GLOBAL STABILITY DETERMINED BY
LOCAL PROPERTIES AND THE FIRST VARIATION

R. Datko
(received September 15, 1965)

1. In this note we consider a system of autonomous
differential equations

(1.1) x = f(x) (- ===),

where f: E- —E  isa continuously differentiable mapping for
n>2. We shall assume that £(0) =0 and that the origin is
locally asymptotically stable.

Suppose f satisfies the above conditions. Under what
additional assumptions on f is it possible to infer global

stability ?

In [1] Hartman and Olech show that if f also satisfies
the additional conditions:

(i) f(x) =0 ifand only if x=0,

T
s AP T

(i) the symmetric part of the Jacobian
9x Ix

(T denotes transpose) is such that the sum of any two eigenvalues
of H(x) 1550 for all x,

oo}
(iii) f min  [f(x)[[dp =+» (||. | denotes the Euclidean
Ixl1=
norm), then the origin is globally stable.
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Hartman and Qlech also consider the problem in a more
general Riemannian space than E™, but the method of proof is
not essentially different from that in E® with a flat metric.

In section 2 we consider a variant of this problem which,
so far as we know, was first considered by Krasovskii [2].
Markus and Yamabe [3] have also considered the same problem
and they infer the global stability of {1. 1) under weaker
assumptions than Krasovskii; the most general result along
these lines is that of Hartman and Olech. We show that if the
local stability of (1. 1) is known, then we can infer global
stability with weaker assumptions than Hartman and Olech

allow on the number of possible stationary points of (1. 1).

of
However our conditions on the matrix —— are stronger than

9x
the ones they assume.

2. Let
(2.1) x = f(x)

be defined for all x in E and satisfy the conditions:

. 1
(i) £: ET = E" isin C forall x in E";

(ii) £(0) =0 ;
(2.2)
(iii) the origin is locally asymptotically stable;

(iv) there exists a positive definite matrix A =(a. )
1
T

such that —— A + Az— is negative semi-definite for all
9x 9x

. n
x in E .

THEOREM 1. If (2.1) satisfies (2. 2) then the origin is
globally stable.

Proof: Let « denote the set of points attracted to the
equilibrium point 0. Because of the conditions (2.2), « is
open and connected. We shall suppose the origin is not globally
stable. Then the boundary 9(a) of (a) is not empty. Since 0
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is closed and compact and d(a) is closed, it follows that there
exists a point x in d(a) which is a minimal distance from the
o

origin. We consider the straight line L joining X, to 0. It

is evident that the relative interior of L isin «.

Every point on L has the representation uve , 0<u< [x |,
N o
o
where e = ,—/, .
el
o

On some arbitrary segment S of L which contains x
)

we consider the one parameter family of solutions x(t,u) of (2.1)
such that x(o,u) =eu for each u. As t evolves in time the
segment S is transformed into a curve S(t). For each fixed

t> 0 for which the solution x(t, “xo ) is defined, we consider

the arc length so(t) of S(t) which is given by

Ix I [o
du

2 i/2

(2.3) s_(t) = _[

u
o

(t,u) du .

Next consider the function

I, {axr NI TVE
(2. 4) si(t) ={ 5o (t,u)Aa—u(t,u) du .

o

Since A 1is positive definite, there exists a constant m > 0
such that

dxT dx
— A

2
du 3—1-.1-->- ”

2 ,9x
m 53

Thus si(t) > mso(t) for all t for which si and s, are defined.
. . 1 -
Moreover, since f is in C , it follows that So and s  are

continuously differentiable with respect to t (e.g., see [6]
chapter 1). The derivative of si(t) is given by
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Xt ¥
ds < “‘: 7 tu)a (t u)A+A-—-(t u) (t u)]
1/2 '
S

1/2

where [ ] is the integrand in (2.+4) and is never zero, since
3o is the solution of a linear differential equation whose initial
u

value is ”-;-” .

ds
Because of (2.2iv), —— <0 forall ¢t for which (2.4) is

defined. Thus we can write the following inequality

s (o) si(t)

(2. 6) ! >

> s (6> =t [[x_[D) - =t 0 )] -

(B
Let € > 0 be arbitrary except that £ < o We select uo
such that
s, (o)
1 €
(2.7) - < -2-
For example, a u satisfying
2 1/2
(2.8) (”xO” n’ Slqu laJ[ (”xOH -u)<2em
would be satisfactory.
Using (2.7) in (2. 6) we obtain
. €
(2.9) lctes e D0 < fettou ) | + 5
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Since x(t,uo) is defined for all t, so is x(t, ”xo ) and hence
so(t) and Si(t) are. Also, since x(o,uo) 1s in a it follows
that there isa t >0 such that []x(t,uo)” <§- for all t> t,-
Hence from (2.9) ||x(t, ”xo il <e< on | for t> t,» which
is impossible since, by our selection of X it must be true
that ||x(t, ”xo i > on | forall t>0. Thus 3(a) =2

and hence a« =E. which proves the theorem.

COROLLARY 1. If f satisfies the conditions of
theorem 1 then f(x) =0 if and only if x=0 .

Remark. In effect, the proof of theorem 1 consists in
showing that the existence of the Liapunov function

Vit ax) _ 8xTA8
940 T du 3

& lw

implies the stability of the variational system

d dx af 3 x
2.10 -— () = t, -
(2.10) i 5a) T ey
(i. e. the orbital stability of 2.1) which then implies the global
stability of (2. 1), since it is locally asymptotically stable.

With this in mind we obtain the following corollary of
theorem 1.

COROLLARY 2. If (2.1) satisfies (2.2i), (2. 21ii),
(2. 2iv) and the condition

T
) 9
(2.11) xT —-£ A+A----E x<0
9 x 3 x

in some neighborhood U of the origin, then the origin is
globally stable.

T
Proof: Let V(x) =x Ax. Then along solutions of (2. 1)
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1 T
of df
_d_Vz fTAx+ xTAf = f xT [—— (ex)A + A — (sx)}xds <0.
9 x dx

Hence V 1is a Liapunov function for (2.1) in the neighborhood U.
Thus the origin is locally stable and theorem 1 applies.

Corollary 2 generalizes a result of Hartman [$] for
Euclidean spaces with flat metrics in that Hartman demands
that (2. 11) hold everywhere in EP.
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