linear in the a,-. Actually, of course, 7\ is the product of the t( arising from
the positive powers of the xt in w, T% is the product of the ti arising from
the negative powers of the xi. Formally, therefore,

Since A, 7\ , T2 have integer coefficients they can be interpreted as poly-
nomials over any field, in particular over GF(qm), and since

it follows that w is a law in G(p, q) if and-only if

A(a.1,--;oLn,61,---,dn) = 0

T1(01,'-;dn) = Tz(d1, ••;<)„)

for all choices of a.1, • • -, an, Blt • • -,Bn from GF(qm) with 0!, • • •, 0n being
Z)111 roots of unity.

Calculate next the highest common factor2) h of the absolute values
of the coefficients appearing in A and 7\—T2. If h ^ 1 (which can happen
only if 7 \ , T"2 are identical, and this in turn happens only when w lies in the
commutator subgroup of the free group on xx, • • •, xn) and q \ h (q prime),
then G(p, q) e 28 for all primes p. This corresponds to the case where w
is a product of qm powers of commutators, so that 91,91 Q SOB, where 9ta9C
is the variety of all groups with a normal abelian subgroup of exponent q
whose factor group is abelian. But if h = 1 then G [p, q) $ 28 whenever
p > I. For, if h = 1, then A{alt • • •, an, tlt • • •, tn) and T^, • • -, tn)-
^2&> ' * *> K) a r e n ° t both identically zero as polynomials over a field of
characteristic q (for any q) and since there are at least p different values that
each variable ait ti may take in GF(qm) — the values of the ti being

• The lattice of natural numbers ordered by divisibility is to be supplemented by ad-
junction of 0 as the maximum element.
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restricted to ptri roots of unity — while the degrees in the a, or tt of these
polynomials are at most I < p, at least one of them must take a non-zero
value in GF(qm). Thus if p > I then G(j>,q)i SB. There are now at most I
remaining primes p for which we have not yet decided whether any of the
groups G (p, q) satisfy w = 1 identically. Each of these primes is to be
considered separately.

Let p then be a prime number, p ^.l. Define polynomials A^, 7\P,
T2v by replacing any power t™* by t? where

m{ = fj (mod p) 0 ^ r, <p

wherever possible in A, Tt and T2 respectively. Then clearly the degree
in tf of the resulting polynomials AP, Tiv—Tit will be less than p for all
relevant i — and Av is of course still linear in the a{. Moreover, if 01, • • •, 6n

are p^ roots of unity in GF(qm), then

A («i. * * •> <*». ei> • • •> 0«) = ^Mi> • • '• «n. 0 i . • * •» 0«)
TxVi. • • •> K)-T^X> • •., dn) = r ^ , • • •, en)-T2v{6lt • • -, en)

for any elements a1( • • •, an of GF(qm). Again we calculate hv, the highest
common factor of the absolute values of the coefficients of Ap and Tlv—T2l>.
If hv ^ 1 then G(p, q) e SB whenever q divides hv, if hv = 1 then the same
argument as before gives that G (/>,?) £ SB for any q.

Our prescription therefore is this:
Compute the (at most l+l) non-negative integers h, h2, h3, hb, • • •, hv

where 2, 3, 5, • • •, pr are the primes not bigger than I; if all these numbers are
1 then every finite group satisfying w = 1 identically is nilpotent; but if at
least one of these numbers is not 1 then there are finite non-nilpotent groups
satisfying w — 1 identically.

3. Solubility of finite groups in 38

Our description of an algorithm to determine whether or not all the
finite groups satisfying w = 1 are soluble depends on knowledge of the
minimal non-soluble groups. These are, of course, the minimal simple groups,
finite simple groups all whose proper subgroups are soluble. We will need the;
classification announced by J. G. Thompson [6]:

The minimal simple groups are among the groups3 (i) PSL(2,q);
(ii) PSL(3, 3); (in) Sz(2") (Suzuki groups, Suzuki [5]). It seems doubtful
that so deep a result as this is really necessary for our purpose but we have
not been able to prove the theorem any other way. The first part of our

• The groups PSL{2, q) actually are minimal simple groups for (a) q prime, q ^ 6,
q* ^ 1 (mod 5); (b) q = 2" p prime; (c) q — 3" p any odd prime. The Suzuki groups are
minimal for odd primes p.
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algorithm decides which of the projective special linear groups PSL(2, q)
satisfy w = 1, and the second part does the same for the Suzuki groups.

FIRST PART. We shall use the description of PSL (2, q) as factor group
of the group ZL (2, q) which consists of all 2 x 2 matrices over GF (q) (q
is now any prime power) whose determinants are squares in GF(q) by the
group of non-zero scalar matrices. So we begin with matrices

'i dj

in commuting indeterminates alt • • •, an, blt • • •, bn, clt • • •, cn, dlt • • •, dn,
define

x*=( di ~~bi^
and compute

where, as before, w* is the monomial obtained from w{xlt---, xn) by sub-
stituting Xf for xt and X* for xj1 wherever these occur. The entries A,
B, C, D, are polynomials in the at, bt, cit dt with integer coefficients, of
degree at most I. Let the highest common factor of the absolute values of
the coefficients of B, C, A—D be h. If h ^ 1 then PSL(2, q) satisfies w = 1
identically whenever q is a power of a prime -p which divides h, for in GL (2, q)
the inverse of the matrix X{ (whose entries now are interpreted as elements
of GF(q)) is a scalar multiple of X*, consequently w(Xlt • • •, Xn) will be
a scalar multiple of w*{Xlt • • •, Xn) and if the values of w* are all scalar
matrices then so are the values of w.

If h = 1 and q > 21+3 then PSL (2, q) $ SB. For, if 0, y are arbitrary
elements and 6 is any non-zero element of GF(q) then we still have available
at least \(q— 1) values for a in GF(q) for which cLd—jiy is a non-zero square
— namely, the elements <5-1(A2+/?y) with A ^ 0. This gives sets of at least
/ + 1 independent values for each of the variables ao bit c{, dt i = 1, • • •, n,
for which the matrices X{ are in EL (2, q). Since the polynomials B, C,
A—D have degree at most I, and since at least one of them is not identically
zero as a polynomial over GF(q), at least one of the values of the matrix
w*(Xlt • • •, Xn) is not scalar for Xx, • • •, Xn in ZL{2, q). It follows that w
takes non-trivial values in PSL (2, q) and so PSL (2, q) $ SB. The remaining
fractional linear groups, of which there are at most 2Z-f-4, namely PSL (3, 3)
and PSL (2, q) for q 5S 2/-J-3, can then be checked one by one.

SECOND PART. We handle the Suzuki groups in a similar way, but with
one significant difference. If k Si 1 and q = 2a+1 then GF(q) has an auto-
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morphism 0 given by

for all a e GF(q). In the following we will handle 0 as an ordinary ex-
ponent: 0 is taken to exceed any integer so that the additive group generated
by 0 and 1 is ordered lexicographically, and a "polynomial of degree r-\-sd"
then has the obvious meaning. With this convention we can describe the
group Sz(q). Let

,1

fV1+6 \

V } »
y-i-»/

where a, /?, y e GF(q), y # 0, and entries in these matrices which have not
been explicitly written down are all zero. Then (M. Suzuki [5]) every
element of Sz(q) is a product h(cc, P)k(y) or a product A(oc, P)k(y)rh(d, s),
and the expression of an element in one of these forms is unique. The inverse
of a matrix h(cn, /S) is obtained by substituting <x1+9+/3 for /3; since 02 = 2
(that is, 02 is the automorphism of GF(q) which maps any element to its
square) this again gives a matrix whose entries are polynomials of degree
at most 2+# in oc and /?. The inverse of k{y) is k(y~1) and r is its own inverse.
Notice that k(y) and its inverse are y-1-0 times matrices whose entries are
polynomials of degree at most 2+20 in y.

We now take matrices of the given form in commuting indeterminates
a{, bo ct, d{, e{ and compute the 2" monomials obtained by substituting
matrices Xt = c\+eh{ai, b^kifij) or X{ = c)+eh(ai, bi)k(ci)rh(d{, et) for xt

in w(xlt • • •, xn) — again, in order to keep to matrices with polynomial
entries, we substitute c\+uXj1 for xj1 wherever it occurs. This gives 2" 4x 4
matrices each of which has polynomial entries with integer coefficients of
degree at most (6+40)2 in at most 5» variables. In each of these polynomials
replace any even coefficient by 0, any odd coefficient by 1. If the resulting
matrices are all scalar matrices (identically: off-diagonal entries are to be
the zero polynomial, the diagonal entries one and the same polynomial)
then all the Suzuki groups satisfy w = 1 identically. If, however, at least
one of these matrices is not a scalar matrix then for all sufficiently large q
— q ^ 128 l% will do — it will be the case that Sz(q) $ 2B. For, if we fix k
for the moment then we may leplace 0 in any exponent by 2*+1. We can
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be sure that the resulting polynomials are still not all zero provided that
we can distinguish monomials of degree r1-\-s12

k+1 from monomials of degree
rz+s22*+1. Since our polynomials all have degree at most 6/+4Z0 this will
be so if

2*+! > 61.
If moreover

(6+4.2*+!)/ <q = 22fc+1

then the relevant non-zero polynomials will take some non-zero values
over GF(q). The latter inequality is certainly satisfied if

22*+i ^ 8.2*+^,

that is, if
2* ^ 81,

so that both inequalities are satisfied if q ^ 128Z2. We are then left with
at most 3+log2/ groups which again are to be checked one by one.

DIGRESSION. In both parts of this procedure we used (explicitly or
implicitly) the highest common factor h of the absolute values of the coef-
ficients of certain polynomials, polynomials which are determinable ex-
plicitly in terms of w. If h was divisible by p, or 2, then PSL(2, q), Sz(q),
satisfied w = 1 identically whenever q was a power of p, or an odd power
of 2 respectively. Actually, however, if w is a non-trivial word then h is
automatically 1: any infinite set of the groups PSL(2, q) or any infinite set
of Suzuki groups generates the variety of all groups. As a matter of fact,
any infinite set of the known finite non-abelian simple groups generates
the variety of all groups; that is, only finitely many of the known non-
abelian finite simple groups can satisfy a given non-trivial law. The classical
groups and the other algebraic families can be handled as in § 2 or the first
part of this section; the twisted versions are so "nearly algebraic" that they
can be handled in the same way as we dealt with the Suzuki groups; the
alternating groups and the remaining sporadic simple groups offer no dif-
ficulty. For all the families (other than the family of alternating groups)
one must calculate that the relevant number h is 1. But the larger finite
simple groups defined over a field GF{plc) always contain a subgroup
PSL(2, pm) or Sz(2m) where m tends to infinity with k, so that it is sufficient
to prove the statement for these latter groups.

4. Concluding remarks

It is sensible to ask of many of the problems arising in practice whether
they admit an algorithmic solution. Here we survey briefly some of those
we consider to be important.
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3. Is it decidable whether every finite nilpotent group satisfying w = 1
identically has class at most kl

4. Is it decidable whether every finite soluble group satisfying pi = 1
identically has derived length at most k?

These two problems can be solved in essentially the same way as the
word problem in residually finite groups: on the one hand enumerate all
elements of the verbal closure of w(xt, • • •, xn) and * [xlt • • •, xk+2] in the
free group onz1,'",xr(r = max (n,k-\-2)), and on the other hand enumerate
all finite groups, checking each one to decide whether it is nilpotent of
class greater than k and satisfies w = 1 identically. Eventually this process
must produce either the word \xx, • • •, xk+1] as a consequence of w and
[*!,•••, xk+a'\ or a finite nilpotent group satisfying w = 1 identically, but
which is not of class k. A similar procedure works for the soluble case.

There is an important practical difference between the algorithms
described in §§ 2, 3 and those described here. The former are primitive
recursive procedures but the latter are, on the face of it, only recursive.
In fact, we can predetermine an upper bound on the length of time taken
for our first two algorithms in terms of the length of the word w, without
actually going through with the computation.

Problem 5. Is it decidable whether there is a bound on the class of (finite)
nilpotent groups, or a bound on the derived length of (finite) soluble groups,
satisfying w = 1?

These are precisely the questions which seem most important at present
in the study of Bumside's Problem (see § 1) arid of groups satisfying an Engel
identity [x, y, • • •, y] = 1. It seems just possible, though hardly likely,
that even for some one particular word w these questions may be un-
decidable 5 in, say, the Elementary Theory of Groups (and if this were the
case we would immediately get a proof in the meta-theory that no bound
exists for this particular word); but even if the questions are decidable
for each word w individually, it is unlikely that there is a uniform procedure
which will decide for every w.

Problem 6. Is it decidable whether the varieties SŜ  and 2B2 determined
by words wx, w2 are the same}

This is an obvious generalisation of questions 3 and 4. The answer is
affirmative if we know that SB̂  and 282 are generated by their finite groups,
but in general we do not know.

• Undecidable in the sense that, although a bound must exist or not exist, if the latter
happened to be the case there may nevertheless be no proof of this fact within the Element-
ary Theory of Groups. (The term Elementary Theory of Groups is used in the sense of E.
Mendelson, Introduction to Mathematical Logic, van Nostrand, 1964, p. 58).
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The last of these questions is, of course, relevant much more generally
for varieties of algebras of any species (and is a special case of problems
concerning the equivalence of two first-order theories) — and for most
species there is no end of questions analogous to 1—5. But for algebras
with, say, two unary operators Problem 6 is recursively undecidable. To
see this, start from a finite set R of relations in two generators a, b which
present a semigroup whose word problem is insoluble (see for example,
M Davis [1], Theorem 4.6, page 98). Let SB be the variety of algebras
with two unary operators a, /S satisfying the one-variable laws

xrx(a, 0) = xr2(a., P)

for all pairs rlt r2 for which the relation rx{a, b) = r2(a, b) is in R. If sx(«, b),
s2(a, b) are elements of the free semigroup generated by a, b, and SQ3X is the
subvariety of SB obtained by adding the one further law

xs^cc, P) =XS2(OL,P),

then it is recursively undecidable whether or not SBX = SB.
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