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Abstract

In this paper, we investigate Frobenius eigenvalues of the compactly supported rigid
cohomology of a variety defined over a finite field with q elements, using Dwork’s
method. Our study yields several arithmetic consequences. First, we establish that the
zeta functions of a set of related affine varieties can reveal all Frobenius eigenvalues
of the rigid cohomology of the variety up to a Tate twist. This result does not seem
to be known for the �-adic cohomology. As a second application, we provide several
q-divisibility lower bounds for the Frobenius eigenvalues of the rigid cohomology of the
variety, in terms of the dimension and multi-degrees of the defining equations. These
divisibility bounds for rigid cohomology are generally better than what is suggested
from the best known divisibility bounds in �-adic cohomology, both before and after
the middle cohomological degree.
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1. Introduction

Dwork [Dwo62] engineered a cohomology theory in order to study the zeta function of a projective
hypersurface over a finite field Fq of q elements with characteristic p. In this paper, we revisit
his construction, and study some problems on Frobenius eigenvalues of affine varieties in rigid
cohomology.
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1.1 Visibility of Frobenius eigenvalues

Our first theorem is about the visibility of Frobenius eigenvalues in the zeta function of an affine
variety.

Let Fq be a finite field with q elements and characteristic p. Given an algebraic variety Z
over Fq, its zeta function is defined as

ζZ(t) = exp

{ ∞∑
m=1

|Z(Fqm)|
m

tm

}
.

Weil conjectured, and Dwork subsequently proved [Dwo60], that ζZ(t) is a rational function.
By trace formulae in rigid cohomology (due to Étesse and Le Stum [ELS93]) and �-adic

cohomology (see, e.g., [Del77, Rapport, §§ 4–6]), the zeta function is an alternating product

ζZ(t) =

2 dimZ∏
i=0

det(1− t · Frobq|Hic(Z))(−1)i+1

. (1.1)

Here, Hic(Z) could mean either Berthelot’s compactly supported rigid cohomology Hirig,c(Z),

or compactly supported �-adic cohomology Hic(ZFq
,Q�) (Fq is a fixed algebraic closure of Fq,

ZFq
=Z ⊗Fq

Fq, and � �= p is a prime number). Note that the finite dimensionality of Hic(Z) also
yields a cohomological proof for the rationality of the zeta function.

By the trace formulae, reciprocal roots and poles of ζZ(t) constitute a subset of the Frobenius
eigenvalues of H∗

c(Z). When Z is smooth and proper over Fq, the converse is also true, as a result
of Deligne’s resolution of Weil’s conjecture [Del74, Théorème 1.6] (for rigid cohomology, see Katz–
Messing [KM74]). In such cases, the Frobenius eigenvalues of Hic(Z) are algebraic integers having
archimedean absolute value qi/2 (with respect to any abstract embedding W (Fq)[1/p] ↪→C or
Q� ↪→C). Therefore, the denominator and numerator of the right-hand side of (1.1) do not have
common factors; the zeta function alone can recover the Frobenius eigenvalues.

Without the smooth proper condition, the linear factors of the determinants in (1.1) could
cancel out. If a cancellation happens, ζZ(t) may not be capable of witnessing all the Frobenius
eigenvalues, not even up to Tate twist. Here is a simple example. Let X be a general nonsingular
cubic curve in A2

Fq
, and let Y =A2

Fq
X be its complement. Then the zeta function of the

affine variety Z =X � Y equals that of A2
Fq
, namely, (1− q2t)−1. On the other hand, there exist

Frobenius eigenvalues of H1
c(Z) =H1

c(X)⊕H1
c(Y ) of absolute value q1/2.

Our first theorem asserts that, if we are willing to take the defining equations of an affine
variety Z into the consideration, then we can recover all the Frobenius eigenvalues of Z up to
Tate twist from zeta functions of finitely many varieties related to Z. In order to give the precise
statement, let us introduce some terminologies.

Definition 1.1. Let Γ= {Γa(t), Γb(t), . . .} ⊂ 1 + tCp[[t]] be a collection of p-adic meromorphic
function on Cp (i.e., fractions of p-adic entire functions). We say that a p-adic number γ ∈
Cp {0} is visible in Γ, if Γa(γ

−1) = 0 or ∞ for some Γa ∈ Γ. We say that γ is weakly visible in
Γ, if there exists m∈Z such that qmγ is visible in Γ.

Now let f1, . . . , fr ∈Fq[x1, . . . , xn] be a collection of polynomials. For every subset
I ⊂ {1, 2, . . . , r}, set ZI =SpecFq[x1, . . . , xn]/(fi : i∈ I)⊂An

Fq
and Z∗

I =ZI ∩Gn
m. Write Z =

Z{1,2,...,r}.

Theorem 1.2. Let Z be the vanishing locus of f1, . . . , fr ∈Fq[x1, . . . , xn] in An. Then any
Frobenius eigenvalue of H•

rig,c(Z) is weakly visible in the finite set {ζZ∗
I
(t) : I ⊂ {1, 2, . . . , r}}.
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Visibility and divisibility

The theorem is already interesting when Z ⊂An
Fq

is an affine hypersurface. In this special
situation, it asserts that if a Frobenius eigenvalue λ is canceled out in the zeta function, then
either it equals qm for somem, or there must exist a reciprocal root or reciprocal pole of ζZ∩Gn

m
(t)

that equals a Tate twist of λ. Thus, the zeta function ζZ∩Gn
m
alone can recover all the Frobenius

eigenvalues of H•
rig,c(Z) up to Tate twist.

In view of the ‘motivic’ philosophy, the same result should also hold for �-adic cohomology.
But our method, which is p-adic in nature, depends upon an explicit chain model of rigid
cohomology and does not work in the �-adic context.

1.2 Divisibility of Frobenius eigenvalues

The second result of this paper concerns the notion of q-divisibility as algebraic integers of
Frobenius eigenvalues of affine and projective varieties.

Let f1, . . . , fr ∈Fq[x1, . . . , xn] be a collection of polynomials. Write dj =deg fj . Without loss
of generality, we will assume that all the degrees dj are positive. By rearranging, we can and
will assume that d1 � d2 � · · ·� dr. Let

Z =SpecFq[x1, . . . , xn]/(f1, . . . , fr),

be the vanishing scheme of these polynomials in An
Fq
. For any integer j � 0, we define a non-

negative integer

μj(n; d1, · · · , dr) = j +max

{
0,

⌈
n− j −∑r

i=1 di
d1

⌉}
.

Recall that the classical Ax–Katz theorem [Ax64, Kat71] states that all the reciprocal roots
and poles of the zeta function of Z are divisible by qμ0(n;d1,...,dr) as algebraic integers. This
divisibility was later upgraded to a divisibility on Frobenius eigenvalues on �-adic cohomology.
Esnault and Katz [EK05] showed that the Frobenius eigenvalues of H•

c(ZFq
,Q�) are divisible by

qμ0(n;d1,...,dr); furthermore, for j � 0, the Frobenius eigenvalues of Hn−1+j
c (ZFq

,Q�) are divisible

by qμj(n;d1,...,dr).
The theorem of Esnault and Katz does not give the most optimal bound when r > 1. Recently,

Esnault and the first author [EW22] revisited this theme. Based on their study for projective
varieties, they suggested a divisibility bound beyond the middle cohomological degree better
than the Esnault–Katz bound.

Question A. Is it true that any Frobenius eigenvalue of HdimZ+j
c (ZFq

,Q�) is divisible by

qμj(n;d1,...,dr), in the ring of algebraic integers, for all integers j satisfying 0� j � dimZ?

This question, if answered affirmatively, would simultaneously improve the results of [EK05]
and Deligne’s integrality theorem [DK73, Exposé XXI, § 5] beyond the middle cohomological
degree.

Since Frobenius eigenvalues are supposed to be ‘motivic’, one is led to ask the same question
for the Frobenius eigenvalues of rigid cohomology.

Question B. Is it true that any Frobenius eigenvalue of HdimZ+j
rig,c (Z) is divisible by qμj(n;d1,...,dr),

in the ring of algebraic integers, for all integers j satisfying 0� j � dimZ?

In this article, we show the following theorem.

Theorem. Question B has an affirmative answer.
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Unlike in the �-adic situation, where theorems are usually proved via dévissage, we pursue the
divisibility for rigid cohomology using a different method, via Dwork’s p-adic theory, refining and
upgrading the chain-level approach in [Wan00] to Dwork cohomology, and then by comparison
with rigid cohomology.

Somewhat surprisingly, the bounds we obtain through the p-adic methods are sharper
than anticipated by Question B. Also, our approach gives divisibility bounds before middle
cohomological degree, improving the Ax–Katz type bounds of [EK05].

To state our bounds beyond middle cohomological degree, we define

d∗i =

⎧⎪⎨⎪⎩
di if 1� i� n− dimZ,

1 if i > n− dimZ and di = d1,

0 if i > n− dimZ and di < d1.

For integer j � 0, define another non-negative integer

νj(n; d1, . . . , dr) = j +max

{
0,

⌈
n− j −∑r

i=1 d
∗
i

d1

⌉}
.

Note that di � d∗i , and thus νj(n; d1, . . . , dr)� μj(n; d1, . . . , dr); also the numbers
νj(n; d1, . . . , dr) form an increasing sequence in j. These numbers depend on the degrees
of the defining equations of Z and also on the dimension of Z.

If Z is a complete intersection by f1, . . . , fr, namely, if n− dimZ = r, one checks that d∗i = di
and νj(n; d1, . . . , dr) = μj(n; d1, . . . , dr).

Theorem 1.3 (Divisibility beyond middle cohomological degree). Let the notation be as above.
For every 0� j � dimZ:

– the Frobenius eigenvalues of HdimZ+j
rig,c (Z) are divisible by qνj(n;d1,...,dr) in the ring of

algebraic integers; and
– the Frobenius eigenvalues of HdimZ+1+j

rig,c (An
Fq

Z) are divisible by qνj(n;d1,...,dr) in the ring
of algebraic integers.

Remark 1.4.

(a) The second item is the consequence of the first, thanks to the long exact sequence for
compactly supported cohomology.

(b) For any separated variety Z over Fq, the Frobenius eigenvalues of H∗
rig,c(Z) are always

algebraic integers. When Z is smooth proper, we use the Weil conjecture and the integrality
of the zeta function (see [KM74, Theorem 1]). If Z is proper but possibly singular, we can
produce a proper hypercovering using smooth proper varieties by alteration [dJ96], and
then apply cohomological descent [Tsu03]. If Z is not proper, we can embed Z into a
proper variety Z, and conclude by using the assertion for proper varieties and the long
exact sequence

· · · →Hirig,c(Z)→Hirig(Z)→Hirig(Z Z)→ · · · .
Our method is capable of seeing this too (see p. 1246).

Since νj(n; d1, . . . , dr)� μj(n; d1, . . . , dr), Theorem 1.3 establishes an enhanced positive
answer to Question B. In the complete intersection case, the two bounds are identical. If Z
is not a complete intersection, then the divisibility bound in Theorem 1.3 can be strictly better.

What about before the middle cohomological degree? In this range, the only known divisibility
for �-adic cohomology is the theorem of Esnault–Katz which says that the divisibility is by
qμ0(n;d1,...,dr). We have an improved p-adic companion in this range as well.
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Since Z is cut out by r equations, Hirig,c(Z) and Hic(ZFq
,Q�) all vanish if i < n− r (see

Lemma 6.2). So, we will assume that i� n− r. If n− r=dimZ, i.e., Z is a complete intersection,
then Theorem 1.3 already covers all the possible cohomological degrees i such that Hirig,c(Z) is

nontrivial. However, if Z is not a complete intersection, then Hirig,c(Z) and Hic(ZFq
,Q�) could

be nonzero for n− r� i < dimZ. A novelty of our approach is that we can provide improved
divisibility information of Frobenius eigenvalues in these degrees as well; of course, only for rigid
cohomology.

Theorem 1.5 (Divisibility before middle cohomological degree). Let the notation be as above.
For every 0�m� dimZ − (n− r), the Frobenius eigenvalues of Hn−r+mrig,c (Z) are divisible by

qεm(n;d1,...,dr) in the ring of algebraic integers, where

εm(n; d1, . . . , dr) =max

{
0,

⌈
n− (d1 + · · ·+ dr−m + d∗r−m+1 + · · ·+ d∗r)

d1

⌉}
.

The Frobenius eigenvalues of Hn−r+1+m
rig,c (An

Fq
Z) are divisible by qεm(n;d1,...,dr) in the ring of

algebraic integers as well.

The numbers εm(n; d1, . . . , dr)(m= 0, 1, . . . , dimZ − (n− r)) form an increasing sequence
in the closed interval [μ0(n; d1, . . . , dr), ν0(n; d1, . . . , dr)], the smallest one ε0(n; d1, . . . , dr) =
μ0(n; d1, . . . , dr) being responsible for the Ax–Katz theorem and the Esnault–Katz theorem;
and we have

εdimZ−(n−r)(n; d1, . . . , dr) = ν0(n; d1, . . . , dr).

Theorems 1.3 and 1.5 have projective analogues. For a closed subvariety Z of Pn
Fq
, set

H∗
rig(Z)prim =Coker(H∗

rig(P
n
Fq
)→H∗

rig(Z)).

Theorem 1.6. Let f1, . . . , fr ∈Fq[x0, . . . , xn] be homogeneous polynomials of positive degrees
d1 � · · ·� dr. Let Z be the vanishing scheme of f1, . . . , fr in Pn

Fq
. Then, for 0� j � dimZ, as

algebraic integers:

– the Frobenius eigenvalues of HdimZ+j
rig (Z)prim are divisible by qνj(n+1;d1,...,dr); and

– the Frobenius eigenvalues of HdimZ+1+j
rig,c (Pn

Fq
Z) are divisible by qνj(n+1;d1,...,dr).

For 0�m� dimZ − (n− r), as algebraic integers:

– the Frobenius eigenvalues of Hn−r+mrig (Z)prim are divisible by qεm(n+1;d1,...,dr); and

– the Frobenius eigenvalues of Hn−r+1+m
rig,c (Pn

Fq
Z) are divisible by qεm(n+1;d1,...,dr).

Theorem 1.6 is a formal consequence of Theorems 1.3 and 1.5. For the proof, see [WZ25,
pp. 21–23].

Remark 1.7. These divisibility theorems in rigid cohomology now raise new questions for �-adic
cohomology and Hodge theory, through the ‘motivic’ philosophy.

– The Frobenius eigenvalues of �-adic cohomology groups of affine or projective Z should
also satisfy the divisibility stated in Theorems 1.3, 1.5 and 1.6.

– For affine or projective varieties defined over the field C of complex numbers, the numbers

νj(n; d1, . . . , dr) and εm(n; d1, . . . , dr)

should give lower bounds for Hodge levels of compactly supported singular cohomology of
complex varieties cut out by a set of polynomial equations of degrees d1, . . . , dr.
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Our method, purely analytic, is certainly not applicable for �-adic cohomology. But the chain-
level considerations may be useful for the problem on Hodge levels.

Note. After submitting this paper and during its refereeing process, we resolved both ques-
tions positively in [WZ25]. In particular, we established the validity of Question A for �-adic
cohomology. Independently, Rai and Shuddhodan [RS23] also provided a confirmation of
Question A.

The paper is organized as follows. Section 2 introduces the overconvergent Dwork cohomol-
ogy and provides the construction of a specific chain model for computing it. It also contains the
statement of a theorem of Baldassarri and Berthelot [BB04] which allows us to relate the overcon-
vergent Dwork cohomology with the compactly supported rigid cohomology of an affine variety.
Section 3 proves Theorem 1.2. Section 4 explains how to transplant the theory of Adolphson
and Sperber, which uses a more complicated model of Dwork cohomology, to the situation that
concerns us. After proving two lemmas in § 5, we provide the proofs of Theorems 1.3 and 1.5
in § 6.

1.3 Notation and conventions

Throughout the main body of the paper, N= {0, 1, . . .} denotes the set of non-negative integers.
We fix a prime number p, and we let q be a power of p. Let OK =W (Fq)[ζp], where ζp �= 1 is
a pth root of unity. Note that OK contains an element π satisfying πp−1 + p= 0. Let K be the
field of fractions of OK . Let | · | be the ultrametric on K extending that of Qp. The p-power
Frobenius map of Fq lifts to an automorphism τ ∈Gal(K/Qp(ζp)) such that τ(ζp) = ζp (thus
τ(π) = π), and τ q = Id.

We consider exclusively rigid cohomology over the base field K. Thus, for an algebraic variety
X over Fq and an overconvergent F-isocrystal E on X, the rigid cohomology groups Hirig,c(X; E)
and Hirig(X; E) are all finite dimensional K-vector spaces (by Kedlaya [Ked06]). When E =OX

is the constant isocrystal, we simply write Hirig(X) or Hirig,c(X) for its rigid cohomology.

2. Overconvergent Dwork cohomology

After establishing the rationality of the zeta function, Dwork proceeded to pioneer the study of
p-adic absolute values of the reciprocal roots and zeros of zeta functions of an algebraic variety
Z over Fq. He proved the famous ‘Newton above Hodge’ theorem when Z is a nonsingular
hypersurfaces in a projective space [Dwo62]. He accomplished this by devising some explicit chain
complexes of p-adic Banach spaces, which are equipped with some chain-level representations of
the Frobenius operation. A substantial portion of his work was centered around the chain-level
investigations. He only delved into the cohomology spaces under special occasions where finite
dimensionality can be shown. But even without knowing finiteness of the cohomology spaces,
the chain-level approach can still extract numerous properties of the zeta function.

Actually, Dwork did not design just one chain complex, but rather infinitely many different
chain complexes, each corresponding to a specific ‘splitting function’ in his terminology. The
chain-level Frobenius operators associated with these chain models are all capable of calculating
the zeta function of a variety, regardless of whether the variety is nonsingular or not. In some
applications, such as the ‘visibility theorem’ 1.2, knowledge of some formal properties of these
operators suffices. For more intricate analysis, such as many important results of Adolphson and
Sperber [AS87a, AS87b, AS89], and the ‘divisibility theorem’ that relies on them, some specific
chain model needed to be used.
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Since our first goal is to prove the visibility theorem, in this section we focus exclusively
on a most straightforward (overconvergent) Dwork complex. In effect, it is the overconvergent
de Rham complex of an exponentially twisted integrable connection on a p-adic polydisk. We
state a theorem of Baldassarri and Berthelot that relates the overconvergent Dwork cohomology
of an affine variety Z with the rigid cohomology of Z with compact support.

The role of a subtler model, the Artin–Hasse model, is clarified in a subsequent section, before
we prove the divisibility theorem.

Definition 2.1. On the structure sheaf of the rigid analytic affine line A1,an
K (with coordinate

z), we define an integrable connection ∇π by the formula

∇πξ =dξ + πξdz.

The connection is overconvergent. It is equipped with a Frobenius structure

ϕπ : ξ �→ ξτ (zp) · θ(z)−1,

where θ(z) is the Dwork exponential

θ(z) = exp(πz − πzp).

It is well known that the radius of convergence of θ(z) is |p|−((p−1)/p2), and thus overconvergent
(cf. [Rob00, p. 396, Theorem (b)]). The pair (∇π, ϕπ) defines an overconvergent F-isocrystal Lπ
on A1

k, called the Dwork crystal. See [LS07, § 4.2.1 and § 8.3] for more details. The dual isocrystal
of Lπ is L−π.

Situation 2.2. Let f1, . . . , fr ∈ Fq[x1, . . . , xn ]. Let Z = Spec(Fq[x1, . . . , xn ]/(f1, . . . , fr)).
Introducing new variables xn+1, . . . , xn+r, let g= xn+1f1 + · · ·+ xn+rfr. We refer to the
rigid cohomology with twisted coefficient H•

rig(A
n+r
Fq

; g∗Lπ), as the ‘overconvergent Dwork
cohomology’ of Z.

As we have said, the benefit of being able to work with the overconvergent Dwork cohomology
is that it has a rather explicit chain-level model. We now elaborate on the de Rham complex
that is used to compute the overconvergent Dwork cohomology.

Construction 2.3 (Overconvergent Dwork complex). Consider the Monsky–Washnitzer alge-
bra

B =K〈x1, . . . , xn+r〉†

=

{ ∑
u∈Nn+r

cux
u ∈K[[x1, . . . , xn+r]] : ∃ρ > 1, |cu|ρ|u| |u|→∞−−−−→ 0

}
,

where |u|= |u1|+ · · ·+ |un+r|, xu =
∏n+r
i=1 x

ui

i . For a subset I = {i1, . . . , im} of {1, . . . , n+ r},
with i1 < · · ·< im, we write xI =

∏
i∈I xi, and dx

I = dxi1 ∧ · · · ∧ dxim . We use the notation Ωm

to denote the space of ‘overconvergent m-forms’, that is,

Ωm =
⊕

I⊂{1,...,n+r}
|I|=m

B · dxI =
⊕

I⊂{1,...,n+r}
|I|=m

BI
dxI

xI
, (2.1)

where BI = xIB.
Write g=

∑
u∈Nn+r aux

u, with au ∈Fq. Let Au be the Teichmüller lift of au in W (Fq)⊂OK ,
and let G=

∑
u∈Nn+r Aux

u. Then G≡ g mod π, and the overconvergent Dwork cohomology is
computed by the exponentially twisted de Rham complex

D• : Ω0 d+πdG−−−−→Ω1 d+πdG−−−−→ · · · d+πdG−−−−→Ωn+r. (2.2)
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That is,

H∗
rig(A

n+r
Fq

, g∗Lπ)�H∗(D•).

Remark 2.4. The complex D• is said to be exponentially twisted because, symbolically,

d+ πdG= exp(−πG) ◦ d ◦ exp(πG).
Remark 2.5. Dwork cohomology originated in Dwork’s study of zeta functions of projective
hypersurfaces [Dwo62, Dwo64]. The overconvergent Dwork cohomology H∗

rig(A
n+r; g∗Lπ) is an

overconvergent variant of Dwork’s construction. Dwork used Banach spaces rather than weakly
completed algebras in the sense of Monsky–Washnitzer. His construction was systematically
generalized in the context of toric exponential sums by Adolphson and Sperber [AS89] (still
using Banach spaces instead of weakly completed versions). Apparently, the nice properties of
overconvergent Dwork cohomology were first studied by Monsky [Mon71].

Construction 2.6 (Frobenius action on the overconvergent Dwork complex). The inverse
image isocrystal g∗Lπ has a Frobenius structure, which can also be explained using the
exponential twist. We denote by σ the endomorphism of B defined by

σ :
∑

u∈Nn+r

aux
u �→

∑
u∈Nn+r

aτux
pu.

Then the Frobenius structure on g∗Lπ with respect to σ can be symbolically determined via
exponential twist (Remark 2.5) using

ϕ(ξ) =
∏
u

exp(−πAuxu) · σ
(∏

u

exp(πAux
u) · ξ

)
=

∏
u

exp(πAτux
pu − πAux

u) · ξσ

=
∏
u

θ(Aux
u)−1 · ξσ,

where u ranges in Nn+r and θ is the Dwork exponential defined above. Since θ is overconvergent,
it follows that ϕ indeed takes B into B. Recall Fq =Fpa . Let

F1(x) =
∏
u

θ(Aux
u) and Fa(x) =

a−1∏
i=0

F τ
i

1 (xp
i

). (2.3)

Then both F1(x) and Fa(x) are overconvergent analytic functions in (x1, . . . , xn+r). Hence,
ϕ= F−1

1 ◦ σ.
The Frobenius ϕ induces an operation on the spaces Ωm of differential forms.

ϕ(m)

( ∑
I⊂{1,...,n+r}

|I|=m

ξI(x)
dxI
xI

)
= pmϕ(ξI(x))

dxI
xI

, ξI ∈BI .

One can check that the above definition turns (ϕ(m))n+rm=0 into a chain map ϕ(•) : D• →D•.

Ω0 Ω1 · · · Ωn+r

Ω0 Ω1 · · · Ωn+r

d+πdG

ϕ(0)

d+πdG

ϕ(1)

d+πdG

ϕ(n+r)

d+πdG d+πdG d+πdG
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It induces the semilinear Frobenius map on rigid cohomology

ϕ : H∗
rig(A

n+r; g∗Lπ)→H∗
rig(A

n+r; g∗Lπ).
Remark 2.7. Although the Frobenius operator ϕ behaves well after taking cohomology, it is ill
suited for chain-level manipulations due to being an ‘expanding map’, which is not completely
continuous in the sense of Serre [Ser62]: that is, ϕ is not a uniform limit of finite rank linear
maps.

This analytic issue is common to F-isocrystals in general, and is not limited to the Dwork
isocrystal. Consider the simplest example of the standard Frobenius acting on the trivial isocrys-
tal on A1, when q= p. To take advantage of overconvergence, one is led to examine the Frobenius
operation on p-adic disks slightly larger than the unit disk. However, the p-power Frobenius map
a �→ ap takes the one-dimensional closed ball of radius |π|−1/N to the larger closed ball of radius
|π|−p/N . The Frobenius pullback induces a map on functions:

ξ(x) �→ ξ(xp) :
{∑

anx
n : anπ

−n/N → 0
}
→

{∑
bnx

n : bnπ
−pn/N → 0

}
.

After extending the field K to a larger scalar field by adding Nth roots of π, an orthonormal
basis of the Banach space

{∑
anx

n : anπ
−n/N → 0

}
is given by 1, π1/Nx, (π1/Nx)2, . . ., and an

orthonormal basis of
{∑

anx
n : anπ

−pn/N → 0
}
is given by 1, πp/Nx, (πp/Nx)2, . . .. The columns

of the matrix representing the linear mapping ξ(x) �→ ξ(xp) with respect to these bases have
larger and larger absolute values. On the other hand, the norm of the column vectors of a
completely continuous operator should converge to 0.

Construction 2.8 (Dwork operators). To fix this, following Dwork, we consider the following
operator ψ on power series, given by

ψ

( ∑
u∈Nn+r

aux
u

)
=

∑
u∈Nn+r

apux
u. (2.4)

Recall that q= pa and τa = Id. Then

(τ−1 ◦ψ)a
(∑

aux
u
)
=

∑
aτ

−a

qu xu =
∑

aqux
u (2.5)

=ψa
(∑

aux
u
)
,

as well as

η · (τ−1 ◦ψ)(ξ) = (τ−1 ◦ψ)(ητ (xp) · ξ(x)).
Form the composition

α1 = τ−1 ◦ψ ◦ F1 as well as αa = αa1.

Then by (2.4) and (2.5),

αa = αa1 = (τ−1 ◦ψ ◦ F1) ◦ · · · ◦ (τ−1 ◦ψ ◦ F1)︸ ︷︷ ︸
a times

,

= (τ−1 ◦ψ)a ◦
(a−1∏
i=0

F τ
i

1 (xp
i

)

)
= ψa ◦ Fa.

It is clear that α1 preserves BI for any I ⊂ {1, 2, . . . , n+ r} and is a left inverse to ϕ: α1 ◦ϕ=
Id. Similarly, αa also preserves BI and is a left inverse to the ath iteration of ϕ. Note that α1
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is a τ−1-semilinear map on the infinite-dimensional K-vector space BI , and αa is a K-linear
operator on BI . In the terminology of Monsky [Mon71, Definition 2.1], α1 and αa are ‘Dwork
operators’ on the spaces BI (the power series F1(x) and Fa(x) are integrally defined, i.e., they
are elements of OK [[x1, . . . , xn+r]]∩BI). Moreover, both α1 and αa are ‘nuclear operators’ on
the space B in the sense of Monsky [Mon71, Theorem 2.1]. Therefore, their ‘characteristic power
series’ [Mon71, Theorem 1.2] are well defined.

The operators α1 and αa extend to endomorphsms of the Dwork complex. We define

α
(m)
1 : Ωm→Ωm,

by the formula

α
(m)
1

( ∑
I⊂{1,...,n+r}

|I|=m

ξI(x)
dxI
xI

)
= α1(ξI(x))

dxI
xI

, ξI ∈BI .

Then α
(m)
1 ◦ϕ(m) = pmId, and the following diagram is commutative.

Ω0 Ω1 · · · Ωn+r,

Ω0 Ω1 · · · Ωn+r

d+πdG d+πdG d+πdG

d+πdG

α
(0)
1

d+πdG

p−1α
(1)
1

d+πdG

p−n−rα
(n+r)
1

Similarly, we may define α
(m)
a : Ωm→Ωm, satisfying α

(m)
a ◦ (ϕ(m))a = qmId, and the operators

q−mα(m)
a induce a chain map of D•. Thus, the operators (p−mα(m)

1 )n+rm=0 and (q−mα(m)
a )n+rm=0

induce maps on overconvergent Dwork cohomology,

α1, αa : H
∗
rig(A

n+r; g∗Lπ)→H∗
rig(A

n+r; g∗Lπ).

Since α
(m)
a (respectively, α

(m)
1 ) is a left inverse to ϕ(m) (respectively, (ϕ(m))a) on the chain level,

and since the overconvergent Dwork cohomology is finite dimensional, we find on the cohomology

level that q−mα(m)
a is equal to the inverse to (ϕ(m))a. In particular,

det(1− t · q−mαa|Hmrig(An+r; g∗Lπ)) (2.6)

= det(1− t · (ϕ(m))−a|Hmrig(An+r; g∗Lπ)).
Remark 2.9 (Fredholm determinant). For every subset I of {1, 2, . . . , n+ r}, the collection

{xu : u∈Nn+r, ui � 1 if i∈ I} (2.7)

is a ‘basis’ of BI in the sense that every ξ ∈BI can be written uniquely as an infinite linear
combination ξ =

∑
aux

u for some au ∈K. Furthermore, any continuous linear operator on BI
can be represented by a unique infinite matrix.

According to Monsky’s theory [Mon71, Theorem 1.6], the matrix associated to the Dwork
operator αa has a well-defined Fredholm determinant, which equals the characteristic power
series he defined. This is because BI is a union of certain αa-invariant Banach subspaces BI(b):
BI =

⋃
b>0 BI(b). Here, BI(b) is the space of rigid analytic functions converging on the closed

polydisk of radius |p|−b. The operators αa|BI(b) are all completely continuous in the sense of
Serre [Ser62]. An appropriately scaled version of (2.7) is an orthonormal basis of the Banach
space BI(b). For this reason, in the remainder of this paper, we simply refer to the characteristic
power series of αa|BI

as the Fredholm determinant of αa, denoted as det(1− tαa|BI).

1224

https://doi.org/10.1112/S0010437X25007110 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007110


Visibility and divisibility

On occasion, we will also encounter other overconvergent spaces, such as the spaces C and
C/B (which will show up in the proof of Theorem 3.7) among others. In these situations, when we
refer to the term ‘basis’, it should be interpreted in a manner analogous to that explained in the
preceding paragraph. Consequently, the characteristic power series of Dwork operators on these
spaces can all be computed as the Fredholm determinants of the infinite matrices associated to
the specified ‘bases’. Therefore, we do not distinguish between the terms ‘characteristic power
series’ and ‘Fredholm determinant’.

Now that we have completed the groundwork concerning overconvergent Dwork cohomology,
we are ready to present a theorem of Baldassarri and Berthelot that establishes a connection
between overconvergent Dwork cohomology and the rigid cohomology of Z. This theorem serves
as the cornerstone for our chain-level arguments.

Theorem 2.10 [BB04, Theorem 3.1]. Using notation as in Situation 2.2, we have a natural
isomorphism

H∗
rig

(
An+r

Fq
; g∗Lπ

)�H∗
rig,Z

(
An

Fq

)
,

which is compatible with Frobenius actions.

In fact, the following local version of the theorem is true.

Theorem 2.11 [BB04, Theorem 2.14]. Let the notation be as in Situation 2.2. Let � : An+r →
An be the projection to the first n coordinates. Let L denote the arithmetic D-module associated
to the Dwork crystal g∗Lπ on An+r. Then �+L is isomorphic to the local cohomology complex
RΓ†

Z(ÔPn,Q(†H))[r].

Here, O
̂Pn,Q(†H) is the sheaf of functions on the formal projective space P̂n with overconver-

gent singularities along the infinity hyperplane H ⊂Pn
Fq
. This is what was denoted by O

̂Pn,Q(∞)

in [BB04]. See Example 5.3 for more details.

Remark 2.12. Theorems 2.10 and 2.11 were originally proved by Baldassarri and Berthelot for the
case where Z is a complete intersection. They noted [BB04, p. 208, Remark] that this hypothesis
was only necessary to verify an equality (2.14.4) regarding the compatibility between the local
cohomology functor and the extraordinary inverse image functor. This compatibility was later
established by Caro unconditionally [Car04, (2.2.18.1)].

However, be aware that Caro’s construction of the local cohomology complex [Car04, § 2]
differs from Berthelot’s approach when Z is not a divisor. Nevertheless, as noted in [Car04,
Remarque 2.2.7], the two constructions coincide when the local cohomology is taken with respect
to modules of the form OP,Q(†H). Also, the proof of [BB04, Theorem 2.14] remains valid using
Caro’s version of the local cohomology functor.

We were informed by Steve Sperber that Nobuo Tsuzuki also prepared a proof of
Theorem 2.10 in 2011 (unpublished). We appreciate Sperber for sharing Tsuzuki’s manuscript
with us.

Remark 2.13. If in the definition of Dwork cohomology one uses finite-type rings instead of using
weakly completed algebra or Banach algebras, one gets the so-called ‘algebraic Dwork cohomol-
ogy’. The algebraic analogue of Theorem 2.10 is well known: it was proved by N. Katz [Kat68]
when Z is a hypersurface, and by Adolphson–Sperber [AS00] when Z is a smooth complete
intersection in a smooth affine variety. The algebraic analogue of Theorem 2.11 was shown by
Dimca et al. [DMSS00] and Baldassarri–D’Agnolo [BD04].
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In addition to the work of Baldassarri and Berthelot, there are many previous works aiming
to provide a comparison between rigid cohomology spaces and the cohomology spaces (and their
variants) constructed by Dwork and by Adolphson and Sperber, such as Berthelot [Ber84] (for
exponential sums over a one-dimensional torus), P. Bourgeois [Bou99] (for Newton nondegenerate
toric exponentials sums) and Peigen Li [Li22] (for toric exponential sums).

Theorem 2.10 implies a result on cohomology with compact supports by taking Poincaré
duality. Before stating it, we recall some standard notation about Tate twists.

For an integer w, let K(w) be the one-dimensional vector space over K equipped with a
τ -semilinear map x �→ p−wτ(x). For a finite-dimensional K-vector space M equipped with a
bijective τ -semilinear map ϕ, we use M(w) to denote the tensor product M ⊗K K(w), whose
τ -semilinear map is twisted by p−w. For (M, ϕ) as above, we endow its dual space M∗ the
transpose inverse of ϕ. With this convention, we have (M(w))∗ �M∗(−w) as spaces equipped
with τ -semilinear maps.

Corollary 2.14. Let f1, . . . , fr ∈Fq[x1, . . . , xn] be polynomials in n variables. Let Z be the
closed subscheme of An cut out by f1, . . . , fr. Let g=

∑r
i=1 xn+ifi ∈Fq[x1, . . . , xn+r]. Then we

have an isomorphism of rigid cohomology spaces compatible with Frobenius actions:

Hn−r+jrig,c (Z)(n)
∼−→ [Hn+r−jrig (An+r; g∗Lπ)]∗.

In other words, under the isomorphism, the Frobenius operator q−nFrobq|Hn−r+j
rig,c (Z) corresponds

to the transpose of the inverse of the Frobenius operator (ϕ(n+r−j))a on the overconvergent
Dwork cohomology. Moreover,

det
(
1− tFrobq

∣∣Hn−r+jrig,c (Z)
)
=det

(
1− qj−rtα(n+r−j)

a

∣∣Hn+r−jrig (An+r; g∗Lπ)
)
.

Proof. Recall the statement of Poincaré duality for rigid cohomology (see [LS07, Corollary 8.3.14]
and [Ked06, Theorem 1.2.3]; note that the latter article ignores the Tate twist). For a nonsingular,
geometrically connected variety X of dimension N , and any closed subvariety Y of X, we have
a perfect pairing

Hirig,Y (X)⊗K H2N−i
rig,c (Y )→K(−N).

Applying Poincaré duality and Theorem 2.10 to X =An and Y =Z, we find that the dual
space of Hn−r+jrig,c (Z)(n) is isomorphic to Hn+r−jrig,Z (An)�Hn+r−jrig (An+r; g∗Lπ), in a way that com-
mutes with semilinear Frobenius actions. This implies that the ath iterations of these semilinear
maps, which are linear, also match.

The ath iteration of the semilinear Frobenius operator on Hn−r+jrig,c (Z)(n) is the linear

Frobenius operator twisted by q−n, i.e., the map q−nFrobq : H
n−r+j
rig,c (Z)→Hn−r+jrig,c (Z). By the

above discussion, it corresponds to the transpose of the inverse of the ath iteration of the semilin-
ear Frobenius operator ϕ(n+r−j) on the overconvergent Dwork cohomology Hn+r−jrig (An+r; g∗Lπ).
Since the characteristic polynomial of the transpose of a linear operator is identical to that of
the operator itself, we conclude that

det(1− tFrobq|Hn−r+jrig,c (Z)) = det(1− tqn(ϕ(n+r−j))−a|Hn+r−jrig (An+r; g∗Lπ))
[By (2.6)] = det(1− tqj−rαa|Hn+r−jrig (An+r; g∗Lπ)).

This completes the proof.
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3. Visibility of Frobenius eigenvalues

Let f1, . . . , fr ∈Fq[x1, . . . , xn] be a collection of polynomials. For every subset I ⊂ {1, 2, . . . , r},
set

ZI =SpecFq[x1, . . . , xn]/(fi : i∈ I),
and Z∗

I =ZI ∩Gn
m. Write Z =Z{1,2,...,r}.

The purpose of this section is to prove Theorem 1.2; that is, we want to show that the
Frobenius eigenvalues of Z are weakly visible in the zeta functions ζZ∗

I
(t).

The idea of the proof of Theorem 1.2 can be explained as follows.

(i) By Corollary 2.14, the overconvergent Dwork cohomology associated to Z computes the
rigid cohomology of Z. Hence, the Frobenius eigenvalues of Z can be manifestly computed
using the operator αa. This is our starting point of the proof of Theorem 1.2.

(ii) The chain-level operators αa|BI
are ‘nuclear operators’. Since cohomology spaces are

subquotients of
⊕

BI , Monsky’s spectral theory (see Lemmas 3.1 and 3.2) implies
that the cohomological eigenvalues are also ‘eigenvalues’ of

⊕
αa|BI

. In the latter
context, ‘eigenvalue’ should be interpreted as the reciprocal roots of the Fredholm deter-
minant of αa. Thus, Frobenius eigenvalues are visible in the Fredholm determinants
det(1− tαa|BI).

(iii) The spaces BI are all αa-invariant subspaces of B. Thus, det(1− tαa|B) witnesses all the
‘chain-level eigenvalues’ of αa|BI

. The Dwork trace formula, applying to αa|B, equates an
alternating product of det(1− t · qmαa|B) with an alternating product of zeta functions
(see Theorem 3.7 and Lemma 3.8). A Möbius inversion (see the formulae in Definition 3.4)
then allows us to represent det(1− tαa|B) as an infinite product of zeta functions. The
Frobenius eigenvalues, which are visible in the Fredholm determinant, are thereby weakly
visible in the zeta functions.

We carry out the details. To show that the Fredholm determinants det(1− tαa|BI) contain all
the information of Frobenius eigenvalues, we need the following lemma, extracted from [Mon71,
Theorem 1.4].

Lemma 3.1. Let X be a variable. LetM ′ f−→M
g−→M ′′ be a complex of nuclear K[X]-modules in

the sense of [Mon71, Definition 1.4]. Then H =Ker g/ Im f is also nuclear and det(1− t ·X|H)
is a factor of det(1− t ·X|M).

Proof. We follow Monsky’s notation in [Mon71, § 1]. By [Mon71, Theorem 1.4], H is a nuclear
K[X]-module. It follows that, for any bounded subset (cf. [Mon71, Definition 1.3]) S ⊂K[X]
XK[X], we have a decomposition H =N(S, H)⊕ F (S, H) [Mon71, Theorem 1.1]. By [Mon71,
Proof of Theorem 1.4, eighth line], N(S, H) is a subquotient of N(S,M). As both N(S, H) and
N(S,M) are finite dimensional, det(1− tX|N(S, H)) divides det(1− tX|N(S,M)). Taking the
limit by letting S run through all bounded subsets, we conclude that det(1− tX|H) is a factor
of det(1− tX|M).

Lemma 3.2. For each I ⊂ {1, 2, . . . , n+ r} and each i∈Z, det(1− t · q−iαa|BI) is a p-adic entire
function. Moreover, the polynomial det(1− tFrobq|Hn−r+jrig,c (Z)) is a factor of∏

|I|=n+r−j
det(1− t · qj−rαa|BI).
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Proof. All summands BI of (2.1) are nuclear K[X]-modules, where the action of X comes
from that of αa. Since αa|BI

is nuclear, the series det(1− t · q−iαa|BI) is a p-adic entire func-

tion by Monsky’s theory. Since Ωn+r−j =
⊕

|I|=n+r−j BI
dxI

xI , α
(n+r−j)
a =

⊕
αa|BI

, and since

the overconvergent Dwork cohomology Hn+r−j(An+r; g∗Lπ) is computed as the cohomology
of Ωn+r−j−1 →Ωn+r−j →Ωn+r−j+1, Corollary 2.14 and Lemma 3.1 imply immediately that
det(1− tFrobq|Hn−r+jrig,c (Z)) is a factor of

∏
|I|=n+r−j

det(1− t · qj−rαa|BI).

Corollary 3.3. Any Frobenius eigenvalue of H∗
rig,c(Z) is weakly visible in det(1− tαa|B).

Proof. By Lemma 3.2, Frobenius eigenvalues of Hn−r+jrig,c (Z) are weakly visible in the product∏
|I|=j

det(1− tαa|BI).

The corollary follows since BI is a nuclear submodule of B.

Next, we explain how to read off the Fredholm determinants from the zeta functions.

Definition 3.4. Following Dwork, we introduce an operation δ on the set 1 + tCp[[t]] of formal
power series with constant term one given by

δ(Γ(t))
def
==

Γ(t)

Γ(qt)
.

The endomorphism δ is invertible, and its inverse reads

δ−1(Γ(t)) =

∞∏
i=0

Γ(qit).

Lemma 3.5. If Γ(t)∈ 1 + tCp[[t]] is an entire function, then δ−1Γ(t) is also an entire function.

Proof. Let Γ(t) =
∏∞
j=1(1− γit) be its infinite product expansion, where the reciprocal zero γj

approaches zero as j goes to infinity. Then

δ−1(Γ(t)) =

∞∏
i=0

∞∏
j=1

(1− qiγjt),

is also such an infinity product whose reciprocal zero approaches zero.

Lemma 3.6. Assume that Γ∈ 1 + tCp[[t]] is a p-adic meromorphic function on Cp and that
λ∈Cp is weakly visible in Γ. Then λ is weakly visible in δ(Γ).

Proof. Let Z(t) = δ(Γ). Then Γ(t) =
∏∞
i=0 Z(q

it). Write Z(t) = u(t)/v(t), where u, v are entire
functions, without common zeros. Then

Γ(t) =

∞∏
i=0

u(qit)

v(qit)
=
δ−1(u(t))

δ−1(v(t))
.

By Lemma 3.5, δ−1u(t) and δ−1v(t) are entire. If qmλ is a reciprocal zero of Γ(t), then 1− qmλt
must be a factor of the infinite product δ−1(u(t)) =

∏
i u(q

it). Hence, qmλ is a reciprocal zero of
u(qit) for some i, i.e., qm−iλ is a reciprocal zero of Z(t). Thus, λ is weakly visible in Z(t). The
polar case is similar.

At this point, we recall the Dwork trace formula [Dwo60, p. 637, Lemma 2]. Remember that,
for each choice of π, the value of the overconvergent function θ(t) = exp(πt− πtp) at t= 1 is a
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primitive pth root of unity, and the function

Ψ(t) = θ(1)TrFq/Fp (t) (3.1)

is a nontrivial additive character on Fq.

Theorem 3.7 (Dwork trace formula). For each positive integer m, define the mth toric
exponential sum

S∗
m(g) =

∑
x∈Gn+r

m (Fqm )

(Ψ ◦TrFqm/Fq
)(g(x)).

Then

L∗(t) def
== exp

{ ∞∑
m=1

S∗
m(g)

tm

m

}
= {δn+r(det(1− tαa|B))}(−1)n+r−1

.

Proof. Let C =K〈x±1
1 , . . . , x±1

n+r〉† be the weak completion of OK [x
±1
1 , . . . , x±1

n+r] with π inverted.
Then the rigid cohomology H∗(Gn+r

m ; g∗Lπ) is computed by the exponentially twisted de Rham
complex

C→
⊕
|I|=1

C
dxI

xI
→ · · ·→

⊕
|I|=m

C
dxI

xI
→ · · · ,

whose differentials are given by d+ πdG as in (2.2), and it is equipped with Dwork operators

q−mα(m)
a as in Construction 2.8. By [ELS93, Théorème 6.3II] (noticing that θi there is our

q−iα(i)
a ), the L-function for the isocrystal g∗Lπ, which is L∗(t) in our case, equals

n+r∏
i=0

det(1− tqn+r−iα(i)
a |Hirig(Gn+r

m ; g∗Lπ))(−1)i+1

,

(note that Hirig(G
n+r
m , g∗Lπ) = 0 for i > n+ r). Since α

(m)
a are nuclear operators, the above

quantity can also be written as
n+r∏
i=0

det(1− tqn+r−iαa|C(
n+r

i ))(−1)i+1

= {δn+r(det(1− tαa|C))}(−1)n+r−1

. (3.2)

If we can substitute C with B in (3.2), we can readily derive the desired result. It suffices to

show that det(1− tαa|C/B) = 1. Recall the formula det(1− tγ) = exp(−∑∞
m=1

Tr(γm)m
t

m
). We

only have to show that Tr(αma |C/B) = 0 for all positive integers m. A ‘basis’ for C/B comprises
the images of xu in C/B, where u∈Zn+r Nn+r. In particular, these u are never zero. Recall
that αa = ψa ◦ Fa (see (2.3), Construction 2.8). Because Fa ∈B, the monomials in its power-series
expansion are xv with v ∈Nn+r. Thus,

αma (x
u) =

∑
v

bvx
(u+v)/qm ,

in which bv = 0 if qm � u+ v or if v /∈Nn+r. To compute the trace of αma |C/B, we need to examine
the coefficient of xu in αma (x

u) for u /∈Nn+r. If u= (u+ v)/qm, then we have v= (qm − 1)u in
Zn+r. Since u /∈Nn+r, we have v /∈Nn+r. Therefore, if u= (u+ v)/qm, we must have bv = 0.
From this, we conclude that the diagonal entries of the matrix representation of the operator
αma |C/B on the quotient with respect to the ‘basis’

{The image of xu in C/B : u∈Zn+r Nn+r}
are all zero. The theorem follows.
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Combining Corollary 3.3, Lemma 3.6 and Theorem 3.7, we infer that any Frobenius eigenvalue
of H•

rig,c(Z) is weakly visible in L∗(t).
Our next objective is to relate the function L∗(t) to the zeta functions of ZI .

Lemma 3.8. We have

L∗(t) =
∏

J⊂{1,2,...,r}
ζZ∗

J
(q|J |t)(−1)r−|J|

.

Proof. For any subset J of {1, 2, . . . , r}, let AJ denote the affine space with coordinates (yj)j∈J ,
and let gJ denote the regular function

∑
j∈J yjfj(x). The orthogonality of characters implies

that

SJ
def
==

∑
x∈Gn

m(Fq)

∑
y∈AJ(Fq)

Ψ(gJ(x, y)) = q|J ||Z∗
J(Fq)|.

Since An =Gn
m �D, where D is the union of all coordinate hyperplanes, and since D admits

the standard semisimplicial resolution

· · · ⊔
J⊂{1,2,...,r}
|J |=r−2

AJ
⊔

J⊂{1,2,...,r}
|J |=r−1

AJ D,

we deduce from the inclusion-exclusion that∑
x∈Gn+r

m (Fq)

Ψ(g(x)) =
∑

J⊂{1,2,...,r}
(−1)r−|J |SJ

=
∑

J⊂{1,2,...,r}
(−1)r−|J |q|J ||Z∗

J(Fq)|.

Replacing Fq by Fqm and Ψ by Ψ ◦TrFqm/Fq
in the above calculation, and exponentiating, we

get the desired result.

Proof of Theorem 1.2. By Corollary 3.3, the Frobenius eigenvalues of H∗
rig,c(Z) are weakly visible

in det(1− tαa|B). By Lemma 3.6 and Theorem 3.7, the Frobenius eigenvalues are weakly visible
in L∗(t). By Lemma 3.8, they are weakly visible in {ζZ∗

J
(t) : J ⊂ {1, 2, . . . , r}}.

Remark 3.9. The same proof also works for subvarieties in Gn
m. That is, if {f1, . . . , fr} is a set of

Laurent polynomials and ZI is the vanishing scheme of (fi)i∈I , then the Frobenius eigenvalues
of Z{1,2,...,r} are weakly visible in the set {ζZI

(t) : I ⊂ {1, 2, . . . , r}}.

4. Reciprocal roots of Fredholm determinants

To establish Theorem 1.3 and Theorem 1.5, we provide a more robust result at the chain level.
In this section, we apply Adolphson–Sperber’s theory to the specific context of our interest
and deduce a lower bound of the q-orders of ‘eigenvalues’ of the operator αa : BI →BI intro-
duced in Construction 2.8. Given that rigid cohomologies are subquotients of the entries in the
overconvergent Dwork complex (2.2), divisibility at the chain level will imply divisibility at the
cohomological level, as per Lemma 3.2.

Notation 4.1. Assume that we are provided with a sequence of polynomials f1, . . . , fr ∈
Fq[x1, . . . , xn], where the degree of fi is denoted by di. These polynomials are ordered such
that d1 � d2 � · · ·� dr. Let Z be the vanishing scheme of these polynomials f1, . . . , fr in the
affine space An

Fq
.
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For a given subset I of {1, 2, . . . , n+ r}, we define I ′ as I ∩ {1, 2, . . . , n} and I ′′ as I ∩ {n+
1, . . . , n+ r}.

Recall that BI represents the subspace xIB within the Monsky–Washnitzer algebra B
(refer to Construction 2.3), and that α1 and αa are the Dwork operators acting on BI
(Construction 2.8).

The main result of this section is the following lemma, which is a straightforward consequence
of Adolphson–Sperber’s result (Theorem 4.10) once we have explained the relations between two
different representations of Frobenius structures.

Lemma 4.2. Let the notation be as in Construction 2.8. Let λ be a reciprocal root of the p-adic
entire function det(1− tαa|BI). Then

ordq λ�
1

d1

(
|I ′|+

∑
i∈I′′

(d1 − di)

)
=

1

d1

(
|I|+

∑
i∈I′′

(d1 − di − 1)

)
,

where ordq is the p-adic valuation normalized so that ordq(q) = 1.

Remark 4.3. The combination of Lemma 4.2 and Lemma 3.2 already provides interesting bounds
on the q-orders of the Frobenius eigenvalues of Z in all cohomological degrees. However, upon
closer examination of these bounds, one finds that they are not as strong as asserted by our main
theorems. To achieve stronger results, we need to further cut down some excess contributions,
with the assistance of an algebraic lemma, Lemma 5.2. In addition, we require some arguments
to elevate the q-order estimates to q-divisibility bounds in the ring of algebraic integers. These
steps are addressed in the later sections.

Remark 4.4. Lemma 4.2 relies on the work of Adolphson and Sperber [AS87b, Proposition 4.2],
which uses a more complicated representation of the Dwork operator. In this remark, we provide
an informal explanation of why such a more intricate choice is necessary. For simplicity, we focus
on the case when q= p, making αa = α1.

Our objective is to provide sharp lower bounds for the q-orders, or, equivalently, upper
bounds for the p-adic absolute values of the reciprocal roots of the Fredholm determinant det(1−
tα1|BI) =

∑
m t

m ·Tr(∧mα1). By the theory of Newton polygons, we need to give upper bounds
for |Tr(∧mα1)|.

We can view α1 as an infinite matrix by fixing the standard ‘basis’ of the infinite-dimensional
K-vector space BI that comprises the monomials

{xu1

1 · · · xun+r

n+r : uj � 0 and ui � 1 if i∈ I}. (4.1)

A straightforward computation shows that the infinite matrix representing α1 is [Fpu−v] (uj ,
vj � 0, ui, vi � 1 if i∈ I), where F1(x) =

∑
u∈Nn+r Fux

u is the power-series expansion of the func-
tion F1 (2.3) that defines the Frobenius structure. The number Tr(∧mα1) is just the sum of
m×m principal minors of the infinite matrix [Fpu−v]. Therefore, ultimately, we need a good
upper bound for |Fu|.

Since the function F1 is derived from the Dwork exponential θ(t) = exp(πt− πtp), to get an
upper bound for |Fu|, we need an upper bound for the coefficient aj of tj in the power-series
expansion of θ. The most optimal bound is

|aj |� |p| j(p−1)

p2 (4.2)

(cf. [Dwo62, Equation (4.7) and p. 57, line 1]). But this estimate falls short of meeting our need
(see (4.4) below).
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Therefore, the matrix of the Dwork operator with respect to the naive ‘basis’ (4.1) does not
yield an ideal estimate. From an analytic perspective, the key to improving the estimate lies
in finding a suitable ‘basis’ for B, such that the matrix of the Dwork operator under the new
‘basis’ has smaller entries. Equivalently, we would like to construct an isomorphism ρ : B→B,
inducing the following commutative diagram.

B B

B B

ρ

α1 β1

ρ

We hope that the matrix of β1 under the ‘basis’ (4.1) should have smaller entries than those of
α1. In addition, we expect that β1 should map BI to BI .

For every choice of s= 1, 2, . . . ,∞, Dwork was able to construct a ‘splitting function’ of
level s [Dwo62, Equation (4.1)]. These splitting functions then give rise to Dwork operators α1,s

on B, BI , and hence Ωm. All of them can play the role of β1 above. For s= 1, we are reduced
to the exponentially twisted α1 that we have been using so far. It is the choice s=∞, which
corresponds to what we refer to as the Artin–Hasse representation of the Dwork crystal, that has
the most optimal convergence property (cf. (4.3) below) among all splitting functions, and this
was extensively employed in the work of Adolphson and Sperber. Below, we introduce Dwork’s
construction for s=∞.

Construction 4.5. Let E(t) = exp
{∑∞

j=0 t
pj/pj

}
be the Artin–Hasse exponential. It is well

known that E(t)∈Z(p)[[t]]. By the theory of Newton polygons, the series
∑∞

j=0 t
pj/pj has a root

γ satisfying |γ|= |π|= |p|1/p−1. We define θ∞(t) =E(γ · t). Write

θ∞(t) =

∞∑
j=0

cjt
j .

Then (cf. (4.2))

|cj |� |π|j = |p| j

p−1 . (4.3)

The twisting function exp(πt) appearing in the overconvergent Dwork complex may be explained
as the infinite product

θ̂(t) = exp(πt) =

∞∏
j=0

θ(tp
j

).

Dwork introduced the twisting factor associated with θ∞ as

θ̂∞(t) =

∞∏
j=0

θ∞(tp
j

) = exp

{ ∞∑
j=0

γjt
pj
}
, so we have θ∞(t) = θ̂∞(t)/θ̂∞(tp).

Here, γj =
∑j

i=0 γ
pi/pi. It is easy to show that θ̂∞(t) is a rigid analytic function on the open unit

disk bounded by 1 (see [Dwo62, Equation (4.13)]). For a conceptual explanation of this unusual
exponential function in connection with Frobenii liftings on the formal multiplicative group, we
recommend reading Pulita’s article [Pul07].

Construction 4.6 (Dwork operators β1 and βa associated to the Artin–Hasse exponential).
Recall the meaning of G(x) =

∑
u∈Nn+r Aux

u, B, BI given in Construction 2.3 and the definitions
of the operators ψ, α1 and αa given in Construction 2.8. Also recall that α1 was defined as an
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exponential twist, i.e., the following diagram is commutative.

BI BI

K[[x1, . . . , xn+r]] K[[x1, . . . , xn+r]]

·̂θ

α1

·̂θ
τ−1◦ψ

The vertical arrows send ξ to ξ ·∏u θ̂(Aux
u).

Define the Dwork operator associated to the ‘Artin–Hasse representation’ as a different twist
using the commutativity of the following diagram.

BI BI

K[[x1, . . . , xn+r]] K[[x1, . . . , xn+r]]

·̂θ∞

β1

·̂θ∞
τ−1◦ψ

The vertical arrows are now given by ξ �→ ξ ·∏u θ̂∞(Aux
u). Using the relation between θ∞ and

θ̂∞,

β1(ξ) = (ψ(ξ ·Φ))τ−1

,

where Φ(x) =
∏
u θ∞(Aux

u). Since BI are ideals of B and Φ is overconvergent, by definition, it
is clear that β1 : BI →BI is well defined for any subset I of {1, 2, . . . , n+ r}. The operator β1
is a Dwork operator in the sense of Monsky [Mon71] since Φ∈OK [[x1, . . . , xn+r]]∩B. We define
the operator βa as the ath iteration of β1: βa = βa1 . Then β1 : BI →BI is τ−1-semilinear and βa
is K-linear.

The following lemma tells us that the we can use the operator βa to study the Frobenius
eigenvalues of the rigid cohomology.

Lemma 4.7. Using notation as in Construction 4.6, we have det(1− tαa|BI) = det(1− tβa|BI).
Proof. Since α1 and β1 are both defined as twists of τ−1 ◦ψ, we have the following commutative
diagram.

BI K[[x1, . . . , xn+r]] K[[x1, . . . , xn+r]] BI

BI K[[x1, . . . , xn+r]] K[[x1, . . . , xn+r]] BI

α1

ρ

α̃1 ˜β1 β1

ρ

The hook arrows are the natural inclusions and, for a power series ξ ∈K[[x1, . . . , xn+r]],

α̃1(ξ) =

{∏
u

θ̂(Aux
u)

}−1

· τ−1

(
ψ

(∏
u

θ̂(Aux
u) · ξ

))
,

β̃1(ξ) =

{∏
u

θ̂∞(Aux
u)

}−1

· τ−1

(
ψ

(∏
u

θ̂∞(Aux
u) · ξ

))
,

ρ(ξ) = ξ ·
∏
u θ̂(Aux

u)∏
u θ̂∞(Auxu)

.

It suffices to show that the ratio of twisting factors
∏
u θ̂(Aux

u)/θ̂∞(Aux
u), and its reciprocal,

are overconvergent, i.e., are elements of B. This will imply that ρ and ρ−1 take BI into BI , as
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BI is an ideal of B. By transporting the structures, the ath iterations αa and βa of α1 and β1
will correspond under ρ : BI

∼−→BI , and they will have the same Fredholm determinant.
To prove the overconvergence of

∏
u θ̂(Aux

u)/θ̂∞(Aux
u), it, in turn, suffices to prove that

θ̂(t)/θ̂∞(t) and θ̂∞(t)/θ̂(t)

are overconvergent, i.e., are elements of K〈t〉†. For a documented proof of this basic fact, we refer
the reader to Peigen Li’s article [Li22, Proposition 2.1(i)], where Li also works out the radius of
convergence of the ratio.

Remark 4.8. The mappings

ϕ∞ : ξ �→ ξσ ·
(∏

u

θ̂∞(Aux
u)

)−1

and ϕ : ξ �→ ξσ ·
(∏

u

θ̂(Aux
u)

)−1

,

(see Construction 2.6) together with the connections

∇= θ̂−1 ◦ d ◦ θ̂ and ∇∞ = θ̂−1
∞ ◦ d ◦ θ̂∞,

define two overconvergent unit-root F-isocrystal structures on

B =K〈x1, . . . , xn+r〉†.
The above argument shows that the mapping ρ induces an isomorphism between (B,∇, ϕ) =
g∗Lπ and (B,∇∞, ϕ∞). What we need is the slightly stronger result, namely, that β1 also
preserves the subspaces BI of B: this is to facilitate the chain-level argument.

The plan now is to examine traces and Fredholm determinants of the operator βa : BI →BI
for subsets I of {1, 2, . . . , n+ r}, under the ‘basis’

{xu1

1 · · · xun+r

n+r : uj � 0 and ui � 1 if i∈ I}
of BI . Adolphson and Sperber’s idea is to use some combinatorial quantity to measure the
absolute value of the entries of the matrix representation of βa, which we introduce below.

Definition 4.9. Let Δ be the Newton polyhedron of g at infinity, that is, the convex closure of
0∈Rn+r and {u∈Nn+r : the coefficient of xu in g is nonzero}. Let C(Δ) be the smallest conical
region spanned by Δ.

Define the weight function w : Rn+r →R by

w(y1, . . . , yn+r) = yn+1 + · · ·+ yn+r,

and define

wI =min{w(y) : y ∈C(Δ)∩Nn+r, yi > 0, ∀i∈ I}.
By construction, if g(x) =

∑
u∈Nn+r aux

u, then au �= 0 implies that u∈Δ∩Nn+r. Since Φ(x) =∏
u θ∞(Aux

u) (see Construction 4.6), the subscripts of the nonzero coefficients of Φ in the power-
series expansion are all non-negative integral linear combinations of u∈Δ. Hence, if we write
Φ(x) =

∑
u∈Nn+r Φux

u, then Φu �= 0 implies that u∈C(Δ).

The following theorem is due to Adolphson–Sperber. We have formulated only a weaker
version on estimating the first slope, which is sufficient for the purpose of this paper.

Theorem 4.10 [AS87b, Proposition 4.2]. For any reciprocal root λ of the Fredholm determinant
det(1− tβa|BI),

ordq(λ)�wI .
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Proof. Recall that Fq =Fpa . By a standard argument (see [Dwo64, Lemma 7.1] or [Bom66,
Equation (46)]), a point (x, y)∈R2 is a vertex of the Newton polygon of det(1− tβa|BI)
computed with respect to ordq if and only if (ax, ay) is a vertex of the Newton polygon of
det(1− tβ1|BI) (view β1 as a Qp(ζp)-linear operator) with respect to the valuation ordp. Hence,
it suffices to estimate the smallest slope of the p-adic Newton polygon of det(1− tβ1|BI).

Recall that β1 = τ−1 ◦ψ ◦Φ. We write Φ(x) =
∑

u∈Nn+r Φux
u. Then, by [AS87a, Equation

(2.12)],

ordp(Φu)�
1

p− 1
w(u). (4.4)

(If we use F instead of Φ, we would get a worse bound. So it is crucial to work with the
Artin–Hasse representation here.) A Qp(ζp)-‘basis’ of BI is of the form

λl · xu, l= 1, . . . , a, u∈Nn+r, ui � 1 if i∈ I,
where {λl : l= 1, . . . , a} is an integral basis of OK over Zp[ζp]. When I = ∅, the operator β1 is
represented by an infinite matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎣
C00 C01 · · · C0i · · ·
C10 C11 · · · C1i · · ·
...

...
...

Ci0 Ci1 · · · Cii · · ·
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where each Cij is a finite block matrix, corresponding to the components of β1(λlx
v) with respect

to λmx
u, with w(v) = i, w(u) = j. Any entry in this block matrix is of the form λmλ

−1
l Φpu−v.

When I �= ∅, the matrix representation of α1|BI
is a suitable submatrix CI of C.

An entry of CI on the diagonal is of the form Φ(p−1)u, where ui � 1, for all i∈ I. By (4.4),
we find that the trace of β1|BI

satisfies the estimate

ordp Tr(β1|BI)�wI .

This shows that, in the power-series expansion of det(1− tβ1|BI), the p-order of the coefficient
of t is at least wI . When it comes to the coefficient of tm in the Fredholm determinant, where
m� 2, these are computed as sums ofm×m principal minors of the matrix CI . By employing the
determinant formula in terms of the matrix entries, one can readily observe that this coefficient
has p-order �mwI . The theorem can be deduced by examining the Newton polygon of det(1−
tβ1|BI).
End of proof of Lemma 4.2. Since the problem only concerns the Fredholm determinant, we can
replace αa by βa by virtue of Lemma 4.7. By Theorem 4.10, it suffices to show that

wI �
1

d

(
|I ′|+

∑
i∈I′′

(d− di)

)
.

This is a problem of linear programming. We are dealing with non-negative integers y1, . . . , yn+r
subject to the constraints {

yi � 1, ∀i∈ I,
y1 + · · ·+ yn � d1yn+1 + · · ·+ dryn+r,

(4.5)

and we want to control the minimum of yn+1 + · · ·+ yn+r. Write

ξi =

{
yi − 1, i∈ I;
yi, i /∈ I.
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Then (4.5) is equivalent to{
ξi � 0∀i= 1, 2, . . . , n+ r;∑r

i=1 diξi �
∑n

i=1 ξi + |I ′| −∑
i∈I′′ di.

(4.5′)

It follows that

yn+1 + · · ·+ yn+r =

r∑
i=1

ξi+r + |I ′′|

=
1

d1

( r∑
i=1

(d1 − di)ξi+r +

r∑
i=1

diξi+r

)
+ |I ′′|

[apply (4.5′)] � 1

d1

(
|I ′| −

∑
i∈I′′

di

)
+ |I ′′|= 1

d1

(
|I ′|+

∑
i∈I′′

(d1 − di)

)
.

This completes the proof.

5. Two lemmas

The goal of this section is to prove two lemmas, Lemma 5.2 and Lemma 5.4 which will be used
in the proofs of Theorem 1.3 and Theorem 1.5.

5.1 An algebraic lemma

Throughout this subsection, we assume that k is an algebraically closed field. The common
zero locus, in An

k , of a collection of polynomials f1, . . . , fr ∈ k[x1, . . . , xn] is be denoted by
Z(f1, . . . , fr).

Lemma 5.1. Let g1, . . . , gm and fm+1, . . . , fr be elements of k[x1, . . . , xn]. Assume that

dimZ(g1, . . . , gm) = n−m, dimZ(g1, . . . , gm)> dimZ(g1, . . . , gm, fm+1, . . . , fr). (5.1)

Then there are constants cm+1, . . . , cr in k, not all zero, such that:

– if fm+1 does not vanish on Z(g1, . . . , gm), cm+1 = 1;
– if fm+1 vanishes identically on Z(g1, . . . , gm), cm+1 = 0; and
– dimZ(g1, . . . , gm, cm+1fm+1 + · · ·+ crfr) = n−m− 1.

Proof. Denote the irreducible components of the variety Z(g1, ..., gm) by D1, . . . , Dh. These
components have the same dimension by the unmixedness theorem. If fm+1 vanishes (identically)
on all components D1, . . . , Dh, then dimZ(g1, ..., gm, fm+1) = dimZ(g1, ..., gm). In this case, we
set cm+1 = 0, drop fm+1 from our list and consider the shorter list {g1, . . . , gm, fm+2, . . . , fr},
which still satisfies the condition (5.1).

Hence, without loss of generality, we may assume that fm+1 does not identically vanish on
D1, . . . , Dh1

with h1 > 0 but vanishes on Dh1+1, . . . , Dh. If h1 = h, then

dimZ(g1, . . . , gm, fm+1)< dimZ(g1, . . . , gm).

Since the variety Z(g1, . . . , , gm, fm+1) is nonempty, this forces that

dimZ(g1, . . . , gm, fm+1) = dimZ(g1, . . . , gm)− 1,

that is, dimZ(g1, ..., gm, fm+1) = n−m− 1.
Now assume that h1 <h. By condition (5.1), there is another polynomial among

{fm+2, . . . , fr}, say, fm+2, which does not vanish identically on all of Dh1+1, . . . , Dh.
Without loss of generality, we may assume that fm+2 does not vanish on Dh1+1, . . ., Dh1+h2

with h2 > 0 but vanishes on Dh1+h2+1, . . . , Dh.
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Claim. There is a nonzero constant c in k such that fm+1 + cfm+2 does not vanish on the
irreducible components D1, . . . , Dh1

, . . . , Dh1+h2
.

Proof of Claim. Because fm+1 vanishes on Dh1+1, . . . , Dh1+h2
and fm+2 does not, for any

nonzero constant c in k, the polynomial fm+1 + cfm+2 does not vanish on Dh1+1, . . . , Dh1+h2
.

For each i= 1, . . . , h1, we can choose xi in Di such that fm+1(xi) is nonzero as fm+1 is not
identically zero on Di. Choose nonzero constant c in k such that none of the h1 numbers

fm+1(xi) + cfm+2(xi), i= 1, . . . , h1,

is zero: one simply chooses any nonzero c in k such that c is not among the h1 numbers

{−fm+1(xi)/fm+2(xi), i= 1, . . . , h1},
which is possible since k is an infinite field. The claim is proved.

Repeating the above procedure, we see that there are constants cm+1, . . . , cr in k such that
the linear combination

gm+1 = cm+1fm+1 + cm+2fm+2 + · · ·+ crfr

does not vanish identically on the component Di for i= 1, . . . , h. It follows that

dimZ(g1, . . . , gm, gm+1) = n−m− 1.

Lemma 5.2. Let f1, . . . , fr ∈ k[x1, . . . , xn] be a collection of polynomials. Set di =deg fi. Assume
that d1 � d2 � · · ·� dr. Let Z =Z(f1, . . . , fr). Then there exists a new sequence of polynomials
g1, . . . , gr ∈ k[x1, . . . , xn] such that:

(1) Z(g1, . . . , gr) =Z;
(2) deg gi � di; and
(3) dimZ(g1, . . . , gn−dimZ) = dimZ.

Proof. Applying Lemma 5.1 repeatedly gives rise to a new sequence of polynomials g1, . . . , gr ∈
k[x1, . . . , xn], which satisfies the following.

– g1 = f1, gm = fm if m>n− dimZ.
– There exists an upper-triangular square matrix B = (bαβ)1�α,β�r with entries in k, whose
diagonal entries are either 0 or 1, such that⎡⎢⎣g1...

gr

⎤⎥⎦=B ·

⎡⎢⎣f1...
fr

⎤⎥⎦ . (5.2)

– dimZ(g1, . . . , gn−dimZ) = dimZ.

Thus, the condition (3) is ensured. By construction, deg gi � di for any i= 1, 2, . . . , r. The
condition (2) is checked.

Proof of (1). Since g1, . . . , gr are k-linear combinations of f1, . . . , fr, Z is contained in the
variety Z(g1, . . . , gr). We prove that Z(g1, . . . , gr)⊂Z.

If the jth diagonal entry of B is zero, we say that j is a ‘jumping’ index. By Lemma 5.1,
for each jumping j, fj vanishes identically on Z(g1, . . . , gj−1); hence, fj vanishes identically on
Z(g1, . . . , gr) as well.

It remains to show that if β is not a jumping index, then fβ(Q) = 0 for any Q∈Z(g1, . . . , gr).
For each jumping j, remove the jth row and jth column from the matrix B. The resulting matrix
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C is upper triangular, and its diagonal entries are all 1. In particular, C is invertible. Evaluating
(5.2) at Q, using the vanishing of jumping fj at Q, we see that, for any nonjumping index α,

0 = gα(Q) =
∑

β nonjumping

bαβfβ(Q),

The matrix associated with the above system of linear equations is the invertible matrix C.
Thus, fβ(Q) = 0 for any nonjumping β. This concludes the proof.

5.2 A lemma on local cohomology

In this subsection, we prove a lemma (Lemma 5.4) on local cohomology in the theory of arithmetic
D-modules. It is the analogue of the fact that, in �-adic sheaf theory, the Verdier dual of the
shifted constant sheaf Q�[dimZ] (hence, Q�[dimZ] itself) is a perverse sheaf if Z is a local
complete intersection (cf. [KW01, Lemma III 6.5]).

We review some basic concepts about arithmetic D-modules. The reader is referred to Abe
and Caro [AC18, § 1] or Abe [Abe18, § 1] for up-to-date surveys.

Let k be a perfect field (for us, k=Fq). Let OK be a complete discrete valuation ring with
residue field k and field of fractions K. Assume that K has characteristic 0. Let S =Spf(OK).

Let P be a smooth formal scheme over S. Berthelot [Ber96, § 2.4] introduced a sheaf D†
P,Q

on P whose sections are infinite-order differential operators on P of finite level. Caro introduced
several finiteness conditions on coherent D†

P,Q-modules: overcoherence [Car04, Définition 3.1.1],
overholonomicity [Car09, Définition 3.1] and ‘devissability’ by overconvergent F-isocrystals
[Car07, Définition 3.2.5 and CT12, Definition 2.3.1]. Finally, in [CT12, Theorem 2.3.16], Caro
and Tsuzuki proved that with the presence of Frobenius structures, these finiteness notions are
equivalent.

Let Hol(P) denote the strictly full, thick subcategory of D†
P,Q-modules generated by over-

holonomic D†
P,Q-modules that can be endowed with qs-power Frobenius structures for some s,

although the Frobenius structure is not part of the defining data. Let Db
hol(P) be the strictly

full subcategory of Db(D†
P,Q) consisting of complexes with cohomology lying in Hol(P).

Since Db
hol(P) is stable under the usual and extraordinary direct image functors, the usual

and extraordinary inverse image functors, and duality functors, as shown in [Car09], one can
use these categories to canonically associate to each realizable k-variety (defined below) V a
coefficient category Db

hol(V/K) for p-adic cohomology theory, amenable to the Grothendieck
six-functor formalism (see [Car12, AC18]).

A realizable variety V over k is a variety that admits an immersion V →P, where P is a
smooth, proper formal scheme over S. For each realizable variety V over k, and any immersion
V →P as above, we have a functor

Db
hol(V/K)→Db

hol(P), (5.3)

and this functor induces an equivalence between Db
hol(V/K) and the strictly full subcategory of

Db
hol(P) consisting of objects that are supported on V , in the sense that the following natural

arrows are isomorphisms: i.e.,

RΓ†
V
(M)

∼−→M ∼−→M(†(V V )),

where V is the Zariski closure of V in P ⊗OK
k. For the definition of the local cohomology functor

RΓ†
Z , see [Car04, 2.1.3 (divsior case) and Définition 2.2.6 (general case)]. For the definition of

the functor M �→M(†Z), see [Car04, Définition 2.2.6].

1238

https://doi.org/10.1112/S0010437X25007110 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007110


Visibility and divisibility

For any realizable variety V over k, Db
hol(V/K) has a standard t-structure [AC18, § 1.2]. The

objects in the heart of Db
hol(V/K) are analogues to perverse sheaves on V in the �-adic theory.

For a morphism f : V → V ′ of realizable varieties, we have the ordinary and extraordinary
inverse image functors

f+, f ! : Db
hol(V

′/K)→Db
hol(V/K),

and the ordinary and extraordinary direct image functors

f+, f! : D
b
hol(V/K)→Db

hol(V
′/K).

They satisfy the usual adjunction properties. For each V , there is a duality functor

DV : Db
hol(V/K)op →Db

hol(V/K),

which is a t-exact anti-equivalence satisfying D2
V = Id. The duality functors swap ordinary and

extraordinary direct and inverse images: i.e.,

DV ′f! = f+DV , DV ′f+ = f!DV ,

f !DV ′ =DV f
+, f+DV ′ =DV f

!.

Example 5.3. Suppose that P is a purely n-dimensional, proper smooth formal scheme over S.
Let H be a divisor of P =P ⊗OK

k and U = P H. Then we have an equivalence

Db
hol(U/K)� {M∈Db

hol(P) :M ∼−→M(†H)}.
Under this equivalence, the complex KU [n] = a+K[n], where a : U → Spec k is the canonical
morphism, is represented by OP,Q(†H), the (specialization of the) sheaf of function on the
rigid analytic space PK overconvergent along H. Moreover, OP,Q(†H) is self-dual, that is,
DU (KU [n])�KU [n] (see [Abe18, § 1.5.6]). Lastly, we mention that the objects in the heart of the
t-structure of Db

hol(U/K) are represented by actual overholonomic modules with overconvergent
singularities along H: i.e.,

{M∈Hol(P) :M ∼−→M(†H)}.
Lemma 5.4. Regard AN

k as a locally closed subscheme of the formal projective space P̂N over
Spf(OK). Set H =PN

k AN
k to be the hyperplane at infinity. Let f1, . . . , fr be regular functions

on AN
k , defining a closed subscheme Z of AN

k . Then

Hm{RΓ†
Z(ÔPN ,Q(†H))[r]}= 0 unless − [dimZ − (N − r)]�m� 0.

In particular, if dimZ =N − r, then Hm{RΓ†
Z(ÔPN ,Q(†H))[r]} is zero unless m= 0.

Proof. First, we prove that

RΓ†
Z(ÔPN ,Q(†H))[r]∈D�0

hol(P̂
N ). (5.4)

Consider the function g : AN
k ×Ar

k →A1
k defined by g=

∑
xN+ifi. Let L be the D†-module on

AN+r
k obtained by regarding the Dwork isocrystal as a D†-module: i.e., L= sp+(g

∗Lπ) (cf. [AC18,
§ 1.2.14]). Let � : AN+r

k →AN
k be the projection. Then, by the theorem of Baldassarri and

Berthelot (Theorem 2.11),

�+(L)�RΓ†
Z(ÔPN ,Q(†H))[r].

The inclusion (5.4) follows from the Artin vanishing theorem for arithmetic D-modules (see
[AC18, Proposition 1.3.3]).
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Next, we show that

RΓ†
Z(ÔPN ,Q(†H))[r]∈D�N−r−dimZ

hol (P̂N ). (5.5)

Let i : Z→AN
k be the inclusion morphism. Then, by [AC18, § 1.1.7], the local cohomol-

ogy complex RΓ†
Z(ÔPN ,Q(†H))∈Db

hol(P̂
N ) represents i+i

!(KAN
k
[N ])∈Db

hol(A
N
k /K) via the

functor (5.3). Since DAN
k
(KAN

k
[N ]) =KAN

k
[N ], (5.5) is equivalent to i+i

+(KAN
k
[N − r])∈

D
�dimZ−(N−r)
hol (AN

k /K) by duality. Since i+ is an exact functor [AC18, Proposition 1.3.2(iii)], it
remains to show that

i+KAN
k
∈D�dimZ

hol (Z/K). (5.5bis)

To prove this last inclusion, we use some formal properties of the ‘constructible t-structure’
that introduced in [Abe18, § 1.3]. This is a t-structure (cD�0

hol(V/K), cD�0
hol(V/K)) on Db

hol(V/K)
for any variety V . The properties of this t-structure that are relevant to us are the following.

(a) For any closed subvariety W of V , let ιW denote the inclusion map. Then cD�0
hol(V/K) is

the full subcategory of Db
hol(V/K) consisting of M satisfying the property that, for any

closed subvariety W ,

Hmι+WM= 0 for any m> dimW

(see [Abe18, § 1.3.1, second bullet]).
(b) If V is nonsingular of pure dimension n, then any overconvergent isocrystal E which

admits some qs-Frobenius structure on V determines a D†-module E . Then E [−n] (an
object in Db

hol(V/K) of this form is called a smooth object in [Abe18]) is in the heart
of the constructible t-structure. This is simply because the constructible t-structure is
obtained by gluing smooth objects on smooth locally closed subvarieties (see [Abe18,
Proposition 1.3.3]).

We apply Property (5.2) with V =W =Z. This gives cD�0
hol(Z/K)⊂D�dimZ

hol (Z/K). So, to

prove (5.5bis), we just need to show that i+KAN
k
belongs to cD�0

hol(Z/K).

We know that KAN
k
[N ] comes from the constant overconvergent isocrystal on AN

k . By
Property (5.2), it lies in the heart of the constructible t-structure, and, in particular, we have that
KAN

k
∈ cD�0

hol(A
N
k /K). Since the functor i+ is exact with respect to the constructible t-structure

by [Abe18, Lemma 1.3.2], we have i+KAN
k
∈ cD�0

hol(Z/K). This proves (5.5bis) and completes the
proof of the lemma.

6. Divisibility of Frobenius eigenvalues

We return to the following situation.

Notation 6.1. We are given a collection of polynomials f1, . . . , fr ∈Fq[x1, . . . , xn], and we
denote by

Z =SpecFq[x1, . . . , xn]/(f1, . . . , fr)

the vanishing scheme of f1, . . . , fr. By rearranging the order, we assume that d1 � · · ·� dr, where
di =deg fi. The codimension n− dimZ of Z is denoted by c.

The following easy lemma should be well known. It shows that the vanishing of compactly
supported cohomology of Z can be controlled by the number of defining equations of Z. So
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Theorems 1.3 and 1.5 cover all nontrivial cohomology degrees. In its statement, Hic(Z) could
either be Hirig,c(Z) or H

i
c(ZFq

,Q�).

Lemma 6.2. Let Y be a nonsingular affine variety of dimension n. Let f1, . . . , fr ∈ Γ(Y,OY ) be
regular functions on Y . Let Z be the common zero locus of f1, . . . , fr in Y . Then Hic(Z) = 0 for
i < n− r.

Proof. We have a long exact sequence

· · · →Hic(Y )→Hic(Z)→Hi+1
c (Y Z)→Hi+1

c (Y )→ · · · .
If i� n− 1, then Hic(Y ) = 0 by smoothness of Y , Poincaré duality and Artin vanishing. Thus, it
suffices to prove that Hic(Y Z) = 0 for i < n− r+ 1.

Write Y Z =
⋃r
i=r Ui, where Ui = Y {fi = 0}. Then, for I ⊂ {1, 2, . . . , r}, UI =

⋂
i∈I Ui

equals Y {∏i∈I fi = 0}. We have a Mayer–Vietoris spectral sequence

E−a,b
1 =

⊕
|I|=a+1

Hbc(UI)⇒Hb−ac (Y Z).

Since each UI is a smooth affine variety of dimension n, by Poincaré duality and Artin vanishing
again, Hi+1

c (UI) = 0 if i < n− 1. It follows that

E−a,b
1 �= 0=⇒

{
b� n and

a� r− 1,
=⇒ b− a� n− r+ 1.

Therefore, Hic(Y Z) = 0 if i < n− r+ 1.

Remark 6.3.

(a) The same argument also works for the Betti cohomology of an algebraic variety Z defined
by the vanishing of r regular functions on a smooth affine variety Y over C.

(b) The lemma for rigid cohomology also follows directly from Corollary 2.14.

The remainder of this section is devoted to the proofs of Theorems 1.3 and 1.5.

6.1 Step 1: Reduction

Recall that n− dimZ is denoted by c. By Lemma 5.2, there exists a finite extension k′ of Fq,
and a collection of polynomials g1, . . . , gr, such that:

– deg g1 = d1, deg gi � di;
– Z is the common zero locus of g1, . . . , gr; and
– Spec k′[x1, . . . , xn]/(g1, . . . , gc) has dimension equal to dimZ.

Since the conclusion of Theorem 1.3 is not sensitive to the base field, and since we have

νj(n; deg g1, . . . , deg gr)� νj(n; d1, . . . , dr)

εm(n; deg g1, . . . , deg gr)� εm(n; d1, . . . , dr),

it suffices to prove the theorems with Fq replaced by k′ and fi replaced by gi. Thus, it suffices
to prove Theorems 1.3 and 1.5 under the following additional hypothesis.

The scheme SpecFq[x1, . . . , xn]/(f1, . . . , fc) has dimension equal to dimZ. (6.1)
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6.2 Step 2: Slope estimates

First, we prove that the numbers νj(n; d1, . . . , dr) and εm(n; d1, . . . , dr) provide lower bounds
of the q-order of the Frobenius eigenvalues of H∗

rig,c(Z). Later, we will bootstrap this bound to
a bound of q-divisibility of algebraic numbers.

Recall the meaning of g (2.2), G (Construction 2.3), and our convention of the sets I, I ′

and I ′′ made in Notation 4.1, as well as the spaces BI (2.1). Rewrite the overconvergent Dwork
complex (2.2) as the total complex of the following double complex (in order to save ink, we
have omitted the monomials dxI/xI in the expression).⊕

|I′|=n
|I′′|=0

BI · · · ⊕
|I′|=n
|I′′|=c

BI · · · ⊕
|I′|=n
|I′′|=r

BI

...
...

...

⊕
|I′|=0
|I′′|=0

BI · · · ⊕
|I′|=0
|I′′|=c

BI · · · ⊕
|I′|=0
|I′′|=r

BI

(6.2)

In the diagram, the horizontal differentials are induced by D′
n+1, . . . , D

′
n+r, and the vertical ones

are induced by D′
1, . . . , D

′
n, where

D′
i = xi

∂

∂xi
+ πxi

∂G

∂xi
= exp(−πG) ◦ xi ∂

∂xi
◦ exp(πG), i= 1, 2, . . . , n+ r. (6.3)

The following lemma shows that the 0th, 1st, . . . and (c− 1)st columns of the E1-page of the
spectral sequence associated to the double complex (6.2) are all zero.

Lemma 6.4. For each 0� i� n, the ith row of (6.2) is exact in cohomology degree 0, 1, . . . , c− 1.

Proof. The complex (6.2) uses ‘toric’ conventions, and it is more suitable for later chain-
level manipulations. In the following proof, we use an equivalent ‘affine’ convention. Write
B =K〈x1, . . . , xn+r〉†, and let

Dj =
∂

∂xj
+ π

∂G

∂xj
, j = 1, . . . , n+ r.

Then (6.2) can be written as follows.

...
...

...

B⊕n B⊕nr B⊕n(r2) · · ·

B B⊕r B(r2) · · ·

(6.2′)

In this double complex, the horizontal arrows are induced by Dn+1, . . . , Dn+r, and the vertical
arrows are induced by D1, . . . , Dn.

First, we show that the zeroth row of (6.2′) is exact in degrees 0, 1, . . . , c− 1. Since the ith
row of (6.2′) is an

(
n
i

)
-fold direct sum of the zeroth row, the desired exactness, in general, will

follow.
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The zeroth row of (6.2′) is itself the total complex of a double complex.

...
...

...

B⊕(r−c

2 ) B⊕c(r−c

2 ) B⊕(r−c

2 )(c2) · · ·

B⊕(r−c) B⊕c(r−c) B⊕(r−c)(c2) · · ·

B B⊕c B⊕(c2) · · ·

(6.4)

In the diagram, the horizontal arrows are induced by

Dn+1, . . . , Dn+c

and the vertical arrows are induced by

Dn+c+1, . . . , Dn+r.

Thus, the ith row is the
(
r−c
i

)
-fold direct sum of the zeroth row. If we prove that the zeroth

row of (6.4) is acyclic except in top cohomology degree, then every row of (6.4) will be exact
except in top cohomology degree. Thus, the total complex of (6.4), which is the zeroth row of
the original (6.2′), will have vanishing cohomology in degrees 0, 1, . . . , c− 1.

To prove acyclicity, we make the following auxiliary construction. Consider the projection

�′ : An+r →An+r−c, (x1, . . . , xn+r) �→ (x1, . . . , xn, xn+c+1, . . . , xn+r).

Define P = P̂n+r−c
OK

× P̂c
OK

and P ′ = P̂n+r−c
OK

. The special fiber of P (respectively, P ′) contains
An+r (respectively, An+r−c) as a Zariski open subset, with complement H (respectively, H ′).
Let L be the overholonomic D†

P,Q-module associated with the Dwork crystal g′∗Lπ, where
g′ = xn+1f1 + · · ·+ xn+cfc.

By construction, L has an overconvergent singularity along H, i.e., L=L(†H), and is naturally

a D†
P,Q(†H)-module, where D†

P,Q(†H) is the sheaf of differential operators on P of finite level
with overconvergent singularities along H (see [Ber96, § 4.2.5] or [BB04, § 2.5]).

Thus, L represents an object of Db
hol(A

n+r/K). By Theorem 2.11,

�′
+L�RΓ†

Z′(OP ′,Q(†H ′))[c],

where Z ′ is the zero locus of f1, . . . , fc in the affine space An ×Ar−c: i.e.,

Z ′ = {x∈An : f1(x) = · · ·= fc(x) = 0} ×Ar−c.

Given Hypothesis (6.1), we have dimZ ′ = n+ r− 2c, and it follows from Lemma 5.4 that

RΓ†
Z′(OP ′,Q(†H ′))[c], which is initially a complex of D†

P ′,Q(†H ′)-modules, is concentrated in
degree 0 only. Consequently, by [BB04, Theorem 2.3] (which asserts that the category of

D†
P ′,Q(†H)-modules is equivalent to the category of modules over the overconvergent Weyl

algebra, the equivalence being induced by the functor H0(P ′,−)), we find that

H0(P ′;RΓ†
Z′(OP ′,Q(†H ′))[c])

is a module over the overconvergent Weyl algebra H0(P ′;D†
P ′,Q(†H ′)), and is thus concentrated

in degree 0 only.
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|I ′′|

|I ′|

r

Second case

First case

(r, n)

rc

(r− j, n)

Figure 1 (colour online). The double complex.

Now, the zeroth row of (6.4), shifted to the left by r, is

B→B⊕c→B⊕(c2)→ · · ·→B⊕( c

c−1)→B⊕(cc)
•

(where the bullet indicates the degree zero item of the chain complex). We want to show that it is
acyclic except in degree 0. Since this is a relative de Rham complex with respect to �′, according
to [BB04, p. 197, Remark], it represents the complex H0(P ′;�′

+L), which is isomorphic to

H0(P ′;RΓ†
Z′(OP ′,Q(†H ′))[c]),

by Theorem 2.11. As discussed in the preceding paragraph, this latter complex is indeed
concentrated in degree 0. This completes the proof.

Since Lemma 6.4 implies that the spectral sequence associated to the double complex (6.2)
satisfies

Ei,j1 = 0, ∀i < c,
in Figure 1, only the shaded part contributes to the final abutment of the spectral sequence.

For this reason, Hn+r−jrig (An+r
Fq

,Lπ) is in fact a subquotient of⊕
|I|=n+r−j

|I′′|�c

BI , (6.5)

and Lemma 3.2 can be refined.

Lemma 6.5. In Situation 6.1, under Hypothesis 6.1, we have that the Fredholm determinant
det(1− t · F |Hn−r+jrig,c (Z)) is a factor of∏

|I|=n+r−j
|I′′|�c

det(1− t · qj−rαa|BI).

Hence, every Frobenius eigenvalue of Hn−r+jrig,c (Z) is a reciprocal root of det(1− t · qj−rαa|BI)
for some I with |I|= n+ r− j, |I ′′|� c.

To proceed, there are two cases.

6.2.1 First case. j � r− c. This case corresponds to Theorem 1.3. All the relevant spaces
BI lie on the lower slant line of Figure 1. Let γ be one reciprocal root of det(1− t · qj−rαa|BI).
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By Lemma 4.2, the q-order of any reciprocal root γ of det(1− t · αa|BI) is at least
1

d1

(
n+ r− j +

∑
i∈I′′

(d1 − di − 1)

)
.

Since d1 � · · ·� dr and |I ′′|� c,

∑
i∈I′′

(d− di − 1)�
c∑
i=1

(d− di − 1)−
|I′′|−c∑
i=c+1

d∗i

�
c∑
i=1

(d− di − 1)−
r∑

i=c+1

d∗i ,

where recall that

d∗i =

⎧⎪⎨⎪⎩
di if 1� i� c,

1 if i > c and di = d1,

0 if i > c and di < d1.

Moreover, by [Wan00, Lemma 3.1], the q-order of every reciprocal root of det(1− t · αa|BI) is at
least |I ′′|� c.

Remark 6.6. It should be noted that the cited lemma was stated for a certain Banach space
denoted by BJ1,J2 in [Wan00]. In our context, its role is subsumed by the overconvergent space
BI , where J1 = I ′, J2 = I ′′. The proof of the cited lemma uses only Dwork trace formula, which
is applicable to BI as well.

In fact, the cited lemma actually says that the reciprocal roots of det(1− t · αa|BI) are
algebraic integers and are divisible by q|I′′| in the ring of algebraic integers.

Hence, Lemma 6.5 implies that the q-order of every Frobenius eigenvalue of Hn−r+jrig,c (Z) is at
least

j − (r− c) +max

{
0,

⌈
n− j + (r− c)−∑r

i=1 d
∗
i

d1

⌉}
. (6.6)

Making the change of variable j − (r− c)→ j, the above argument implies that the q-order

of Frobenius eigenvalues of HdimZ+j
rig,c (Z) are at least νj(n; d1, . . . , dr).

6.2.2 Second case. 0� j < r− c, which corresponds to Theorem 1.5. In this case, the spaces
BI appearing in (6.5) all lie on the upper slant line of Figure 1. Thus, r� |I ′′|� r− j > c.
It follows from Lemma 4.2 that every reciprocal root γ of det(1− t · αa|BI) satisfies ordq γ �
(1/d1)(n+ r− j +

∑
i∈I′′(d1 − di − 1)). Since |I ′′|� r− j, arguing as in the first case,

1

d1

(
n+ r− j +

∑
i∈I′′

(d1 − di − 1)

)

� 1

d1

(
n+ r− j +

r−j∑
i=1

(d1 − di − 1)−
r∑

i=r−j+1

d∗i

)

=
1

d1

(
n−

r−j∑
i=1

di −
r∑

i=r−j+1

d∗i

)
+ r− j. (6.7)
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Again, by [Wan00, Lemma 3.1], we have ordq γ � |I ′′|� r− j. Hence, by Lemma 6.5, the q-order

of every Frobenius eigenvalue of Hn−r+jrig,c (Z) is at least

max

{
0,

⌈
n−∑r−j

i=1 di −
∑r

i=r−j+1 d
∗
i

d1

⌉}
= εj(n; d1, . . . , dr).

6.3 Step 3. Bootstrap

To finish the proof of Theorems 1.3 and 1.5, it remains to explain why the a priori weaker
q-order estimate given above implies the integrality as well as divisibility in the ring of algebraic
integers. All we need is the following lemma (see Lemma 6.8 below).

Lemma 6.7. If γ is a reciprocal root of the Fredholm determinant det(1− tαa|BI), then γ is an
algebraic integer, and any Galois conjugate of it is still a reciprocal root of det(1− tαa|BI).

That γ is an algebraic integer had been shown by the first author in [Wan00, Lemma 3.1],
but it will naturally come up again in the argument below.

Before proving Lemma 6.7 let us take a tour through the Dwork theory of exponential sums.
For J ⊂ {1, 2, . . . , n+ r}, let X(J) be the linear subspace of An+r defined by the vanishing of
the variables (xj)j∈J , and let X∗

(J) be its standard embedded torus. Let gJ be the restriction of

g to X(J). For the nontrivial additive character Ψ (see (3.1)), consider the exponential sum

S∗
(J),m =

∑
x∈X∗

(J)(Fqm )

(Ψ ◦TrFqm/Fq
)(gJ(x)).

Let BJ =B/
∑

j∈J xjB. Applying Dwork trace formula (Theorem 3.7) to gJ gives

(qm − 1)n+r−|J |Tr(αma |BJ) = S∗
(J),m, (6.8)

where, as before, αa is the nuclear operator defined in § 2.
For I ⊂ {1, 2, . . . , n+ r}, let BI = (

∏
i∈I xi) ·B. Then B/BI should be thought of as a dagger

algebra lifting the divisor DI = {∏i∈I xi = 0}. The divisor DI , being of strict normal crossings,
has a standard semisimplicial resolution

· · · ⊔
J⊂I
|J |=2

X(J)

⊔
J⊂I
|J |=1

X(J) DI .

By inclusion-exclusion, Tr(αma |BI) =
∑

J⊂I(−1)|J |Tr(αma |BJ). Exponentiating, we get

det(1− tαa|BI) =
∏
J⊂I

det(1− tαa|BJ)(−1)|J|
. (6.9)

Proof of Lemma 6.7. The proof of the assertion is based on a similar, but more precise, argument
used in the visibility proof.

For each J ⊂ {1, 2, . . . , n+ r}, by (6.8),

det(1− tαa|BJ)δ
n+r−|J|

=L∗
J(t)

(−1)n+r−|J|−1

,

where

L∗
J(t) = exp

{ ∞∑
m=1

S∗
(J),m

tm

m

}
.
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But, by Lemma 3.8 (applying to the lower dimensional affine space X(J)), L
∗
J is an alternating

product of zeta functions of ζZ∗∩X(E′)(q
|E′|t), where E′ is the intersection of a subset E of J with

{1, 2, . . . , r}. Thus, by the second equation in Definition 3.4, as well as (6.9), det(1− tαa|BI) is
an infinite alternating product of ‘shifted’ zeta functions ζZ∗∩X(E′)(q

M t), where M ∈N.
Therefore, any reciprocal root of det(1− tαa|BI), say, γ, is a reciprocal zero or reciprocal

pole of some zeta function ζZ∗∩X(J)
(qM t), not being canceled in the infinite product, for some

natural number M . Therefore, γ is an algebraic integer. Since such a shifted zeta function is
a ratio of integral polynomials of constant term one, the (reciprocal) minimal polynomial of γ
must not be canceled either.

By Lemma 6.7, all the conjugates of γ are still reciprocal roots of det(1− tαa|BI). Thus,
the q-orders of the conjugates are bounded by (6.6) or (6.7), depending on |I|. The proof of
Theorems 1.3 and 1.5 is then concluded thanks to the following elementary lemma.

Lemma 6.8. Fix an algebraic closureQp ofQp. Let γ ∈Qp be an algebraic integer. Suppose that,

for any automorphism σ of Qp, ordq(σ(γ))�m. Then qm | γ in the ring of algebraic integers.

Proof. Let P (T ) = T e − a1T
e−1 + · · ·+ (−1)eae be the minimal polynomial of γ. Then, for every

i, ai ∈Z. Since ai is an elementary symmetric polynomial of σ(γ), the hypothesis implies that
ordq(ai)�m. Hence, we can write ai = qim · bi for some bi ∈Z. The numbers σ(γ) · q−m all satisfy
the polynomial equation T e − b1T

e−1 + · · ·+ (−1)ebe = 0, and thus are all algebraic integers. The
lemma is proved.
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Inst. Fourier (Grenoble) 54 (2004), 1943–1996.
Car07 D. Caro, F-isocristaux surconvergents et surcohérence différentielle, Invent. Math. 170
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et N. Katz.

DMSS00 A. Dimca, F. Maaref, C. Sabbah and M. Saito, Dwork cohomology and algebraic D-
modules, Math. Ann. 318 (2000), 107–125.

Dwo60 B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J.
Math. 82 (1960), 631–648.

1248

https://doi.org/10.1112/S0010437X25007110 Published online by Cambridge University Press

https://arxiv.org/abs/1209.4020
https://doi.org/10.1112/S0010437X25007110


Visibility and divisibility

Dwo62 B. Dwork, On the zeta function of a hypersurface, Inst. Hautes Études Sci. Publ. Math.
12 (1962), 5–68.

Dwo64 B. Dwork, On the zeta function of a hypersurface. II, Ann. Math. (2) 80 (1964),
227–299.

EK05 H. Esnault and N. M. Katz, Cohomological divisibility and point count divisibility,
Compos. Math. 141 (2005), 93–100.

EW22 H. Esnault and D. Wan, Divisibility of Frobenius eigenvalues on �-adic cohomology,
Proc. Indian Acad. Sci. Math. Sci. 132 (2022), 60.
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