3
Grids in Subsurface Modeling

The basic geological description of a petroleum reservoir or an aquifer system will typically
consist of two sets of surfaces. Geological horizons are lateral surfaces describing the
bedding planes that delimit the rock strata, whereas faults are vertical or inclined surfaces
along which the strata may have been displaced by geological processes. In this chapter, we
discuss how to turn the basic geological description into a discrete model that can be used
to formulate various computational methods, e.g., for solving the equations that describe
fluid flow.

A grid is a tessellation of a planar or volumetric object by a set of contiguous simple
shapes referred to as cells. Grids can be described and distinguished by their geometry,
which gives the shape of the cells that form the grid, and their fopology that tells how the
individual cells are connected. In 2D, a cell is in general a closed polygon for which the
geometry is defined by a set of vertices and a set of edges that connect pairs of vertices
and define the interface between two neighboring cells. In 3D, a cell is a closed polyhedron
for which the geometry is defined by a set of vertices, a set of edges that connect pairs
of vertices, and a set of faces (surfaces delimited by a subset of the edges) that define the
interface between two different cells; see Figure 3.1. Herein, we assume that all cells are
nonoverlapping, so that each point in the planar/volumetric object represented by the grid
is either inside a single cell, lies on an interface or edge, or is a vertex. Two cells that share
a common face are said to be connected. Likewise, one can also define connections based
on edges and vertices. The topology of a grid is defined by the total set of connections,
which is sometimes also called the connectivity of the grid.

When implementing grids in modeling software, one always has the choice between
generality and efficiency. To represent an arbitrary grid, it is necessary to explicitly store
the geometry of each cell in terms of vertices, edges, and faces, as well as storing the
connectivity among cells, faces, edges, and vertices. However, as we will see later, huge
simplifications can be made for particular classes of grids by exploiting regularity in the
geometry and structures in the topology. Consider, for instance, a planar grid consisting
of rectangular cells of equal size. Here, the topology can be represented by two indices,
and one only needs to specify a reference point and the two side lengths of the rectan-
gle to describe the geometry. This way, one ensures minimal memory usage and optimal
efficiency when accessing the grid. On the other hand, exploiting the simplified description
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56 Grids in Subsurface Modeling

Figure 3.1 Illustration of a single cell, vertices and edges, and cell faces.

explicitly in your flow or transport solver inevitably means that the solver must be reimple-
mented if you later decide to use another grid format.

The most important goal for our development of MRST is to provide a toolbox that
both allows and enables the use of various grid types. To avoid having a large number of
different, and potentially incompatible, grid representations, we have therefore chosen to
store all grid types using a general unstructured format in which cells, faces, vertices, and
connections between cells and faces are explicitly represented. This means that we, for the
sake of generality, have sacrificed some of the efficiency one can obtain by exploiting spe-
cial structures in a particular grid type, and instead have focused on obtaining a flexible grid
description that is not overly inefficient. Moreover, our grid structure can be extended by
other properties that are required by various discretization schemes for flow and transport
simulations. A particular discretization may need the volume or the centroid (grid-point,
midpoint, or generating point) of each cell. Likewise, for cell faces one may need to know
the face areas, the face normals, and the face centroids. Although these properties can be
computed from the geometry (and topology) of the grid, it is often useful to precompute
and include them explicitly in the grid representation.

The first third of this chapter is devoted to standard grid formats that are available in
MRST. We introduce examples of structured grids, including regular Cartesian, rectilinear,
and curvilinear grids, and briefly discuss unstructured grids, including Delaunay trian-
gulations and Voronoi grids. The purpose of our discussion is to demonstrate the basic
grid functionality in MRST and show some key principles you can use to implement new
structured and unstructured grid formats. In the second part of the chapter, we discuss
industry-standard formats for stratigraphic grids that are based on extrusion of 2D shapes
(corner-point, prismatic, and 2.5D PEBI grids). Although these grids have an inherent
logical structure, representation of faults, erosion, pinch-outs, and so on lead to cells that
can have quite irregular shapes and an (almost) arbitrary number of faces. In the last part of
the chapter, we discuss how the grids introduced in the first two parts of the chapter can be
partitioned to form flexible coarse descriptions that preserve the geometry of the underlying
fine grids. The ability to represent a wide range of grids, structured or unstructured on the
fine and/or coarse scale, is a strength of MRST compared to the majority of research codes
arising from academic institutions.
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A number of videos that complement the material presented in this chapter can be found
in the second MRST Jolt [189]. This Jolt introduces different types of grids, discusses how
such grids can be represented, and outlines functionality you can use to generate your own
grids.

3.1 Structured Grids

As we saw in this chapter’s introduction, a grid is a tessellation of a planar or volumetric
object by a set of simple shapes. In a structured grid, only one basic shape is allowed
and this basic shape is laid out in a regular repeating pattern so that the topology of the
grid is constant in space. The most typical structured grids are based on quadrilaterals in
2D and hexahedrons in 3D, but in principle it is also possible to construct grids with a
fixed topology using certain other shapes. Structured grids can be generalized to so-called
multiblock grids (or hybrid grids), in which each block consists of basic shapes that are laid
out in a regular repeating pattern.

Regular Cartesian Grids

The simplest form of a structured grid consists of unit squares in 2D and unit cubes in 3D,
so that all vertices in the grid are integer points. More generally, a regular Cartesian grid
can be defined as consisting of congruent rectangles in 2D and rectilinear parallelepipeds
in 3D, etc. Hence, the vertices have coordinates (i;Axy,ioAxp,...) and the cells can be
referenced using the multi-index (i1, 2, . . . ). Herein, we only consider finite Cartesian grids
that consist of a finite number ny X ny x --- x ny of cells that cover a bounded domain
[0,L1] x [0,L2] x -+ x [0, Lg].

Regular Cartesian grids can be represented very compactly by storing n; and L; for
each dimension. In MRST, however, Cartesian grids are represented as if they were fully
unstructured using a general grid structure that will be described in more detail in Section
3.4. Cartesian grids therefore have special constructors,

G
G

cartGrid([nx, nyl, [Lx Lyl);
cartGrid([nx, ny, nz], [Lx Ly Lz]);

that set up the data structures representing the basic geometry and topology of the grid. The
second argument is optional.

Rectilinear Grids

A rectilinear grid (also called a tensor grid) consists of rectilinear shapes (rectangles or
parallelepipeds) that are not necessarily congruent to each other. In other words, whereas a
regular Cartesian grid has a uniform spacing between its vertices, the grid spacing can vary
along the coordinate directions in a rectilinear grid. The cells can still be referenced using a
multi-index (71,17, ... ), but the mapping from indices to vertex coordinates is nonuniform.

In MRST, one can construct a rectilinear grid by specifying vectors with the grid vertices
along the coordinate directions:
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Figure 3.2 Example of a rectilinear grid.

G = tensorGrid(x, y);
G = tensorGrid(xz, y, z);

This syntax is the same as for the MATLAB functions meshgrid and ndgrid.
As an example of a rectilinear grid, we construct a 2D grid that covers the domain
[—1,1] x [0,1] and is graded toward x = 0 and y = 1 as shown in Figure 3.2.

dx = 1-0.5*%cos((-1:0.1:1)*pi);

x = -1.15+0. 1*xcumsum(dx) ;

y = 0:0.05:1;

G = tensorGrid(x, sqrt(y));

plotGrid(G); axis([-1.05 1.05 -0.05 1.05]);

Curvilinear Grids

A curvilinear grid is a grid with the same topological structure as a regular Cartesian grid,
but in which the cells are quadrilaterals rather than rectangles in 2D and cuboids rather than
parallelepipeds in 3D. The grid is given by the coordinates of the vertices, but there exists
a mapping that will transform the curvilinear grid to a uniform Cartesian grid so that each
cell can still be referenced using a multi-index (i, i2, ... ).

For the time being, MRST has no constructor for curvilinear grids. Instead, you can
create such grids by first instantiating a regular Cartesian grid or a rectilinear grid and then
manipulating the vertices. This method is quite simple as long as there is a one-to-one
mapping between the curvilinear grid in physical space and the logically Cartesian grid in
reference space. The method will not work if the mapping is not one-to-one so that vertices
with different indices coincide in physical space. In this case, the user should create an
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0 2 4 6 0 2 4 6

Figure 3.3 The middle plot shows a rough grid created by perturbing all internal nodes of the regular
6 x 12 Cartesian grid in the left plot. The right plot shows a curvilinear grid created using the function
twister that uses a combination of sin functions to perturb a rectilinear grid. The color is determined
by the cell volumes.

ECLIPSE input file [270, 33] with keywords COORD [XYZ] (see Section 3.3.1) and use the
function buildCoordGrid to create the grid.

To illustrate the discussion, we show two examples of how to create curvilinear grids.
In the first example, we create a rough grid by perturbing all internal nodes of a regular
Cartesian grid (see Figure 3.3):

nx = 6; ny=12;

G = cartGrid([nx, nyl);

subplot(1,2,1); plotGrid(G);

¢ = G.nodes.coords;

I = any(c==0,2) | any(c(:,1)==nx,2) | any(c(:,2)==ny,2);
G.nodes.coords(~I,:) = c(~I,:) + 0.6%rand(sum(~I),2)-0.3;
subplot(1,2,2); plotGrid(G);

In the second example, we use the routine twister to perturb the internal vertices. The
function maps the grid back to the unit square, perturbs the vertices according to the
mapping

(i yi) = (x4 f Gy yi — fy0). fxy) = 0.03sin(rx) sin(3(y — 3)).

and then maps the grid back to its original domain. The right plot of Figure 3.3 shows the
resulting grid. To illuminate the effect of the mapping, we have colored the cells according
to their volume, which has been computed using the function computeGeometry, which we
will come back to later in the chapter.

G = cartGrid([30, 201);

G.nodes.coords = twister(G.nodes.coords) ;

G = computeGeometry(G) ;

plotCellData(G, G.cells.volumes, 'EdgeColor', 'k'), colorbar
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Fictitious Domains

One obvious drawback with Cartesian and rectilinear grids, as just defined, is that they can
only represent rectangular domains in 2D and cubic domains in 3D. Curvilinear grids, on
the other hand, can represent more general shapes by introducing an appropriate map-
ping, and can be used in combination with rectangular/cubic grids in multiblock grids
for efficient representation of realistic reservoir geometries. However, finding a mapping
that conforms to a given boundary is often difficult, in particular for complex geologies,
and using a mapping in the interior of the domain will inadvertently lead to cells with
rough geometries that deviate far from being rectilinear. Such cells may in turn introduce
problems if the grid is to be used in a subsequent numerical discretization, as we will see
later.

As an alternative, complex geometries can be easily modeled using structured grids by a
so-called fictitious domain method. In this method, the complex domain is embedded into
a larger “fictitious” domain of simple shape (a rectangle or cube) using, e.g., a Boolean
indicator value in each cell to tell whether the cell is part of the domain or not. The
observant reader will notice that we already have encountered the use of this technique
for the SAIGUP dataset (Figure 2.16) and the Johansen dataset in Chapter 2. In some
cases, one can also adapt the structured grid by moving the nearest vertices to the domain
boundary.

MRST has support for fictitious domain methods through the function removeCells,
which we will demonstrate in the next example, where we create a regular Cartesian grid
that fills the volume of an ellipsoid:

x = linspace(-2,2,21);
G = tensorGrid(x,x,x);
subplot(1,2,1); plotGrid(G);view(3); axis equal

subplot(1,2,2); plotGrid(G, 'FaceColor', 'none');
G = computeGeometry(G) ;

c = G.cells.centroids;

r =c(:,1).72 + 0.25%c(:,2).72+0.25%c(:,3).72;
G = removeCells(G, r>1);

plotGrid(G); view(-70,70); axis equal;

Worth observing here is the use of computeGeometry to compute cell centroids that are not
part of the basic geometry representation in MRST. Figure 3.4 shows plots of the grid before
and after removing the inactive parts. Because of the fully unstructured representation
used in MRST, calling computeGeometry actually removes the inactive cells from the grid
structure, but from the outside, the structure behaves as if we had used a fictitious domain
method.

You can find more examples of how you can make structured grids and populate them
with petrophysical properties in the fourth video of the second MRST Jolt [189].
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Figure 3.4 Example of a regular Cartesian grid representing a domain in the form of an ellipsoid.

The underlying logical Cartesian grid is shown in the left plot and as a wireframe in the right plot.

The active part of the model is shown in yellow color in the right plot.

COMPUTER EXERCIS

3.1.1

Make the grid shown:

Hint: the grid spacing in the x-direction is given by Ax(1 — %cos(nx)) and the

colors signify cell volumes.
3.1.2 Metaballs are commonly used in computer graphics to generate organic-looking

Each metaball is defined as a smooth function that has finite support. One

objects.
example is

]

X2
r2’

(

[1 — min
Metaballs can be used to define objects implicitly,

m(x,r) =

as all the points X that satisfy

b}

e.g.

C eR*

) =C,

X —Xj,ri

>

S
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Use this approach and try to make grids similar to the ones shown here:

0.5

3.1.3 A simple way to make test models with funny geometries is to use the method of
fictitious domains and let an image define the domain of interest. In the figures,
the image was taken from penny, which is one of the standard data sets that are
distributed with MATLAB, and then used to define the geometry of the grid and
assign permeability values

A 4

Pick your own favorite image or make one in a drawing program and use imread
to load the image into MATLAB as a 3D array, which you can use to define your
geometry and petrophysical values. If you do not have an image at hand, you can
use penny or spine. For penny, in particular, you may have to experiment a bit with
the threshold used to define your domain to ensure that all cells are connected, i.e.,
that the grid you obtain consists of only one piece.

3.2 Unstructured Grids

An unstructured grid consists of a set of simple shapes that are laid out in an irregular
pattern so that any number of cells can meet at a single vertex. The topology of the grid
will therefore change throughout space. An unstructured grid can generally consist of a
combination of polyhedral cells with varying numbers of faces, as we will see in this
section. However, the most common forms of unstructured grids are based on triangles
in 2D and tetrahedrons in 3D. These grids are very flexible and are relatively easy to adapt
to complex domains and structures, or refine to provide increased local resolution.

Unlike structured grids, unstructured grids cannot generally be efficiently referenced
using a structured multi-index. Instead, one must describe a list of connectivities that
specifies the way a given set of vertices make up individual cells and cell faces, and how
these cells are connected to each other via faces, edges, and vertices.
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To understand the properties and construction of unstructured grids, we start by a
brief discussion of two concepts from computational geometry: Delaunay tessellation
and Voronoi diagrams. Both these concepts are supported by standard functionality in
MATLAB.

3.2.1 Delaunay Tessellation

A tessellation of a set of generating points P = {x;}]_, is defined as a set of simplices that
completely fills the convex hull of P. The convex hull H of P is the convex minimal set
that contains P and can be described constructively as the set of convex combinations of a
finite subset of points from P,

¢ ¢
H(P) = Z)»,-x,- |x,~ e P,Ai e R)A; ZO,ZM =1L1<{<n;.
i=1 i=1
Delaunay tessellation is by far the most common method of generating a tessellation based
on a set of generating points. In 2D, the Delaunay tessellation consists of a set of trian-
gles defined so that three points form the corners of a Delaunay triangle only when the
circumcircle that passes through them contains no other generating points; see Figure 3.5.
The definition using circumcircles can readily be generalized to higher dimensions using
simplices and hyperspheres.

The center of the circumcircle is called the circumcenter of the triangle. We will come
back to this quantity when discussing Voronoi diagrams in the next subsection. When four
(or more) points lie on the same circle, the Delaunay triangulation is not unique. As an
example, consider four points defining a rectangle. Using either of the two diagonals will
give two triangles satisfying the Delaunay condition.

The Delaunay triangulation can alternatively be defined using the so-called max-min
angle criterion, which states that the Delaunay triangulation is the one that maximizes the
minimum angle of all angles in a triangulation; see Figure 3.6. Likewise, the Delaunay tri-
angulation minimizes the largest circumcircle and minimizes the largest min-containment
circle, which is the smallest circle that contains a given triangle. Additionally, the closest
two generating points are connected by an edge of a Delaunay triangulation. This is called

Figure 3.5 Two triangles and their circumcircles.
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Figure 3.6 Example of two triangulations of the same five points; the triangulation to the right
satisfies the min-max criterion.

Figure 3.7 Two different Delaunay tessellations of a rectangular point mesh.

the closest-pair property, and the two neighboring points are referred to as natural neigh-
bors. This way, the Delaunay triangulation can be seen as the natural tessellation of a set of
generating points.

Delaunay tessellation is a popular research topic and there exists a large body of litera-
ture on theoretical aspects and computer algorithms. Likewise, there are a large number of
software implementations available on the Internet. For this reason, MRST does not have
any routines for generating tessellations based on simplexes. Instead, we have provided
simple routines for mapping a set of points and edges, as generated by MATLAB’s Delau-
nay triangulation routines, to the internal data structure used to represent grids in MRST.
How these routines work will be illustrated in terms of a few simple examples.

In the first example, we triangulate a rectangular mesh and then convert the result by use
of the MRST routine triangleGrid:

[x,y] = meshgrid(1:10,1:8);

t = delaunay(x(:),y(:));

G = triangleGrid([x(:) y(:)1,t);
plot(x(:),y(:),'o", 'MarkerSize',8);
plotGrid(G, 'FaceColor', 'none');

Depending on what version you have of MATLAB, the 2D Delaunay routine delaunay
will produce one of the triangulations shown in Figure 3.7. In older versions of MATLAB,
the implementation of delaunay was based on Qhull (see www.qhull.org), which pro-
duces the unstructured triangulation shown in the right plot. MATLAB 7.9 and newer has
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improved routines for 2D and 3D computational geometry, and here delaunay will produce
the structured triangulation shown in the left plot. However, the n-D tessellation routine
delaunayn([x(:)y(:)]) is still based on Qhull and will generally produce an unstructured
tessellation, as shown in the right plot.

If the set of generating points is structured, e.g., as one would obtain by calling either
meshgrid or ndgrid, it is straightforward to make a structured triangulation. The following
skeleton of a function makes a 2D triangulation and can easily be extended by the interested
reader to 3D:

function t = mesh2tri(n,m)

[I,J]=ndgrid(1:n-1, 1:m-1); pl=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(2:n , 1:m-1); p2=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(1:n-1, 2:m ); p3=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(2:n , 1:m-1); p4=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(2:n , 2:m ); p5=sub2ind([n,m],I(:),J(:));
[I,J]1=ndgrid(1:n-1, 2:m ); p6=sub2ind([n,m],I(:),J(:));
t = [pl p2 p3; p4 p5 pbl;

In Figure 3.8, we have used the demo case seamount supplied with MATLAB as an
example of a more complex unstructured grid

load seamount;

plot(x(:),y(:),'0');

G = triangleGrid([x(:) y(:)1);

plotGrid(G, 'FaceColor',[.8 .8 .8]); axis off;

The observant reader will notice that we did not explicitly generate a triangulation before
calling triangleGrid; if the second argument is omitted, the routine uses MATLAB’s built-
in delaunay triangulation as default.

For 3D grids, MRST supplies a conversion routine tetrahedralGrid(P, T) that
constructs a valid grid definition from a set of points P (m x 3 array of node coordinates)

Figure 3.8 The left plot shows the triangular grid from the seamount demo case. The right plot
shows a tetrahedral tessellation of a 3D point mesh.
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and a tetrahedron list T (n array of node indices). The tetrahedral tessellation shown to the
right in Figure 3.8 was constructed from a set of generating points defined by perturbing a
regular hexahedral mesh:

N=7; M=5; K=3;

[x,y,2z] = ndgrid(0:N,0:M,0:K);

x(2:N,2:M,:) = x(2:N,2:M,:) + 0.3*randn(N-1,M-1,K+1);
y(2:N,2:M,:) = y(2:N,2:M,:) + 0.3*randn(N-1,M-1,K+1);

G = tetrahedralGrid([x(:) y(:) z(:)1);

plotGrid(G, 'FaceColor',[.8 .8 .8]); view(-40,60); axis tight off

3.2.2 Voronoi Diagrams

The Voronoi diagram of a set of points P = {x;}_, is the partitioning of Euclidean space
into n (possibly unbounded) convex polytopes' such that each polytope contains exactly
one generating point x; and every point inside the given polytope is closer to its generating
point than any other point in P. The convex polytopes are called Voronoi cells or Voronoi
regions. Mathematically, the Voronoi region V (x;) of a generating point x; in P can be
defined as

Ve =[x [lle = xill < e —x0 V5 £ i} @)

A Voronoi region is not closed in the sense that a point that is equally close to two or more
generating points does not belong to the region defined by (3.1). Instead, these points are
said to lie on the Voronoi segments and can be included in the Voronoi cells by defining the
closure of V (x;), using “<” rather than “<” in (3.1).

The Voronoi regions for all generating points lying at the convex hull of P are
unbounded, all other Voronoi regions are bounded. For each pair of two points x; and x;,
one can define a hyperplane with co-dimension one consisting of all points that lie equally
close to x; and x ;. This hyperplane is the perpendicular bisector to the line segment between
x; and x; and passes through the midpoint of the line segment. The Voronoi diagram of a
set of points can be derived directly as the dual of the Delaunay triangulation of the same
points. To understand this, we consider the planar case; see Figure 3.9. For every triangle,
there is a polyhedron in which the vertices occupy complementary locations:

« The circumcenter of a Delaunay triangle corresponds to a vertex of a Voronoi cell.
« Each vertex in the Delaunay triangulation corresponds to, and is the center of, a Voronoi
cell.

Moreover, for locally orthogonal Voronoi diagrams, an edge in the Delaunay triangula-
tion corresponds to a segment in the Voronoi diagram and the two intersect each other
orthogonally. However, as we can see in Figure 3.9, this is not always the case. If the

LA polytope is a generic term that refers to a polygon in 2D, a polyhedron in 3D, and so on.
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Figure 3.9 Duality between Voronoi diagrams and Delaunay triangulation. From top left across
to bottom right: generating points, Delaunay triangulation, Voronoi diagram, and Voronoi diagram
(thick lines) and Delaunay triangulation (thin lines).

Figure 3.10 Three examples of Voronoi diagrams generated from 2D point lattices. From left to right:
square lattice, square lattice rotated 45 degrees, and lattice forming equilateral triangles.

circumcenter of a triangle lies outside the triangle itself, the Voronoi segment does not
intersect the corresponding Delaunay edge. To avoid this situation, one can perform a
constrained Delaunay triangulation and insert additional points where the constraint is
not met (i.e., the circumcenter is outside its triangle).

Figure 3.10 shows three examples of planar Voronoi diagrams generated from 2D point
lattices using the MATLAB function voronoi. MRST does not yet have a similar function
that generates a Voronoi grid from a point set, but offers V=pebi (T) that generates a locally
orthogonal, Voronoi grid V as a dual to a triangular grid T. The grids are constructed by
connecting the perpendicular bisectors of the edges of the Delaunay triangulation, hence
the name perpendicular bisector (PEBI) grids. To demonstrate the functionality, we first
generate a honeycombed grid similar to the one shown in the right plot in Figure 3.10:
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-

Figure 3.11 Two examples of Voronoi grids. The left plot shows a honeycombed PEBI grid and the
right plot shows the PEBI grid derived from the seamount demo case.

[x,y] = meshgrid([0:4]*2*cos(pi/6),0:3);

x = [x(:); x(:)+cos(pi/6)];

y = [y(:); y(:)+sin(pi/6)]1;

G = triangleGrid([x,yl);

plotGrid(pebi(G), 'FaceColor','none'); axis equal off

Figure 3.11 shows the resulting grid. As a second example, we reiterate the seamount
examples shown in Figure 3.8:

load seamount
V = pebi(triangleGrid([x yl));
plotGrid(V, 'FaceColor',[.8 .8 .8]); axis off;

Several of the examples discussed in this section can also be found in the fifth video of the
second MRST Jolt [189]. Since pebi is a 2D code, we cannot apply it directly to the 3D
tetrahedral grid shown in Figure 3.8 to generate a dual 3D Voronoi grid. The upr module
[42, 169] offers several more advanced tools for generating 2D and 3D Voronoi grids; we
will return to this in Section 3.5.3. Likewise, Section 3.3.2 discusses how 2D Voronoi grids
can be extruded to 3D giving so-called 2.5D grid; this is a standard approach in geological
modeling to preserve geological layers.

3.2.3 General Tessellations

Tessellations come in many other forms than the Delaunay and Voronoi types discussed
in the two previous sections. Tessellations are more commonly referred to as tilings and
are patterns made up of geometric forms (tiles) that are repeated over and over without
overlapping or leaving any gaps. Such tilings can be found in many patterns of nature,
like in honeycombs, giraffe skin, pineapples, snake skin, tortoise shells, to name a few.
Tessellations have also been extensively used for artistic purposes since ancient times,
from the decorative tiles of Ancient Rome and Islamic art to the amazing artwork of
M. C. Esher. For completeness (and fun), MRST offers the function tessellationGrid
that can take a tessellation consisting of symmetric n-polygonals and turn it into a correct
grid structure. While this may not be very useful in modeling petroleum reservoirs, it can
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easily be used to generate irregular grids that can be used to stress test various discretization
methods. To exemplify, the following commands will make a standard n x m Cartesian

mesh:
[x,y] = meshgrid(linspace(0,1,n+1),linspace(0,1,m+1));
I = reshape(1: (m+1)* (m+1) ,m+1,n+1);
T = [reshape(I(1:end-1,1:end-1),[],1)'; reshape(I(1:end-1,2:end ),[]1,1)';
reshape(I(2:end, 2:end ),[],1)'; reshape(I(2:end, 1:end-1),[],1)']1';
G = tessellationGrid([x(:) y(:)], T);

Here, the vertices and cells are numbered first in the y direction and then in the x-direction,
so that the first two lines in Tread [1 m+2 m+3 2; 2 m+3 m+4 3], and so on. There are
obviously many ways to make more general tilings. The script showTessellation in the
book module shows some simple but amazing examples.

3.2.4 Using an External Mesh Generator

Using a Delaunay triangulation as discussed earlier, we can generate grids that fit a given
set of vertices. However, in most applications, the vertex points are not given a priori and all
one wants is a reasonable grid that fits an exterior outline and possibly also a set of interior
boundaries and/or features, which in the case of subsurface media could be faults, fractures,
or geological horizons. To this end, you will typically have to use a mesh generator. There
are a large number of mesh generators available online, and in principle any of these
can be used in combination with MRST’s grid factory routines, as long as they produce
triangulations on the form outlined earlier. The triangle module implements a simple
MATLAB interface to the Triangle generator (www.cs.cmu.edu/~quake/triangle.html).

My personal favorite, however, is DistMesh by Persson and Strang [248]. While most
mesh generators tend to be complex and quite inaccessible codes, DistMesh is a relatively
short and simple MATLAB code written in the same spirit as MRST. The performance of
the code may not be optimal, but the user can go in and inspect all algorithms and modify
them to his or her purpose. A slightly modified version of DistMesh is, for instance, used
on the inside of the upr module for generating high-quality Voronoi grids, which will be
briefly outlined in Section 3.5.3. In the following, we use DistMesh to generate a few
examples of more complex triangular and Voronoi grids in 2D.

DistMesh is distributed under the GNU GPL license (which is the same license that
MRST uses) and can be downloaded from the software’s website. The simplest way to
integrate DistMesh with MRST is to install it as a third-party module. Assuming that you
are connected to Internet, this is done as follows:

pth = fullfile(ROOTDIR, 'utils','3rdparty', 'distmesh');

mkdir (pth)
unzip('http://persson.berkeley.edu/distmesh/distmesh.zip', pth);
mrstPth('reregister', 'distmesh', pth);
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Figure 3.12 Grids generated by the DistMesh grid generator.

and you are ready to use DistMesh. If you intend to use it many times, you should copy
the last line to the startup_user.m file in MRST’s root directory.

In DistMesh, the perimeter of the domain is represented using a signed distance func-
tion d(x,y), which by definition is set to be negative inside the region. The software
offers a number of utility functions that makes it simple to describe relatively complex
geometries, as we shall see in the following. Let us start with a simple example taken from
the DistMesh website: Consider a square domain [—1, 1] x [—1, 1] with a circular cutout
of radius 0.5 centered at the origin. We start by making a grid that has a uniform target size
h=02

mrstModule add distmesh;

£d=0(p) ddiff(drectangle(p,-1,1,-1,1), dcircle(p,0,0,0.5));
[p,t]l=distmesh2d(fd, Ghuniform, 0.2, [-1,-1;1,1], [-1,-1;-1,1;1,-1;1,1]);
G = triangleGrid(p, t);

Here, we have used utility functions ddif, drectangle and dcircle to compute the
signed distance from the outer and inner perimeter. Likewise, huniform is set to enforce
uniform cell size and equal distance between the initial points, here this distance is 0.2.
The fourth argument is the bounding box of our domain, and the fifth argument consists
of fixed points that the algorithm is not allowed to move. After the triangulation has been
computed by distmesh2d, we pass it to triangleGrid to make an MRST grid structure.
The resulting grid is shown to the left in Figure 3.12.

As a second test, let us make a graded grid that has a mesh size of approximately 0.05
at the inner circle and 0.2-0.35 at the outer perimeter. To enforce this, we replace the
huniform function by another function that gives the correct mesh size distribution:

fh=Q(p) 0.05+0.3*dcircle(p,0,0,0.5);
[p,t]=distmesh2d(fd, fh, 0.05,[-1,-1;1,1], [-1,-1;-1,1;1,-1;1,1]);

The middle plot of Figure 3.12 shows that the resulting grid has the expected grading from
the inner boundary and outwards to the perimeter.
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In our last example, we create a graded triangulation of a polygonal domain and then
use pebi to compute its Voronoi diagram

pv=1[1-1;0-.5; 1-1; 11; 0 .5; -1 1; -1 -1];

fh = @(p,x) 0.025 + 0.375*sum(p."2,2);

[p,t] = distmesh2d(@dpoly, fh, 0.025, [-1 -1; 1 1], pv, pv);
G = pebi(triangleGrid(p, t));

Here, we use the utility function dpoly (p,pv) to compute the signed distance of any point
set p to the polygon with vertices in pv. Notice that pv must form a closed path. Likewise,
since the signed distance function and the grid density function are assumed to take the
same number of arguments, £h is created with a dummy argument x. The argument sent to
these functions is passed as the sixth argument to distmesh2d. The resulting grid is shown
to the right in Figure 3.12.

DistMesh also has routines for creating nD triangulations and triangulations of surfaces,
but these are beyond the scope of the current presentation.

COMPUTER EXERCISES

3.2.1 Create MRST grids from the standard data sets trimesh2d and tetmesh. How would
you assign lognormal petrophysical parameters to these grids so that the spatial
correlation is preserved?

3.2.2  All grids generated by triangleGrid are assumed to be planar so that each vertex
can be given by a 2D coordinate. However, triangular grids are commonly used to
represent nonplanar surfaces in 3D. Can you extend the function so it can construct
both 2D and 3D grids? You can use the data set trimesh3d as an example of a
triangulated 3D surface.

3.2.3 Load the triangle module and use it to mesh the polygonal outline to the right in
Figure 3.12. Try to also make other convex and concave outlines.

3.2.4 Download and install distmesh and try to make MRST grids from all the triangu-
lations shown in [248, Fig. 5.1].

3.2.5 Running the tutorial showTessellation from the book module will produce fig-
ures like these:

What would you do to fit the tessellations so that they fill a rectangular box without
leaving any gaps along the border?

3.2.6 MRST does not yet have a grid factory routine to generate structured grids with
local, nested refinement, as shown in the figure to the left:
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Try to use a combination of triangleGrid and pebi to make a good approximation
to such a grid as shown to the right in the figure. (Hint: to get rid of artifacts, one
layer of cells were removed along the outer boundary.)

3.2.7 The figure shows an unstructured hexagonal grid that has been adapted to two faults
in the interior of the domain and padded with rectangular cells near the boundary.
Try to implement a routine that generates a similar grid.

Hint: in this case, the strike direction of the faults
are +30° and the start and endpoints of the faults
have been adjusted so that they coincide with the
generating points of hexagonal cells.
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3.3 Stratigraphic Grids

When discussing how to model reservoir rocks, we saw that the grid is closely connected
to the description of the petrophysical characteristics of a reservoir. Not only does the
grid describe the outer geometry of the reservoir, but it is also used to represent internal
structures such as fractures and faults, as well as surfaces representing marked changes the
rock’s physical characteristics (lithography). This means that the grid is closely related to
the parameter description of the flow model and, unlike in many other disciplines, cannot be
chosen independently to provide a certain numerical accuracy. Indeed, the grid is typically
chosen by a geologist who tries to describe the rock body by as few volumetric cells as
possible and who does not necessarily care too much about potential numerical difficulties
the choice of grid may cause in subsequent flow simulations. Although grossly simplified,
this observation is important to bear in mind throughout the rest of this chapter.

The industry standard to represent reservoir geology in a flow simulator is to use a
stratigraphic grid built based on geological horizons and fault surfaces. The volumetric
grid is typically built by extruding 2D tessellations of the geological horizons in the vertical
direction or in a direction following major fault surfaces. For this reason, some stratigraphic
grids, like the PEBI grids you will meet in Section 3.3.2, are often called 2.5D rather than
3D grids. These grids may be unstructured in the lateral direction, but have a clear structure
in the vertical direction to reflect the layering of the reservoir.

Because of the role grid models play in representing geological formations, real-life
stratigraphic grids tend to be highly complex and have unstructured connections induced
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by the displacements that have occured over faults. Another characteristic feature is high
aspect ratios. Typical reservoirs extend several hundred or thousand meters in the lateral
direction, but the zones carrying hydrocarbon may be just a few tens of meters in the vertical
direction and consist of several layers with (largely) different rock properties. Getting the
stratigraphy correct is crucial, and high-resolution geological modeling will typically result
in a high number of (very) thin grid layers in the vertical direction, resulting in two or three
orders of magnitude aspect ratios.

A full exposition of stratigraphic grids is far beyond the scope of this book. In the
next two subsections, we discuss the basics of the two most commonly used forms of
stratigraphic grids. A complementary discussion is given in videos 2, 6, and 7 of the second
MRST Jolt [189].

3.3.1 Corner-Point Grids

To model the geological structures of petroleum reservoirs, the industry-standard approach
is to introduce what is called a corner-point grid [254], which we already encountered in
Section 2.5. A corner-point grid consists of a set of hexahedral cells that are topologically
aligned in a Cartesian fashion so that the cells can be numbered using a logical i jk index.
In its simplest form, a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each cell in the
volumetric grid is defined by eight logical corner points specified as two depth coordinates
on each of the four coordinate lines that define a pillar; see Figure 3.13. The grid consists of
ny Xny xn; grid cells and the cells are ordered with the i-index (x-axis) cycling fastest, then
the j-index (y-axis), and finally the k-index (negative z-direction). All cellwise property
data are assumed to follow the same numbering scheme.

As discussed previously, a fictitious domain approach is used to embed the reservoir in a
logically Cartesian shoebox. This means that inactive cells that are not part of the physical
model, e.g., as shown in Figure 2.16, are present in the topological i jk-numbering but are

Figure 3.13 Each cell in the corner-point grid is restricted by two points on each of the four grid lines
that make up a pillar cells. The plot shows cells and grid lines from two neighboring pillars.
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indicated by a zero porosity or net-to-gross value, as discussed in Section 2.4, or marked
by a special boolean indicator (called ACTNUM in the input files).

So far, the topology and geometry of a corner-point grid have not deviated from that
of the mapped Cartesian grids studied in the previous section. Somewhat simplified, one
may view the logical i jk numbering as a reflection of the sedimentary rock bodies as they
may have been deposited in geological time, so that cells with the same k index have been
deposited at approximately the same time. To model geological features like erosion and
pinch-outs of geological layers, the corner-point format allows point-pairs to collapse along
coordinate lines. This creates degenerate hexahedral cells that may have less than six faces,
as illustrated in Figure 3.14. The corner points can even collapse along all four lines of a
pillar, so that a cell completely disappears. This implicitly introduces a new local topology,
which is sometimes referred to as non-neighboring connections, in which cells that are
not logical ijk neighbors can be neighbors in physical space and share a common face.
Figure 3.15 shows an example of a model that contains both eroded geological layers and
fully collapsed cells. In a similar manner, (simple) vertical and inclined faults can be easily
modeled by aligning the pillars with fault surfaces and displacing the corner points defining
neighboring cells on one or both sides of the fault. This way, one creates nonmatching
geometries and non-neighboring connections in the underlying ijk topology.

To illustrate the concepts introduced so far, we consider a low-resolution version of the
model from Figure 2.11 on page 42 created by the simpleGrdecl routine, which generates
an input stream containing the basic keywords that describe a corner-point grid in the
ECLIPSE input deck [270, 33]

Figure 3.14 Examples of deformed and degenerate hexahedral cells arising in corner-point grid
models.

Figure 3.15 Side view in the xz-plane of corner-point grid with vertical pillars modeling a stack of
sedimentary beds (each layer indicated by a different color).
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grdecl = simpleGrdecl([4, 2, 3], .12, 'flat', true);

grdecl =
cartDims: [4 2 3]
COORD: [90x1 double]
ZCORN: [192x1 double]
ACTNUM: [24x1 int32]

The COORD field contains the pairs of 3D coordinates for the 15 coordinate lines that define
the 4 x 2 mesh of pillars, whereas the ZCORN field gives the z-values that determine vertical
positions uniquely along each coordinate line for the eight corner-points of the 24 cells. To
extract these data, we use two MRST routines

[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
[x,y,2z] = buildCornerPtNodes(grdecl) ;

We now plot the coordinate lines and the corner-points and mark those lines on which the
corner-points of logical ij neighbors do not coincide,

% Plot pillars
plot3(X',Y',Z','k');
set(gca, 'zdir', 'reverse'), view(35,35), axis off, zoom(1.2);

% Plot points on coordinate lines, mark those with faults red
hold on; I=[3 8 13];

hpr = plot3(X(I,:)',Y(I,:)"',Z(I,:)','r', 'LineWidth',2);

hpt = plot3(x(:),y(:),z(:),'0"); hold off;

From the plots in the upper row of Figure 3.16 we clearly see how the coordinate lines
change slope from the east and west side toward the fault in the middle, and how the grid
points sit like beads on a string along each coordinate line.

Cells along a pillar are now defined by connecting pairs of points from four neighboring
coordinate lines that make up a cell in the areal mesh. To see this, we plot two pillars as
well as the whole grid with the fault surface marked in blue:

% Create grid and plot two stacks of cells

G = processGRDECL(grdecl) ;

args = {'FaceColor'; 'r'; 'EdgeColor'; 'k'};

hcst = plotGrid(G, [1:8:24 7:8:24], 'FaceAlpha', .1, args{:});

% Plot cells and fault surface

delete([hpt; hpr; hestl);

plotGrid(G, 'FaceAlpha', .15, args{:});

plotFaces(G, G.faces.tag>0, 'FaceColor','b', 'FaceAlpha',.4);

The upper-left plot in Figure 3.17 shows the same model sampled with even fewer cells.
We have used different coloring of the cell faces on each side of the fault to highlight
nonmatching faces along the fault plane. MRST represents corner-point grids as matching
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Figure 3.16 Specification of a corner-point grid. Starting from the coordinate lines defining pillars
(upper left), we add corner-points and identify lines containing nonmatching corner marked in red
(upper right). A stack of cells is created for each set of four lines defining a pillar (lower left), and
then the full grid is obtained (lower right). In the last plot, the fault faces have been marked in blue.

Figure 3.17 Subdivision of fault face in two three-dimensional models. In the left column, the
subfaces are all rectangular. In the right columns they are not. In both the upper plots, the faces
marked in red belong only to the cells behind the fault surface, the blue faces belong only to the cells
in front of the fault surface, and the magenta ones belong to cells on both sides. The lower plot shows
the cells behind the surface, where each cell has been given its own color.
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unstructured grids obtained by subdividing all nonmatching cell faces instead of using
the more compact nonmatching hexahedral form. This means that the four cells with non-
neighboring connections across the fault plane will have seven and not six faces. For each
such cell, two of the seven faces lie along the fault plane. Here, the subdivision resulted
in new faces that all have four corners and rectangular geometry. This is generally not the
case; the right column of Figure 3.17 shows a grid where we can see cells with six, seven,
or eight faces, and faces with three, four, and five corners. Indeed, for real-life models,
subdivision of nonmatching fault faces can lead to cells having much more than six faces.

Using the inherent flexibility of the corner-point format, it is possible to construct very
complex geological models that come a long way in matching the geologist’s perception
of the underlying rock formations. Because of their many appealing features, corner-point
grids have been an industry standard for years, and the format is supported in most com-
mercial software for reservoir modeling and simulation.

A Simple Grid Generator

The internal and external geology of a real reservoir is usually describe by a large set of
horizons and fault surfaces. As explained earlier, horizons are lateral surfaces that delim-
inate the reservoir in the upward and downward direction and represent the main strati-
graphic layers. These surfaces can either be triangulated/tessellated or represented using
splines. Major fault surfaces are typically vertical or inclined, but need to be planar. Gener-
ating corner-point grids that adapt to these surfaces is a challenging task and requires spe-
cialized geomodeling software and integration of a lot of different data types. MRST does
not offer any such capabilities, and complex geomodels must therefore be created using
external software. However, we do offer a relatively simple grid generator that takes a set
of horizons as input and generates a corner-point grid by interpolating vertically between
pairs of consecutive horizons. The function converHorizonsToGrid cannot model faults,
and assumes that each horizon is represented over a rectilinear areal mesh. The horizons
need not use the same areal mesh points, but the areal meshes must have a certain minimal
overlap inside which the corner-point will be generated. The following example illustrates
the basic use of the grid generator:

[y,x,z] = peaks(15); z = z+8;

horizons = {struct('x',x,'y',y,'z',2),struct('x',x,'y',y, 'z"',2+8)};
grdecl = convertHorizonsToGrid(horizons, 'layers', 4);

G = processGRDECL(grdecl) ;

Here, we use the peaks function from MATLAB to generate a surface and create two
horizons that deliminate the reservoir upward and downward. We then create a grid with
four layers of cells in the vertical direction. When no extra parameters are specified, the
areal mesh defining the corner-point grid has the same number of points as the horizons;
see Figure 3.18. When the areal domain of definition for the horizons do not coincide, the
interpolation region is set to be the minimum rectangle that contains the areal bounding
boxes of all the horizons. Inside this rectangle, the routine creates a Cartesian mesh and
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Figure 3.18 Example of a corner-point grid generated by interpolating vertically between two
geological horizons.

Figure 3.19 Example of a corner-point grid generated by interpolating vertically between two
partially overlapping horizons. (a) Horizons and projected bounding boxes. (b) Interpolation region
with 31 x 31 areal mesh covers the two bounding boxes. (c¢) Corner-point grid generated inside the
maximum overlap of the two horizons. (d) The full 3D grid generated by the routine.

uses this to interpolate vertically. In the output grid, the routine discards all cells whose
lateral projection is not contained inside the maximum rectangle that fits inside the areal
bounding boxes of all horizons. Figure 3.19 shows illustrates how the grid resulting from
the following commands is created:
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[n,m] = deal(30);

horizons = {struct('x',x,'y',y,'z',2),struct('x',x+.5,'y"',2xy+1,'z"',z+10)};
grdecl = convertHorizonsToGrid(horizons, 'dims', [n m], 'layers', 3);

G = processGRDECL(grdecl) ;

Here, we have only used two horizons to simplify the illustration. Section 15.6.4 presents
a more complex case with multiple horizons.

A Synthetic Faulted Reservoir

In our second example we consider a synthetic model of two intersecting faults that make
up the letter Y in the lateral direction. The two fault surfaces are highly deviated, making
an angle far from 90 degrees with the horizontal direction. To model this scenario using
corner-point grids, we basically have two different choices. The first choice, which is quite
common, is to let the coordinate lines (and hence the extrusion direction) follow the main
fault surfaces. For highly deviated faults, like in the current case, this will lead to extruded
cells that are far from K-orthogonal and hence susceptible to grid-orientation errors in a
subsequent simulation, as will be discussed in more detail in Chapter 6. Alternatively, we
can choose a vertical extrusion direction and replace deviated fault surfaces by stair-stepped
approximations so that the faults zigzag in a direction not aligned with the grid. This will
create cells that are mostly K-orthogonal and less prone to grid-orientation errors, but will
only represent the fault approximately.

Figure 3.20 shows two different grid models, taken from the CaseB4 data set. In
the stair-stepped model, the use of cells with orthogonal faces causes the faults to be
represented as zigzag patterns. The pillar grid correctly represents the faults as inclined
planes, but has cells with degenerate geometries and cells that deviate strongly from
being orthogonal in the lateral direction. Likewise, some coordinate lines have close to 45
degrees inclination, which will likely give significant grid-orientation effects in a standard
two-point scheme.

A Simulation Model of the Norne Field

Norne is an oil and gas field lies located in the Norwegian Sea. The reservoir is found in
Jurassic sandstone at a depth of 2,500 meters below sea level, and was originally estimated
to contain 90.8 million m? oil, mainly in the Ile and Tofte formations, and 12 billion m* gas
in the Garn formation. The field is operated by Statoil and production started in November
1997, using a floating production, storage, and offloading (FPSO) ship connected to seven
subsea templates at a water depth of 380 meters. The oil is produced with water injection
as the main drive mechanisms, and the expected ultimate oil recovery is more than 60%,
which is very high for a subsea oil reservoir. During thirteen years of production, five 4D
seismic surveys of high quality have been recorded. In cooperation with NTNU, operator
Statoil and partners have released large amounts of subsurface data from the Norne field for
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Deviated pillars Zoom of fault intersection

Stair-stepped Zoom of fault intersection

Figure 3.20 Modeling the intersection of two deviated faults using deviated pillars (top) and stair-
stepped approximation (bottom). CaseB4 grids courtesy of Statoil.

research and education purposes.” More recently, the Open Porous Media (OPM) initiative
(opm-project.org) released the full simulation model as an open data set on Github
(github.com/OPM/opm-data). For several years, Norne was the only full simulation model
of a real oil reservoir that was freely available to the general public. Recently, Equinor
(former Statoil) released a much more comprehensive data set of the Volve field. The
Norne model can either be downloaded and installed using mrstDatasetGUI or directly
from the command line:

makeNorneSubsetAvailable() && makeNorneGRDECL()

Once in place, we can load the grid and the petrophysical data from the simulation model
as follows:

grdecl = readGRDECL(fullfile(getDatasetPath('norne'), 'NORNE.GRDECL'));
grdecl = convertInputUnits(grdecl, getUnitSystem('METRIC'));

The model consists of 46 x 112 x 22 corner-point cells. We start by plotting the whole
model, including inactive cells. To this end, we need to override? the ACTNUM field before

The Norne Benchmark data sets are hosted and supported by the Center for Integrated Operations in the Petroleum Industry
(IO Center) at NTNU (www.ipt.ntnu.no/~norne/). The data set used herein was first released as part of “Package 2: Full field
model” (2013)

At this point I hasten to warn you that inactive cells often contain junk data and may generally not be inspected in this manner.
Here, however, most inactive cells are defined in a reasonable way. By not performing basic sanity checks on the resulting grid
(option 'checkgrid'=false), we manage to process the grid and produce reasonable graphical output. In general, however,
I advise that 'checkgrid' remains set in its default state of true.
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plotGrid(G, 'FaceColor', 'none', 'EdgeAlpha',.1); plotGrid(G, ~actnum(G.cells.indexMap), ...

plotFaces(G, G.faces.tag>0, ... 'FaceColor', 'none', 'EdgeAlpha’',.1);
'FaceColor', 'red', 'FaceAlpha',.2, ... plotGrid(G, actnum(G.cells.indexMap), ...
'EdgeColor', 'r', 'EdgeAlpha’,.1); 'FaceColor','y', 'EdgeAlpha',.1);

axis off; view(-155,80); zoom(1.7); axis off; view(-155,80); zoom(1.7);

Figure 3.21 The Norne field from the Norwegian Sea. The plots show the whole grid with fault faces
marked in red (left) and active cells marked in yellow (right).

we start processing the input, because if the ACTNUM flag is set, all inactive cells will be
ignored when the unstructured grid is built

actnum = grdecl.ACTNUM;
grdecl.ACINUM = ones(prod(grdecl.cartDims),1);
G = processGRDECL(grdecl, 'checkgrid', false);

Having processed and converted the grid to the correct unstructured format, we first plot
the outline of the whole model and highlight all faults and the active part of the model;
see Figure 3.21. During the processing, all fault faces are tagged with a positive number.
This can be utilized to highlight the faults: we simply find all faces with a positive tag, and
color them with a specific color as shown in the left box in the figure. To continue with
the active model only, we reset the ACTNUM field to its original values so that inactive
cells are ignored when we process the ECLIPSE input stream [270, 33]. This gives a grid
with two components: the main reservoir and a detached stack of twelve cells that should
be ignored.

To examine some parts of the model in more detail, we can use the function cutGrdecl
to extract a rectangular box in index space from the ECLIPSE input stream, e.g., as follows:

cut_grdecl = cutGrdecl(grdecl, [6 15; 80 100; 1 22]);
g = processGRDECL(cut_grdecl) ;

Figure 3.22 shows a zoom on four different regions. The first region (red color), is
sampled near a laterally stair-stepped fault, i.e., a curved fault surface that has been
approximated by a surface that zigzags in the lateral direction. We also notice how the fault
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Figure 3.22 Detailed view of subsets from the Norne simulation model. a) The whole model with
active and inactive cells and four regions of interest marked in different colors. b) Zoom of the
red region with pillars and corner-points shown as red circles. ¢) The magenta region with coloring
according to cell volumes, which vary by a factor 700. d) The blue region in which fault faces have
been colored gray and the corresponding coordinate lines have been colored blue. €) The green cross-
section with coloring according to layer number from top to bottom.
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displacement leads to cells that are nonmatching across the fault surface, and the presence
of some very thin layers (the thinnest layers may actually appear as thick lines in the plot).
The thin layers are also clearly seen in the second region (magenta color), which represents
a somewhat larger sample from an area near the tip of one of the “fingers” in the model.
Here, we clearly see how similar layers have been strongly displaced across the fault zone.
In the third (blue) region, we have colored the fault faces to clearly show the displacement
and the hole through the model in the vertical direction, which likely corresponds to a shale
layer that has been eliminated from the active model. Gaps and holes, and displacement
along fault faces, are even more evident for the vertical cross section (green region) for
which the layers have been given different colors, as in Figure 3.15. Altogether, the four
views of the model demonstrate typical patterns that you can see in realistic models. We
return to this simulation model in Section 10.3.8.

Extensions, Difficulties, and Challenges

The original corner-point format has been extended in several ways, e.g., to enable vertical
intersection of two coordinate lines in the shape of the letter Y. Coordinate lines may also
be defined by piecewise polynomial curves, resulting in what is sometimes called S-faulted
grids. Likewise, two neighboring coordinate lines can collapse so that the basic grid shape
becomes a prism rather than a hexahedron. However, there are several features you cannot
easily model, like multiple fault intersections (e.g., as in the letter F), and the industry is
thus constantly in search for improved griding methods. One example will be discussed in
the next subsection. First, however, we will discuss some difficulties and challenges, seen
from the side of a computational scientist seeking to use corner-point grids for his or her
computations.

The flexible cell geometry of the corner-point format poses several challenges for
numerical implementations. Indeed, a geocellular grid is typically chosen by a geologist
who tries to describe the rock body by as few volumetric cells as possible and who may not
be aware of potential numerical difficulties his or her choice of geometries and topologies
may cause in subsequent flow simulations.

Writing a robust grid-processing algorithm to compute geometry and topology or to
determine an equivalent matching, polyhedral grid proved to be much more challenging
than we anticipated when we started developing MRST. Displacements across faults will
lead to geometrically complex, nonconforming grids, e.g., as illustrated in Figure 3.22.
Since each face of a grid cell is specified by four (arbitrary) points, the cell interfaces in the
grid will generally be bilinear and possibly strongly curved surfaces. Geometrically, this
can lead to several complications. Cell faces on different sides of a fault may intersect each
other so that cells overlap volumetrically, or they may leave void spaces in between them.
There may be tiny overlap areas between cell faces on different sides a fault, and so on.
All these factors contribute to make fault geometries hard to interpret in a geometrically
consistent way: a subdivision into triangles is, for instance, not unique. Likewise, top and
bottom surfaces may intersect for highly curved cells with high aspect ratios, cell centroids
may be outside the cell volume, etc.
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Figure 3.23 Illustration of difficulties associated with real-life corner-point geometries. a) Many
faces resulting from subdivision to give matching grid at faults. b) A curved 800 x 800 x 0.25 m cell,
whose centroid lies outside the cell. ¢) Difficult geometries. d) Small interface between two cells.

The presence of collapsed corner-points implies that the grid cells will generally be poly-
hedral and possibly contain both triangular and bilinear faces (see Figure 3.14). Likewise,
individual cells can have many neighbors; the Norne model has cells with up to 20 neigh-
bors. Altogether, this calls for flexible discretizations that work on unstructured topologies
and are not sensitive to the geometry of each cell or the number of faces and corner points.
Simple discretization methods that only account for pressure differences between cells
sharing a common face (see Section 4.4.1 are fairly easy to implement for general unstruc-
tured grids, but more advanced discretization methods that rely on the use of dual grids or
reference elements can be quite challenging to implement on highly irregular grids. Figure
3.23 illustrates some geometrical and topological challenges seen in standard grid models.

Cell geometries will often deviate significantly from being orthogonal to adapt to com-
plex horizons and fault surfaces. This may introduce unphysical preferential flow directions
in the numerical methods (as we will see later). Stratigraphic grids will also typically
have aspect ratios that are two or three orders of magnitude, which can introduce severe
numerical difficulties because the majority of the flow in and out of a cell occurs across the
faces with the smallest area. Similarly, the possible presence of strong heterogeneities and
anisotropies in the permeability fields, e.g., as seen in the SPE 10 example in Chapter 2,
typically introduces large condition numbers in the discretized flow equations, which make
them hard to solve.

Corner-point grids generated by geological modeling typically contain too many cells.
Once created by the geologist, the grid is handed to a reservoir engineer, whose first job is
to reduce the number of cells if he or she is to have any hope of getting the model through
a simulator. The generation of good coarse grids for use in upscaling, and the upscaling
procedure itself, is generally work-intensive, error-prone, and not always sufficiently
robust, as we will come back to in Chapter 15.
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3.3.2 2.5D Unstructured Grids

So-called 2.5D grids have been designed to combine the advantages of two different griding
methods: the (areal) flexibility of unstructured grids and the simple topology of Cartesian
grids in the vertical direction. These grids are constructed in much the same way as corner-
point grids, except that coordinate lines now are defined over an unstructured lateral grid so
that pillars will have polygonal base area. One starts by defining an areal tessellation on a
surface that either aligns with the lateral direction or one of the major geological horizons.
Then a coordinate line is introduced through each vertex in the areal grid. The lines can
either be vertical, inclined to gradually align with major fault planes, as shown for the
corner-point grid in Figure 3.20, or be defined so that they connect pairs of vertices in areal
tessellations of two different geological horizons.

Figure 3.24 shows the key steps in the construction of a simple 2.5D PEBI grid. Start-
ing from a Delaunay triangulation of set of generating points, we form a perpendicu-
lar bisector grid. Through each vertex in this areal tessellation, we define a coordinate
line, whose angle of inclination will change from 90 degrees for vertices on the far left
to 45 degrees for vertices on the far right. coordinate lines associated with individual
areas cells form pillars, and are next used to extrude the areal tessellation to a volumet-
ric grid. The resulting volumetric grid is unstructured in the lateral direction, but has
a layered structure in the vertical direction and can thus be indexed using an ik index
pair. This format has quite large freedom in choosing the size and shape of the grid cells
to adapt to complex features such as curved faults or to improve the areal resolution in
near-well zones.

c) d)

Figure 3.24 Illustration of a typical process for generating 2.5D PEBI grids. a) Triangulated point
set. b) Perpendicular bisector grid. ¢) Coordinate lines aligned with faults. d) Volumetric extrusion.
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Figure 3.25 The left plot shows a 2.5D Voronoi grid derived from a perturbed 2D point mesh extruded
in the z-direction, whereas the right plot shows a radial grid.

Example 1: We first construct an areal Voronoi grid from a set of generating points
obtained by perturbing the vertices of a regular Cartesian grid and then use the func-
tion makeLayeredGrid to extrude this Voronoi grid to 3D along vertical pillars in the
z-direction.

N=7; M=5; [x,y] = ndgrid(0:N,0:M);

x(2:N,2:M) = x(2:N,2:M) + 0.3*randn(N-1,M-1);

y(2:N,2:M) = y(2:N,2:M) + 0.3*randn(N-1,M-1);

aG = pebi(triangleGrid([x(:) y(:)1));

G = makeLayeredGrid(aG, 3);

plotGrid(G, 'FaceColor',[.8 .8 .8]); wview(-40,60); axis tight off

The resulting grid is shown in the left plot of Figure 3.25 and should be contrasted to the
3D tetrahedral tessellation shown to the right in Figure 3.8

Example 2: Radial symmetric grids graded towards the origin are commonly used to
increase resolution near wells. Figure 3.25 shows one example that can be generated as
follows:

P=1[;
for r = exp(-3.5:.25:0),
[x,y,z] = cylinder(r,16); P = [P [x(1,:); y(1,:)11;
end
P = unique([P'; 0 0], 'rows');
G = makeLayeredGrid(pebi(triangleGrid(P)), 5);
plotGrid(G, 'FaceColor',[.8 .8 .8]); view(30,50), axis tight off

Example 3: The model shown in Figure 3.26 is a realistic representation of a reservoir in
which an unstructured areal grid has been extruded vertically to model different geological
layers. Some of the layers are very thin and appear as if they were thick lines in plot a. Near
the perimeter of the model (plot b), we notice that the lower layers (yellow to red colors)
have been eroded away in most of the grid columns, and although the vertical dimension is
strongly exaggerated, we see that the layers contain steep slopes. To a non-geologist look-
ing at subplot e, it may appear as if the reservoir was formed by sediments being deposited
along a sloping valley that ends in a flat plain. Subplots ¢ and d show more details of the
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Figure 3.26 A real petroleum reservoir modeled by a 2.5D PEBI grid having 1,174 cells in the lateral
direction and 150 cells along each pillar. Only 90,644 out of the 176,100 cells are active. The plots
show the whole model as well as selected details. a) The whole model with three areas of interest
marked in different colors. b) Layers 41 to 99 of the red region with colors representing the k-index.
¢) Horizontal permeability in the green region. d) Horizontal permeability in the magenta region.
e) Horizontal permeability along the perimeter and bottom of the model.

permeability field inside the model. The layering is particularly distinct in plot d, which
is sampled from the flatter part of the model. The cells in plot ¢, on the other hand, show
examples of pinch-outs. The layering provides a certain ik structure in the model, similar
to the logical ijk index for corner-point grids, where i refers to the areal numbering and k
to the different layers. Some also prefer to associate a virtual logically Cartesian grid as an
overlay to the 2.5D grid that can be used, e.g., to simplify lookup of cells in visualization.
In this setup, more than one grid cell may be associated with a cell in the virtual grid.
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Figure 3.27 Example of a virtual 37 x 20 x 150 grid used for fast lookup in a 2.5D PEBI grid with
dimensions 1174 x 150.

3.4 Grid Structure in MRST

The two previous sections introduced various structured and unstructured grid types that
can be created using the many grid-factory routines in MRST. In this section, we go
into more detail about the internal data structure used to represent all these different grid
formats. This data structure is in many ways the most fundamental part of MRST since
almost all solvers, workflow tools, and visualization routines require an instance of a grid
as input argument. By convention, instances of the grid structure are denoted G. If you are
mainly interested in using solvers and visualization routines already available in MRST,
you need no further knowledge of the grid structure beyond what has been encountered
in the examples presented so far, and you can safely skip the remains of this section. On
the other hand, if you wish to use the software to prototype new computational methods,
knowledge of the inner workings of the grid structure is essential.

To provide a uniform way of accessing different grid types, all grids are stored using
the same unstructured grid format that explicitly represents cells, faces, vertices, and con-
nections between cells and faces. The main grid structure G contains three fields — cells,
faces, and nodes — that specify individual properties for each individual cell/face/vertex
in the grid. Grids in MRST can either be volumetric or lie on a 2D or 3D surface. The
field griddim distinguishes volumetric and surface grids; all cells in a grid are polygonal
surface patches if griddim=2 and polyhedral volumetric entities otherwise. In addition, the
grid contains a field type consisting of a cell array of strings describing the history of grid
constructors and modifier functions that have been applied to create and modify the grid,
e.g., 'tensorGrid'. For grids having an underlying logical Cartesian structure, we also
include the field cartDims.

As with the rest of the basic functionality in MRST, the grid structure is thoroughly
documented in the code. To read the documentation, type

help grid_structure
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Before we continue to discuss the individual data members in the structure, we first have to
introduce you to two essential implementation tricks in MATLAB.

Indirection maps and run-length encoding. In an unstructured grid, individual cells may
have a different number of faces, and faces may have different number of edges/vertices.
A compact way to represent such data is to use a data container and an indirection map. To
illustrated, let us consider a simple example of a data object b, whose first members consist
of five, three, and four numbers. This can be stored using an indirection map m and a data
array a = [ay, . .. ,aj2], as illustrated:

m:| 1 6 [ 9|13

a: | ai a | az | a4 | as [ de [ ay | Aag | 49 | 4aio | a1l | a2

} by % by % b3 F---

Using this data structure, we can quickly find all the a values that belong to a particular
b;. In some cases, we may wish to go the other way around and determine the b; element
a particular value a; corresponds to. A simple solution would be to introduce an extra row
in a that contains the values [1,1,1,1,1,2,2,2,3,3,3,3]. However, this contains a lot of
redundant information and can be stored much more compactly using run-length encoding,
which is a simple lossless data compression method that removes repeated values. In this
particular example, the run-length encoding would give a compressed array b = [1,2,3]
and a repetition count n = [5,3,4]. This data compression and decompression technique
is used abundantly at a low level in MRST to avoid storing redundant information, as you
will see shortly.

Representing grid cells. The cell structure G.cells consists of the mandatory fields:

—num: the number 7. of cells in the global grid.

— facePos: an indirection map of size [num+1,1] into the faces array. Specifically, the
face information of cell i is found in the submatrix

faces(facePos(i): facePos(i+1)-1, :)

The number of faces per cell may be computed as diff (facePos), whereas the
total number of faces is n y = facePos (end)-1.

—faces: an ny x 2 array specifying the global faces connected to a given cell. Specifi-
cally, faces(i,1)==j if face with global number faces(i,2) is connected to cell
number j. The array may optionally have a third component, faces(i,3), that
for certain types of grids contains a name tag used to distinguish face directions:
West, East, South, North, Bottom, Top.
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The first column of faces is redundant: it consists of each cell index j repeated
facePos(j+1)-facePos(j) times and can therefore be reconstructed by decom-
pressing a run-length encoding with the cell indices 1:num as the encoded vector
and the number of faces per cell as repetition count. Hence, to conserve memory,
only the last two columns of faces are stored, while the first column can be
reconstructed using the statement:

rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .'

This construction is used a lot throughout MRST and has therefore been imple-
mented as a utility function inside mrst-core/utils/gridtools

f2cn = gridCellNo(@);

— indexMap: an optional n. x 1 array that maps internal cell indices to external cell indices.
For models with no inactive cells, indexMap equals 1 : n.. For cases with inactive
cells, indexMap contains the indices of the active cells sorted in ascending order.
For grids with an underlying Cartesian organization, a map of cell numbers to
logical indices can be constructed using the following statements in 2D and 3D:

[1j{1:2}] = ind2sub(dims, G.cells.indexMap(:)); % In 2D
ij = [Lj{:}1;

[1ijk{1:3}] = ind2sub(dims, G.cells.indexMap(:)); 7% In 3D
ijk = [ijk{:}];

In the latter case, ijk(i:) is the global (1, J, K) index of cell i.

In addition, the cell structure can contain the following optional fields that typically will be
added by a call to computeGeometry:

—volumes: ann, X | array of cell volumes
— centroids: ann. x d array of cell centroids in R?

Representing cell faces. The mandatory fields of the face structure, G.faces, are quite sim-
ilar to those of the cells in the sense that they provide mappings to the lower-dimensional
objects (nodes) that delimit the faces:

—num: the number 7 ¢ of global faces in the grid.

—nodePos: an indirection map of size [num+1,1] into the nodes array. Specifically, the
node information of face i is found in the submatrix
nodes (nodePos (i) : nodePos(i+1)-1, :)
The number of nodes of each face may be computed using the statement diff
(nodePos). Likewise, the total number of nodes is given as n, = nodePos (end)-1.

—nodes: an n, x 2 array of vertices in the grid. If nodes(i,1)==j, the local vertex i
is part of global face number j and corresponds to global vertex nodes(i,2).
For each face the nodes are assumed to be oriented such that a right-hand rule
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determines the direction of the face normal. As for cells.faces, the first column
of nodes is redundant and can be easily reconstructed. Hence, to conserve memory,
only the last column is stored, while the first column can be constructed using the
statement:

rldecode(1:G.faces.num, diff(G.faces.nodePos), 2) .'

—neighbors: an ny x 2 array of neighboring information. Global face i is shared
by global cells neighbors(i,1) and neighbors(i,2). One of the entries in
neighbors(i,:), but not both, can be zero, to indicate that face i is an external
face that belongs to only one cell (the nonzero entry).

In addition to the mandatory fields, G.faces has optional fields containing geometry infor-
mation that typically are added by a call to computeGeometry:

—areas: anny x 1 array of face areas.

—normals: anns x d array of area weighted, directed face normals in R. The normal
on face i points from cell neighbors(i,1) to cell neighbors(i,2).

—centroids: anny x d array of face centroids in RY.

Moreover, G.faces can sometimes contain an n s x 1 (int8) array, G.faces.tag, with user-
defined face indicators used, e.g., to specify that the face belongs to a fault.

Representing vertices. The vertex structure, G.nodes, consists of two fields:

—num: number n, of global nodes (vertices) in the grid,
- coords: ann, xd array of physical nodal coordinates in IR?. Global node i is at physical
coordinate coords(i,:).

The grid is constructed according to a right-handed coordinate system where the z coordi-
nate is interpreted as depth. Consequently, plotting routines such as plotGrid display the
grid with a reversed z axis. To illustrate how the grid structure works, we consider two
examples.

Example 1: We start by considering a regular 3 x 2 grid, in which we take away the
second cell in the logical numbering,

G = removeCells( cartGrid([3,2]), 2)

This produces the output

G =
cells: [1x1 struct]
faces: [1x1 struct]
nodes: [1x1 struct]
cartDims: [3 2]
type: {’tensorGrid’ ’cartGrid’ ’removeCells’}
griddim: 2
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Figure 3.28 Illustration of the cell and faces fields of the grid structure: cell numbers are marked
by circles, node numbers by squares, and face numbers have no marker.

Examining the output from the call, we notice that the field G.type contains three values,
'cartGrid' indicates the creator of the grid, which again relies on 'tensorGrid', whereas
the field 'removeCells' indicates that cells have been removed from the Cartesian topol-
ogy. The resulting 2D geometry consists of five cells, twelve nodes, and sixteen faces.
All cells have four faces and hence G.cells.facePos = [1 5 9 13 17 21]. Figure
3.28 shows* the geometry and topology of the grid, including the content of the fields
cells.faces, faces.nodes, and faces.neighbors. We notice, in particular, that all interior
faces (6,7, 11, and 13) are represented twice in cells.faces as they belong to two different
cells. Likewise, for all exterior faces, the corresponding row in faces.neighbors has one
zero entry. Finally, being logically Cartesian, the grid structure contains a few optional
fields:

— G.cartDims equals [3 2],

— G.cells.indexMap equals [1 3 4 5 6], since the second cell in the logical numbering
has been removed from the model, and

— G.cells.faces contains a third column with tags that distinguish global directions for
the individual faces.

Example 2: We consider the Delaunay triangulation of seven points in 2D:

p=1[0.0, 1.0, 0.9, 0.1, 0.6, 0.3, 0.75;
0.0, 0.0, 0.8, 0.9, 0.2, 0.6, 0.45]'; p = sortrows(p);
G = triangleGrid(p)

4 To create the plot in Figure 3.28, we first called plotGrid to plot the grid, then called computeGeometry to compute cell and
face centroids, which were used to place a marker and a text label with the cell/face number in the correct position.
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Figure 3.29 Illustration of the cell and faces fields of the grid structure: cell numbers are marked
by circles, node numbers by squares, and face numbers have no marker.

which produces the output

G =
faces: [1x1 struct]
cells: [1x1 struct]
nodes: [1x1 struct]
type: {’triangleGrid’}

griddim: 2

The grid contains no structured parts, and thus G consists of the three mandatory fields,
cells, faces, and nodes, that are sufficient to determine the geometry and topology of
the grid; the type tag that names its creator, and griddim that gives that it is a surface
grid. Altogether, the grid consists of eight cells, fourteen faces, and seven nodes, which are
shown in Figure 3.29, along with the contents of the fields cells.faces, faces.nodes, and
faces.neighbors. Notice, in particular, the absence of the third column in cells.faces,
since face tags associated with the axial directions generally do not make sense for a (fully)
unstructured grid. Likewise, the cells structure does not contain any indexMap, as all cells
in the model are active.

Computing geometry information. All grid-factory routines in MRST generate the basic
geometry and topology of a grid, that is, how nodes are connected to make up faces,
how faces are connected to form cells, and how cells are connected over common faces.
Whereas this information is sufficient for many purposes, more geometric information
may be required in many cases. As explained earlier, such information is provided by
the routine computeGeometry, which computes cell centroids and volumes as well as face
areas, centroids, and normals. Computing this information is straightforward for simplexes
and Cartesian grids, but is not so for general polyhedral grids that may contain curved
polygonal faces. In the following we will therefore go through how it is done in MRST.
Our discussion follows the original implementation, which in recent releases has been
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superseded by a more optimized routine. You can find the complete original code in
computeGeometryOrig.

For each cell, the basic grid structure provides us with a list of vertices, a list of cell
faces, etc., as shown in plots a and e of Figure 3.30. The routine starts by computing face
quantities (areas, centroids, and normals). To utilize MATLAB efficiently, the computations
are programmed using vectorization so that each derived quantity is computed for all points,
all faces, and all cells in one go. To keep the current presentation as simple as possible, we
will herein only give formulas for a single face and a single cell. Let us consider a single
face given by the points p(i1), ..., p(in) and let « = (aq, ...,0,) denote a multi-index
describing how these points are connected to form the outline of the faces. For the face with
global number j, the multi-index is given by the vector

G.faces.nodes(G.faces.nodePos(j) :G.faces.nodePos(j+1)-1)

Let us consider two faces. Global face number two in Figure 3.30a is planar and consists of
points 5(2), p(4), p(6), p(8) with the ordering o = (2,4, 8, 6). Likewise, we consider global
face number one in Figure 3.30e, which is curved and consists of points p(1),...,p(5)
with the ordering ¢ = (4,3,2,1,5). For curved faces, we need to make a choice of how
to interpret the surface spanned by the node points. In MRST (and some commercial
simulators) this is done as follows: we start by defining a so-called hinge point pj,, which
is often given as part of the input specification of the grid. If not, the hinge point can be
computed as the center point of the m points that make up the face, pp = > j_; p(ax)/m.
The hinge point can now be used to tessellate the face into m triangles, as shown in Figures
3.30b and 3.30f. The triangles are defined by the points p(ctk), p(¢tmod(k,m)+1)» and py for
k =1, ...,m. Each triangle has a center point ﬁf defined in the usual way as the average
of its three vertexes and a normal vector and area given by

i = (P (etmodk,m+1) — P(aw)) x (Pn — plow)) = vy x v}

AX = ik . ik,

The face area, centroid, and normal are now computed as follows
m m m
Ap=>Y A% G=@p Y Al g =)k (3.2)
k=1 k=1 k=1

The result is shown in plot ¢ of Figure 3.30, where the observant reader will see that the
centroid ¢ s does not coincide with the hinge point pj, unless the planar face is a square.
This effect is more pronounced for the curved faces of the PEBI cell in Figure 3.30g.

The computation of centroids in (3.2) is only valid if the grid does not have faces with
zero area, because otherwise the second formula would involve a division by zero and hence
incur centroids with NaN values. The reader interested in creating his/her own grid-factory
routines for grids that may contain degenerate (pinched) cells should be aware of this and
make sure that all faces with zero area are removed in a preprocessing step.

https://doi.org/10.1017/9781108591416.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108591416.005

3.4 Grid Structure in MRST 95

e)

)

Figure 3.30 Steps in the computation of geometry information for a single corner-point cell and a
single PEBI cell using computeGeometry. a) A single corner-point cell with face numbers (squares)
and node numbers (circles). b) Tessellation of faces with vectors 17’1‘ (blue), 6’2‘ (green), and /¥ (red).
c) Face centroids and normal vectors computed from tessellation. d) Triangulation of cell volume
with vectors ¥ (blue) and Z‘Ir‘ (green). e) A single PEBI cell with face numbers (squares) and node
numbers (circles). f) Tessellation of faces with vectors 1'5’1‘ (blue), 1'5]2‘ (green), and ik (red). g) Face
centroids and normal vectors computed from tessellation. h) Triangulation of cell volume with vectors
ii* (blue) and ¢& (green).
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To compute the cell centroid and volume, we start by computing the center point ¢, of the
cell, which we define as the average of the face centroids, ¢, = Zsz \Cf/m g, where m ¢
is the number of faces of the cell. By connecting this center point to the m; face triangles,
we define a unique triangulation of the cell volume, as shown in Figures 3.30d and 3.30h.
For each tetrahedron, we define the vector E’,‘ = ﬁf — ¢, and compute the volume (which
may be negative if the center point ¢, lies outside the cell)

k_ 12k =k
V% =2c. -n".

W=

The triangle normals 7% will point outward or inward depending upon the orientation of the
points used to calculate them, and to get a correct computation we therefore must modify
the triangle normals so that they point outward. Finally, we can define the volume and the
centroid of the cell as follows

my 3 my
1% :;V", 5:50+W];V’(5’:. (3.3)

In the original implementation, all cell quantities were computed inside a loop, which may
not be as efficient as the computation of the face quantities. This has been improved in
recent releases.

3.4.1 Go back to Exercise 3.1.1. What would you do to randomly perturb all nodes in
the grid except for those that lie on an outer face whose normal vector has no
component in the y-direction?

3.4.2 Exercise 3.2.2 extended the function triangleGrid to triangulated surfaces in 3D.
Verify that computeGeometry computes cell areas, cell centroids, face centroids, and
face lengths correctly for 3D surfaces.

3.4.3 How would you write a function that purges all cells that have an invalid vertex
(with value NaN) from a grid?

3.5 Examples of More Complex Grids

To help users generate test cases, MRST supplies a number of routines for generating
example grids. We have previously encountered twister, which perturbs the x and y
coordinates in a grid. Likewise, in Section 2.5 we used simpleGrdecl to generate a simple
ECLIPSE input stream for a stratigraphic grid describing a wavy structure with a single
deviated fault. The routine has several options that enable you to specify the magnitude of
the fault displacement, flat rather than a wavy top and bottom surfaces, and vertical rather
than inclined coordinate lines; see Figure 3.31.

The routine with the somewhat cryptic name makeModel3 generates a corner-point input
stream that models parts of an anticline structure that is cut through by two faults; see Figure
3.32. Similarly, extrudedTriangleGrid generates a 2.5D prismatic grid with a laterally
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simpleGrdecl([20, 20, 5]); simpleGrdec1([20, 20, 5], ... simpleGrdec]([20, 20, 5], ...
Q(x) .05 (sin(2#pi*x)-1.5)); Q() .25k(x-.5), 'flat' ,true);

Figure 3.31 The simpleGrdecl routine can be used to produce faulted, two-block grids of different
shapes.

’ makeMode13([30,20,5]); ‘ ’ extrudedTriangleGrid(50) ; ‘ ’ extrudedTriangleGrid(50,true) ; ‘

Figure 3.32 Three different example grids created by the grid example functions makeModel3 and
extrudedTriangleGrid.

curved fault in the middle. Alternatively, the routine can generate a 2.5D PEBI grid in
which the curved fault is laterally stair-stepped; see Figure 3.32.

3.5.1 SAIGUP: Model of a Shallow-Marine Reservoir

Having discussed the corner-point format in some detail, it is now time to return to the
SAIGUP model. In the following discussion, we will look at the grid representation in
more detail and show some examples of how to interact and visualize different features of
the grid (see also the last video of the second MRST Jolt on grids and petrophysical data
[189]). You can find the complete source code showGridSAIGUP. In Section 2.5, we saw
that parsing the input file creates the following structure
grdecl =
cartDims: [40 120 20]
COORD: [29766x1 double]
ZCORN: [768000x1 doublel

ACTNUM: [96000x1 int32]
PERMX: [96000x1 double]
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The first four fields describe the grid and the remaining the petrophysical propertes. Here,
we will (mostly) consider the first four fields, which represent the following information:

1. The dimension of the underlying logical Cartesian grid: ECLIPSE keyword SPECGRID,
equal 40 x 120 x 20.

2. The coordinate lines: ECLIPSE keyword COORD, top and bottom coordinate per vertex
in the logical 40 x 120 areal grid, i.e., 6 x 41 x 121 values.

3. The coordinates along the individual coordinate lines: ECLIPSE keyword ZCORN, eight
values per cell, i.e., 8 x 40 x 120 x 20 values.

4. The Boolean indicator for active cells: ECLIPSE keyword ACTNUM, one value per cell,
i.e., 40 x 120 x 20 values.

To process the ECLIPSE input stream and turn the corner-point grid into MRST’s unstruc-
tured description, we use the processGRDECL routine. The interested reader may ask the
processing routine to display diagnostic output

G
G

processGRDECL(grdecl, 'Verbose', true);
computeGeometry(G)

and consult the SAIGUP tutorial (showSAIGUP) or the technical documentation of the
processing routine for a more detailed explanation of the resulting output.

The model has been created with vertical pillars having lateral resolution of 75 meters
and vertical resolution of 4 meters, giving a typical aspect ratio of 18.75. You can see this,
e.g., by extracting the pillars and corner points and analyzing the results as follows:

[X,Y,Z] = buildCornerPtPillars(grdecl, 'Scale',true);
dx = unique(diff(X)).'

[x,y,z] = buildCornerPtNodes(grdecl);

dz = unique(reshape(diff(z,1,3),1,[1))

The resulting grid has 78,720 cells that are almost equal in size (consult the histogram
hist(G.cells.volumes)), with cell volumes varying between 22,500 m?3 and 24,915 m3.
Altogether, the model has 264,305 faces: 181,649 vertical faces on the outer boundary and
between lateral neighbors, and 82,656 lateral faces on the outer boundary and between
vertical neighbors. Most of the vertical faces are not part of a fault and are therefore
parallelograms with area equal 300 m?. However, the remaining 26,000-27,000 faces are
a result of the subdivision introduced to create a matching grid along the (stair-stepped)
faults. Figure 3.33 shows where these faces appear in the model and a histogram of their
areas: the smallest face has an area of 5.77-10~* m? and there are 43, 202, and 868 faces
with areas smaller than 0.01, 0.1, and 1 m2, respectively. The processGRDECL routine has an
optional parameter 'Tolerance' that sets the minimum distance for distinguishing points
along coordinate lines (default value is zero). By setting this to parameter to 5, 10, 25, or 50
cm, the area of the smallest face is increased to 0.032, 0.027, 0.097, or 0.604 m?, respec-
tively. In general, we advice against aggressive use of this tolerance parameter; one should
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plotFaces(G,G.faces.tag>0 & ...
G.faces.areas>=290),'y', 'edgea’',.1);
plotFaces(G, G.faces.areas<290,'r', 'edgea',.1);

Figure 3.33 Faces that have been subdivided for the SAIGUP mode. The left plot shows a histogram
of the faces areas. The right plot shows all fault faces (yellow) and fault faces having area less than
290 m? (red).

instead develop robust discretization schemes and, if necessary, suitable postprocessing
methods that eliminate or ignore faces with small areas.

Visualizing subsets of the grid. Next, we show a few examples of visualizations highlight-
ing various mechanisms for interacting with the grid and accessing parts of it. As a first
example, we start by plotting the layered structure of the model. To this end, we use a
simple trick: create a matrix with ones in all cells of the logical Cartesian grid and then do
a cumulative summation in the vertical direction to get increasing values,

val = cumsum(ones(G.cartDims),3);

which we then plot using a standard call to plotCellData; see the left plot in Figure 3.34.
To reveal the layering in the interior of the model, we extract and visualize only the cells
that are adjacent to a fault:

celllist = G.faces.neighbors(G.faces.tag>0, :);
unique(celllist(cellList>0)) ;

cells

The first statement uses logical indexing to loop through all faces and extract the neighbor-
ing cells of all faces that are marked with a tag (i.e., lie at a fault face). The list may have
repeated entries if a cell is attached to more than one fault face and contain zeros if a fault
face is part of the outer boundary. We get rid of these in the second statement, and can then
plot the result list of cells, giving the plot shown to the right in Figure 3.34

plotCellData(G,val(G.cells. indexMap) ,cells)

Next, let us inspect the fault structure in the lower-right corner of the plot. If we disregard
using cutGrdecl as discussed on page 81, there are basically two ways we can extract parts
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Figure 3.34 Visualizing the layered structure of the SAIGUP model.

of the model, which both rely on the construction of a map of cell numbers of logical
indices. In the first method, we first construct a logical set for the cells in a logically
Cartesian bounding box and then use the built-in function ismember to extract the members
of cells that lie within this bounding box:

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap); IJK = [ijk{:}];
[1,J,K] = meshgrid(1:9,1:30,1:20);

bndBox = find(ismember(IJK, [I(:), J(:), K(:)], 'rows'));

inspect = cells(ismember(cells,bndBox));

The ismember function has an operational count of O(nlogn). A faster alternative is to
use logical operations having an operational count of O(n). That is, we construct a vector
of boolean numbers that are true for the entries we want to extract and false for the
remaining entries

I = false(G.cartDims(1),1); I(1:9)=true;

J = false(G.cartDims(2),1); J(1:30)=true;

K = false(G.cartDims(3),1); K(1:20)=true;

pick = I(ijk{1}) & JGijk{2}) & K(Ejk{3});

pick2 = false(G.cells.num,1); pick2(cells) = true;
inspect = find(pick & pick2);

Both approaches produce the same index set; the resulting plot is shown in Figure 3.35. To
mark the fault faces in this subset of the model, we do the following steps

cellno = gridCellNo(G);

faces = unique(G.cells.faces(pick(cellno), 1));
inspect = faces(G.faces.tag(faces)>0);

plotFaces(G, inspect, [.7 .7 .7], 'EdgeColor','r');

The first statement constructs a list of cells attached to all faces in the model, the second
extracts a unique list of face numbers associated with the cells in the logical vector pick
(which represents the bounding box in logical index space), and the third statement extracts
the faces within this bounding box that are marked as fault faces.
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Figure 3.35 Details from the SAIGUP model showing a zoom of the fault structure in the lower-right
corner of the right plot in Figure 3.34. The left plot shows the cells attached to the fault faces, and in
the right plot the fault faces have been marked with gray color and red edges.

Logical operations are also useful in other circumstances. As an example, we will extract
a subset of cells forming a sieve that can be used to visualize the petrophysical quantities
in the interior of the model:

% Every fifth cell in the x-direction

I = false(G.cartDims(1),1); I(1:5:end)=true;
J = true(G.cartDims(2),1);

K = true(G.cartDims(3),1);

pickX = I(ijk{1}) & J(Ejk{2}) & K(ijk{3});

% Every tenth cell in the y-direction

I = true(G.cartDims(1),1);

J = false(G.cartDims(2),1); J(1:10:end) = true;
pickY = I(ijk{1}) & J(ijk{2}) & KEjk{3});

% Combine the two picks
plotCellData(G,rock.poro, pickX | pickY, 'EdgeColor','k','EdgeAlpha',.1);

3.5.2 Composite Grids

Using an unstructured grid description enables you to define composite grids whose geome-
tries and topologies vary throughout the model. That is, different types of cells or different
grid resolution may be used locally to adapt to well trajectories and flow and geological
constraints; see e.g., [123, 209, 113, 202, 51, 83, 292] and references therein. You may
already have encountered a composite grid if you did Exercise 3.2.7 on page 72, where
we sought an unstructured grid that adapted to two skew faults and was padded with
rectangular cells near the boundary. As another example, we will generate a Cartesian
grid that has a radial refinement around two wells in the interior of the domain. This
composite grid will be constructed from a set of control points using the pebi routine.
To this end, we first construct the generating points for a unit refinement, as discussed in
Figure 3.25 on page 86
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Figure 3.36 A “sieve” plot of the porosity in the SAIGUP model. Using this technique, one can more
easily see the structure in the interior of the model.

Figure 3.37 A composite grid consisting of a regular Cartesian mesh with radial refinement around
two well positions.

Pw = [1;
for r = exp(-3.5:.2:0),
[x,y,2] = cylinder(r,28); Pw = [Pw [x(1,:); y(1,:)1];
end
Pw = [Pw [0; 0]1;

Then this point set is translated to the positions of the wells and glued into a standard
regular point lattice (generated using meshgrid):

Pwl = bsxfun(@lus, Pw, [2; 2]);

Pw2 = bsxfun(@plus, Pw, [12; 61);

[x,y] = meshgrid(0:.5:14, 0:.5:8);

P = unique([Pwl'; Pw2'; x(:) y(:)], 'rous');
G = pebi(triangleGrid(P));

Figure 3.37 shows the resulting grid. To get a good grid, it is important that the number
of points around the cylinder has a reasonable match with the density of the points in the
regular lattice. If not, the transition cells between the radial and the regular grid may exhibit
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Figure 3.38 Examples of composite grids. The left plot shows an areal grid consisting of Cartesian,
hexagonal, and radial parts. The right plot shows the same grid extruded to 3D with two faults added.
Both faults are stair-stepped in the areal direction. The fault in the north—south direction has no
displacement and thus the adjacent cells have no extra non-neighboring connections.

quite unfeasible geometries. The observant reader will also notice the layer of small cells
at the boundary, which is an effect of the particular distribution of the generating points
(see the left plot in Figure 3.10 on page 67) and can, if necessary be avoided by a more
meticulous choice of points.

In the left plot of Figure 3.38, we have combined these two approaches to generate
an areal grid consisting of three characteristic components: Cartesian grid cells at the
outer boundary, hexagonal cells in the interior, and a radial grid with exponential radial
refinement around two wells. The right plot shows a 2.5D grid in which the areal Voronoi
grid has been extruded to 3D along vertical pillars. In addition, structural displacement has
been modeled along two areally stair-stepped faults that intersect near the west boundary.
Petrophysical parameters have been sampled from layers 40-44 of the SPE 10 data set [71].

3.5.3 Control-Point and Boundary Conformal Grids

To correctly split the reservoir volume into sub-volumes, build flow units with similar
or correlated petrophysical properties, and resolve flow patterns, it is important that a
volumetric simulation grid conforms as closely as possible to fault surfaces and horizons
representing the structural architecture of the reservoir. This can be achieved by introducing
unstructured grids whose cell interfaces adapt to curved lines in 2D and triangulated sur-
faces in 3D. Likewise, it is of interest to have grids that can adapt the centroids of certain
cells to 2D lines or 3D lines or planes. This is particularly relevant if one were to provide
accurate description of well paths and the near-well region. Modern wells are typically long
and horizontal and may have complex geometry that consists of multiple branches. Such
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Figure 3.39 Two different 2D grids adapting to curved well paths. The hybrid grid shown to the left
has Cartesian cells away from the well path, with two levels of refinement in the near-well zone.
Polygonal cells are used on the transition between refinement levels and to track the well path. The
Voronoi grid shown to the right has gradual refinement towards the well and is computed as the dual
to a triangulation generated by DistMesh.

wells are increasingly becoming the main determining factor for reservoir flow patterns
because of their long reach, but also as a result of various techniques for modifying the
near-well region to increase injectivity or use of (intelligent) inflow devices to control fluid
production.

MRST has a third-party module called upr, which offers such adaptivity in the form of
2D Voronoi grids and/or composite grids as well as fully 3D Voronoi grids. The module
was initially developed by one of my previous students as part of his master thesis [42].
The most recent version offers two types of conformity to lower-dimensional objects: (i)
control-point alignment of cell centroids to accurately represent horizontal and multilateral
wells or fracture networks and (ii) boundary alignment of cell faces to accurately preserve
layers, fractures, faults, pinchouts, etc.

Each constraint is represented as a lower-dimensional grid, and intersections of two
objects is associated with a grid with dimension one lower than the objects. The grids are
hierarchically consistent in the sense that cell faces of a higher-dimensional grid conform to
the cells of all lower-dimensional grids. I will not go into more details about the underlying
methods; you can find more details, as well as references to other related work, in [42,
169]. Instead, I have included Figures 3.39— 3.42 to illustrate the flexibility in geometric
modeling inherent in such grids.

3.5.4 Multiblock Grids

A somewhat different approach to get grids whose geometry and topology vary throughout
the physical domain is to use multiblock grids in which different types of structured or
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Figure 3.40 The left grid adapts to three intersecting faults, whereas the grid to the right adapts to
both cell and face constraints.

Figure 3.41 The left grid is an areal description of a complex fault network taken from Branets et al.
[46] and is generated as a 2D centroidal Voronoi diagram (CVD) found by minimizing an energy
functional. In the right grid, there are 51 randomly distributed fractures, and the resolution is graded

toward these.

unstructured subgrids are glued together. The resulting grid can be nonmatching across
block interfaces (see e.g., [313, 25, 312]) or have grid lines that are continuous (see e.g.,
[148, 180]). MRST does not have any grid-factory routine for generating advanced multi-
block grids, but offers the function glue2DGrid for gluing together rectangular blocks in
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Figure 3.42 The left grid shows a conceptual model of a salt dome, with triangulated surface
extracted from a 3D triangulation generated by DistMesh. The plots to the right shows a 3D Voronoi
grid adapted to a curved and a planar fault. At the intersection of these, only the curved fault is
represented exactly.

2D. These grids can, if necessary, be extruded to 3D by the use of makeLayeredGrid. In the
following, we will show a few examples of such grids.

As our first example, let us generate a curvilinear grid that has a local refinement at its
center as shown in Figure 3.43 (see also Exercise 3.2.6 on page 71). To this end, we start
by generating three different block types shown in red, green, and blue colors to the left in

the figure:
Gl = cartGrid([ 5 5],[1 11);
G2 = cartGrid([20 20],[1 11);
G3 = cartGrid([15 5],[3 11);

Once these are in place, we translate the blocks and glue them together and then apply the
twister function to make a curvilinear transformation of each grid line:

G = glue2DGrid(G1, translateGrid(G2,[1 01));
G = glue2DGrid(G, translateGrid(Gi,[2 0]1));
G = glue2DGrid(G3, translateGrid(G, [0 11));
G = glue2DGrid(G, translateGrid(G3,[0 21));
G = twister(G);

Let us now replace the central block by a patch consisting of triangular cells. To this end,
we start by generating a new grid G2
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Figure 3.43 Using a multiblock approach to construct a rectilinear grid with refinement.

[N,M]=deal(10,15);

[x,y] = ndgrid( linspace(0,1,N+1), linspace(0,1,M+1));
x(2:N,2:M) = x(2:N,2:M) + 0.3*randn(N-1,M-1)*max(diff(xv));
y(2:N,2:M) = y(2:N,2:M) + 0.3*randn(N-1,M-1)%max(diff(yv));

G2 = computeGeometry(triangleGrid([x(:) y(:)1));

The glue2DGrid routine relies on face tags as explained in Figure 3.4 on page 89 that
can be used to identify the external faces facing east, west, north, and south. Generally,
such tags do not make much sense for triangular grids and are therefore not supplied.
However, to be able to find the correct interface to glue together, we need to supply tags
on the perimeter of the triangular patch, where the normal vectors follow the axial direc-
tions and tags therefore make sense. To this end, we start by computing the true normal
vectors:

hf = G2.cells.faces(:,1);

hf2cn = gridCellNo(G2);

sgn = 2x(hf2cn == G2.faces.neighbors(hf, 1)) - 1;
N = bsxfun(@times, sgn, G2.faces.normals(hf,:));
N = bsxfun(@rdivide, N, G2.faces.areas(hf,:));
n = zeros(numel(hf),2); n(:,1)=1;

Then, all interfaces that face east are those whose dot-product with the vector (1,0) is
identical to —1:

G2.cells.faces(:,2) = zeros(size(hf));
i = sum(N.*n,2)==-1; G2.cells.faces(i,2) = 1;

Similarly, we can identify all the interfaces facing west, north, and south. The left plot in
Figure 3.44 shows the resulting multiblock grid. Likewise, the middle plot shows another
multiblock grid where the central refinement is the dual to the triangular patch and G3 has
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Figure 3.44 Using a multiblock approach to construct rectilinear grid with triangular (left) and
polygonal refinements (middle). The right plot shows a 3D multiblock grid.

been scaled in the y-direction and refined in the x-direction so that the grid lines are no
longer matching with the grid lines of G1.

As alast example, let us use this technique to generate a 3D multiblock grid that consists
of three blocks in the vertical direction

G = glue2DGrid(G1, translateGrid(G2, [0 11));
G = glue2DGrid(G, translateGrid(Gi,[0 2]1));
G = makeLayeredGrid(G, 5);

G.nodes.coords = G.nodes.coords(:,[3 1 2]);

That is, we first generate an areal grid in the x y-plane, extrude it to 3D along the z direction,
and then permute the axis so that their relative orientation is correctly preserved (notice that
simply flipping [1 2 31— [1 3 2], for instance, will not create a functional grid).

COMPUTER EXERCISES

3.5.1 How would you populate the grids shown in Figures 3.31 and 3.32 with petro-
physical properties so that spatial correlation and displacement across the fault(s)
is correctly accounted for? As an illustrative example, you can try to sample petro-
physical properties from the SPE 10 data set.

3.5.2 Select at least one of the models in the data sets BedModels1 or BedModel2 and try
to find all inactive cells and then all cells that do not have six faces. Hint: it may be
instructive to visualize these models both in physical space and in index space.

3.5.3 Extend your function from Exercise 3.2.7 on page 72 to also include radial refine-
ment in near-well regions as shown in Figure 3.37.

3.54 Make a grid similar to the one shown to the right in Figure 3.38. Hint: although it
is not easy to see, the grid is matching across the fault, which means that you can
use the method of fictitious domain to make the fault structure.
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3.5.5 As pointed out in Exercise 3.2.6, MRST does not yet
have a grid factory routine to generate structured grids
with local nested refinement as shown in the figure
to the right. While it is not very difficult to generate
the necessary vertices if each refinement patch is
rectangular and matches the grid cells on the coarser
level, building the grid structure may prove to be a
challenge. Try to develop an efficient algorithm and
implement it in MRST.
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