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Abstract

Tree-ring chronologies encode interannual variability in forest growth rates over long time periods from decades to
centuries or even millennia. However, each chronology is a highly localized measurement describing conditions at
specific sites where wood samples have been collected. The question whether these local growth variabilites are
representative for large geographical regions remains an open issue. To overcome the limitations of interpreting a
sparse network of sites, we propose an upscaling approach for annual tree-ring indices that approximate forest growth
variability and compute gridded data products that generalize the available information for multiple tree genera.
Using regression approaches from machine learning, we predict tree-ring indices in space and time based on climate
variables, but considering also species range maps as constraints for the upscaling. We compare various prediction
strategies in cross-validation experiments to identify the best performing setup. Our estimated maps of tree-ring
indices are the first data products that provide a dense view on forest growth variability at the continental level with
0.5° and 0.0083° spatial resolution covering the years 1902–2013. Furthermore, we find that different genera show
very variable spatial patterns of anomalies. We have selected Europe as study region and focused on the six most
prominent tree genera, but our approach is very generic and can easily be applied elsewhere. Overall, the study shows
perspectives but also limitations for reconstructing spatiotemporal dynamics of complex biological processes. The
data products are available at https://www.doi.org/10.17871/BACI.248.

Impact Statement

Tree-ring chronologies encode essential information on how climate dynamics of the past have affected
vegetation dynamics. Our proposed upscaling approach based on machine learning algorithms for regression
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can use sparse networks of tree-rings to reconstruct spatial patterns of climate-induced vegetation anomalies. We
provide the first gridded data products of annual tree-ring indices across Europe that represent spatially resolved
patterns of radial tree growth variability over more than 100 years. This data can be used for analyzing trends and
extremes in vegetation growth, or linked to other data sources which might improve the understanding of
atmosphere-biosphere interactions in the last century. Furthermore, our upscaling approach is very generic and
can be applied to further regions, tree genera, and periods in time.

1. Introduction

Tree-ring data have been instrumental in the reconstruction of decadal tomillennial climate history (Fritts,
1976; Jones et al., 2009; St. George, 2014; Esper et al., 2016; Wilson et al., 2016; Hartl-Meier et al.,
2017a; Ljungqvist et al., 2020). However, considering the broad spatiotemporal dynamics they represent,
we argue that tree-ring data are an underexploited resource in Earth system science. One reason is that
tree-ring data often have no sufficient overlap with modern Earth observations, and another issue is that
chronologies cannot be trivially updated (Babst et al., 2017). Closing this gap of representation is of broad
research interest because tree-rings can provide annually resolved information on forest growth variability
over decades tomillennia (Li et al., 2010; Babst et al., 2017, 2018), a temporal domain unmatched bymost
other global observational resources of ecological dynamics and thereby of high relevance for, for
example, evaluating terrestrial biosphere model dynamics (Rammig et al., 2015; Barichivich et al.,
2021; Jeong et al., 2021).

As systematic and repeated tree-ring sampling is impractical in many regions, we need to seek ways
of estimating tree-ring growth where measurements are lacking. Progress has been made to simulate
interannual tree-ring variability at the site level using different process-based modeling approaches or
phenomenological models (Misson, 2004; Breitenmoser et al., 2014; Li et al., 2014; Mina et al., 2016).
Yet, the current generation of mechanistic models suffers key structural deficits that often result in a
poor representation of internal carbon storage dynamics and resource investment in woody biomass
formation, such as radial tree growth (Fatichi et al., 2014, 2019; Zhang et al., 2018). In view of these
limitations, an alternative to mechanistic modeling is the statistical upscaling of existing measurements
based on observed relationships with key environmental variables (Babst et al., 2018). Machine
learning techniques have been successfully applied for solving such problems (Jung et al., 2017,
2019, 2020; Bodesheim et al., 2018) and here we are exploring their capacity to upscale tree-ring data
across Europe.

Our approach is essentially the opposite of using tree-ring data to reconstruct the climate of the past:
we use meteorological measurements as explanatory variables for reconstructing tree-ring growth
variability at ungauged sites. When we talk about tree-ring growth variability, we essentially mean
tree-ring indices in the way they are usually computed from site-level measurements of radial tree-ring
widths, which is explained in detail in Section 2.1. By exploiting the power of data-driven nonlinear
regression approaches as they are common now for machine learning, we are able to estimate tree-ring
indices based on the inferred relationships to the climatic conditions obtained from site-level chron-
ologies. A summary of our approach is shown in Figure 1. As a result, we provide gridded products of
annual tree-ring variability that can easily be compared to remotely sensed Earth observations and
mechanistic model estimates of forest dynamics. We explore different prediction strategies by varying
the amount of climate information that is covered by the driver variables and compare the results of
corresponding cross-validation experiments.

Throughout our study, we aim at predicting at the genus level, since trees from different genera are
expected to respond very differently to climate conditions. Due to the limited tree-ring data availability in
our study region, we focus on the six most prominent genera in Europe: Abies (AB), Fagus (FA), Larix
(LA), Picea (PC), Pinus (PI), and Quercus (QU). The datasets we are using in this study are described in
the following section.

e9-2 Environmental Data Science

https://doi.org/10.1017/eds.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.8


2. Data

Three different types of datasets are used in our study. Our target data is a compilation of available tree-
ring data at site-level that give us very local information about relative growth rates of trees from different
species. Note that tree-ring data is often not representative for the whole forest as people have often
sampled the largest and oldest trees of a site (Nehrbass-Ahles et al., 2014; Babst et al., 2018). However,
even if the tree-ring chronologies do not represent the whole forest, they are still the best estimates of tree-
growth variability we can get so far with the available data and we therefore use them for our upscaling
approach. One should nonetheless keep in mind that long-term growth trends are especially affected and
sample biases can also influence the high-frequency signals in the tree-ring data.

As predictors we use climate data for explaining the variability in tree-ring growth with respect to both
the spatial and the temporal domain. Hence, the climate data should be at a reasonable spatial scale as well
as with a large temporal extent to maximize the overlap with available tree-ring data. We make use of two
different climate datasets in order to cover both aspects. We describe both datasets in detail after
introducing the tree-ring data in the following section.

2.1. Tree-ring data

For automatically learning the relationships between climate conditions and tree-ring growth, we use
publicly available tree-ring index data from the International Tree-Ring Data Bank (ITRDB).1 During
preprocessing, the raw ring width data have been standardized using a cubic smoothing spline detrending
with a 50% frequency cutoff response at 30 years. To achieve this, a spline was fit through the raw time
series obtained from each individual sample at a given site. Growth variability was then calculated by
dividing the measured ring width for a given year by the corresponding value from the smoothing spline.
This resulted in a dimensionless index that retains interannual to multidecadal variability in tree growth,
but removes longer-term trends. All detrended series from a given site were averaged into a site-level
chronology using Tukey’s biweight robust mean. From a numerical point of view, each chronology is a
time series at annual scale with values roughly between 0 and 3 and a mean value of 1 (see Figure 2a).

For our study, we additionally use tree-ring data provided by Claudia Hartl and Christian Zang
consisting of 245 chronologies (Abies: 72, Fagus: 52, Larix: 7, Picea: 87, Pinus: 8, Quercus: 19) from

 

Tree-ring data
Tree-ring chronologies, e.g., from the

International Tree Ring Data Bank  (ITRDB)

+

Climate data

...

Monthly climate variables from the
Climate Research Unit Time Series (CRU TS)

Random decision forest (RDF)

Maps
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Tree-ring indexTree-ring indexTree-ring indexTree-ring index
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Figure 1. The outline of our approach for estimating tree-ring indices in order to produce gridded tree-
ring data by exploiting machine learning methods for regression, in particular the Gaussian process
(GP) framework and the random decision forest (RDF) approach.

1 https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring.
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143 sites in Central Europe (Hartl-Meier et al., 2014a,b,c, 2017b; Zang et al., 2014). The raw data
underwent the same preprocessing as the ITRDB data, hence we were able to simply merge both datasets
in order to get a broader view on tree-ring growth in Europe. The number of available time series for each
genus in our dataset is shown in Figure 2b. Furthermore, Figure 2c–h shows the spatial distribution of the
sites that yielded the chronologies of each genus.

2.2. Monthly climate data

As predictor variables, we use monthly statistics of climate observations (variable names are given in
Table 1) from the Climate Research Unit Time Series (CRU TS) dataset (version 3.22) provided by Harris
et al. (2014). All predictor variables are available for the years 1901–2013 covering a large fraction of the
tree-ringmeasurements that can be used to learn amachine learningmodel for estimating tree-ring indices
from climate variables. Note that the data quality may be lower in the earliest portion of the CRU TS
dataset, because the density of met stations grows thinner back in time. However, we do not expect major
quality losses, because in Europe this problem is much less acute than in other regions of the world.

To obtain the predictor variables for the individual sites where we have in situ measurements of tree-
rings, the corresponding values have been extracted from the gridded products and the corresponding grid
cells of each site. Because it is known that tree-ring growth for a single year does not only depend on the
climate of this specific year but also of the previous year, we considered for each annual tree-ring
measurement the monthly predictor values of the corresponding as well as its preceding year.

2.3. Static climate data

CRU TS data encode the temporal climate anomalies but information is only available at a rather coarse
spatial resolution (half-degree). In order to understand whether the prediction of tree-ring indices benefits
from a more detailed description of the individual site conditions, we additionally use monthly mean
seasonal cycles of both climate data and bioclimatic variables at a spatial resolution of 1 km to incorporate
general growth conditions at each site. These mean seasonal cycles are taken from theWorldClim dataset
(version 2) provided by Fick andHijmans (2017), where the monthly average values have been computed
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Figure 2. Overview of the tree-ring data used within this article. Samples of tree-ring chronologies are
shown in (a) and the distribution of available time series among the different genera is depicted in (b). The
spatial distribution of sites is plotted in (c–h).
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from the years 1970–2000. We use all seven climate variables listed in Table 2 and all 19 bioclimatic
variables listed in Table 3.

3. Machine Learning Approaches for Regression

We tested two different and well-established machine learning approaches for regression. On the one
hand, we selected the random decision forest (RDF) framework (Breiman, 2001), because this technique
has been proven to be useful in other upscaling tasks such as the upscaling of land-atmosphere fluxes
(Tramontana et al., 2016; Bodesheim et al., 2018). On the other hand, we performed experiments with the
Gaussian process (GP) framework (Rasmussen and Williams, 2006), because it is an elegant mathem-
atical concept and offers more flexibility in learning the relationships between climate and tree growth
while the computational costs do not reach the limits of current hardware in terms of memory and
reasonable computation time due to the moderate size of the tree-ring dataset that we are using. In the
following two subsections, we describe the basic ideas as well as the important properties of the two
approaches.

For both of them, we assume a given training set X = f x! ið Þ
∈ IRD : i=1,2,…,Ng of N samples with

each sample x! being a vector consisting ofD predictor variables x1,x2,…,xD (e.g., climate variables) and

Table 1. Variables of the CRU TS dataset (version 3.22) that have been used as predictor variables for estimating tree-ring indices.

Acronym Full name Unit

cld Cloud cover %

dtr Diurnal temperature range °C

frs Number of ground frost days d

pet Potential evapotranspiration mm d�1

pre Precipitation mm

tmn Near-surface temperature minimum °C

tmp Near-surface temperature °C

tmx Near-surface temperature maximum °C

vap Vapor pressure hPa

wet Number of wet days d

Table 2. Climate variables of the WorldClim dataset (version 2) that have been used as predictor variables for estimating tree-ring
indices.

Acronym Full name Unit

tmin Minimum temperature °C

tmax Maximum temperature °C

tavg Average temperature °C

prec Precipitation mm

srad Solar radiation kJ m�2 d�1

wind Wind speed ms�1

vapr Water vapor pressure kPa
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a corresponding real-valued target variable y ∈ IR with observations y1,y2,…,yN ∈ IR, in our case the
standardized tree-ring indices. The goal of training a machine learning model is to establish a relationship
between x! and y such that we are able to estimate an output (tree-ring index) y∗ for an unseen composition
of predictor variables x!

∗
.

It is important to note that both approaches are able to model the interactions of predictor variables
implicitly without explicit specifications. This might especially be crucial for the interactions of
temperature and precipitation to cope with the influence of droughts on tree growth.

3.1. Random decision forest

Random forest, also called RDF, is an ensemble method described by Breiman (2001) that can be used for
regression tasks. It consists of several individual regression models called random decision trees and each
decision tree provides an estimate for the output. The number of decision trees is a parameter that needs to
be specified prior to the learning step and the outputs of all the decision trees are averaged to obtain the
predicted value for a test sample.

Learning a decision treemodel consists of recursively splitting the training dataset into two subsets by a
simple threshold function applied to a single predictor variable in x!. The threshold ti and the selected
predictor variable xdi are optimized in each step i, for example, by minimizing the root-mean-square error
(RMSE) with respect to the current estimate that is given by the average observation y of samples in the

Table 3. Bioclimatic variables of the WorldClim dataset (version 2) that have been used as predictor variables for estimating
tree-ring indices.

Acronym Full name Unit

BIO1 Annual mean temperature °C

BIO2 Mean diurnal range (mean of monthly [max temp � min temp]) °C

BIO3 Isothermality (BIO2/BIO7) (�100) 1

BIO4 Temperature seasonality (standard deviation �100) 1

BIO5 Max temperature of warmest month °C

BIO6 Min temperature of coldest month °C

BIO7 Temperature annual range (BIO5–BIO6) °C

BIO8 Mean temperature of wettest quarter °C

BIO9 Mean temperature of driest quarter °C

BIO10 Mean temperature of warmest quarter °C

BIO11 Mean temperature of coldest quarter °C

BIO12 Annual precipitation mm

BIO13 Precipitation of wettest month mm

BIO14 Precipitation of driest month mm

BIO15 Precipitation seasonality (coefficient of variation) mm

BIO16 Precipitation of wettest quarter mm

BIO17 Precipitation of driest quarter mm

BIO18 Precipitation of warmest quarter mm

BIO19 Precipitation of coldest quarter mm
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corresponding subset. Recursively splitting the training dataset in smaller subsets leads to a special graph
structure in computer science: a binary tree. An example is shown in Figure 3. Since the subsets of data
become smaller when the binary tree grows larger, the mean value of the observations becomes a better
estimate. In order to avoid overfitting, splitting is not done until only one sample is left in each subset but
until some stopping criterion is met, for example, minimum number of samples in a subset is reached or
variance of observations within a subset is smaller than a predefined threshold.

The final binary tree structure then contains two types of nodes: (a) inner nodes that define a split
by storing the index di of one of the D predictor variables and a corresponding threshold ti and (b) leaf
nodes that are not split up further but which provide an regression estimate yj via the average
observation of the samples that belong to the subset of training data reaching this leaf node (Figure 3).
When learning multiple decision tree models in an ensemble, it is important to incorporate different
kinds of randomization such that different trees can learn different relationships between predictor
variables and observations and to avoid overfitting. The first randomization takes place before learning
the tree structures. For each tree to be learned, a random subset of the training data is sampled with
replacement to obtain different portions of the training data for every tree. Together with the fusion
scheme (averaging) of the outputs of all binary trees in the end, this is called bagging (Breiman, 2001).
Furthermore, for a split node not all D predictor variables and all plausible thresholds are tested to find
an optimal split. Instead, a random subset of the variables is analyzed together with randomly selected
thresholds in the corresponding range of the variable. The influence of randomization in the ensemble
of decision trees is very important to obtain reasonable estimation performance of the random forest
regression model.

3.2. The GP framework

GP regression denotes a flexible nonparametric framework that is based on probability theory. The
textbook of Rasmussen andWilliams (2006) provides a comprehensive introduction andwe only describe
the main aspects of the regression method briefly in the following. Note that GP regression is often also
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referred to as kriging, however, mostly in conjunction with two- or three-dimensional input spaces
(Rasmussen andWilliams, 2006). A GP is a stochastic process, that is, a distribution over latent functions
f , that can be specified by a prior mean function μ �ð Þ and a covariance function κ �, �ð Þ. Assuming that y
depends on x! and an unknown function f as well as an additive noise ε:

y= f x!
� �

þ ε, (1)

the idea is to average over all possible functions f that are able to describe the relationship of predictor
variables x! and targets y in a full Bayesian manner and to use the average function value called posterior
mean for a specific x!

∗
to obtain the regression value y∗. Hence, it is sufficient to specify μ �ð Þ and κ �, �ð Þ of

the GP prior as well as the noise process ε in order to use the GP regression framework.
Without any prior knowledge about the data, it is common to use the zero-mean assumption, that is,

μð x!Þ=0∀ x!. Since the tree-ring chronologies have a mean value of 1 due to preprocessing and their
characteristic of being a relative tree growth measure (cf. Section 2.1), a prior mean μð x!Þ=1∀ x!

incorporates this additional knowledge about the data. From a technical point of view, using

μð x!Þ=1∀ x! is equivalent to a transformation of all target values y by subtracting 1, then predicting
the transformed value with a GP regression model, and finally adding 1 to the prediction again to obtain
the regression estimate for the tree-ring index.

The covariance function κ �, �ð Þ measures the similarity of two input vectors x! and x!0. In machine
learning, κ is often called a kernel function. There exists a large amount of different kernel functions for
different applications depending on the properties of the input data x!. The most common kernel function
is the Gaussian radial basis function kernel (Gaussian RBF kernel) also called squared exponential kernel
(SE kernel) by Rasmussen and Williams (2006):

κSE x!, x!0
� �

= σ2f exp
� x!� x!0�� ��2

2

2ℓ2

 !
: (2)

It depends on the squared Euclidean distance between x! and x!0 as well as on the hyperparameters σ2f
and ℓ2. While the process variance σ2f affects the scaling of function values, the length-scale parameter

ℓ2 determines the relevant scale of the input vectors x! and x!0. Both parameters can either be fixed
manually or optimized within the probabilistic framework by maximizing the likelihood of the
training data.

The noise term ε in equation (1) is usually modeled as white Gaussian noise ε�N 0,σ2ε
� �

with σ2ε
being a hyperparameter that is either fixed (e.g., σ2ε =0:01) or also optimized via likelihood maxi-
mization. The advantage of the Gaussian noise assumption is that the estimated output value y∗ of an
input vector x!

∗
then also follows a Gaussian distribution: y∗ �N μ∗,σ

2
∗

� �
and inference within the

probabilistic GP regression framework is analytically tractable. In fact, there exist closed-form
solutions for the moments μ∗ and σ2∗:

μ∗ = k
!T
∗K y!, (3)

σ2∗= k∗∗þσ2ε � k
!T
∗K k

!
∗ : (4)

The N�N kernel matrix K contains the pairwise similarities of the N training samples, the vector k
!
∗

consists of similarities between the test sample x!
∗
and the N training samples, and k∗∗ = κðx!∗

, x!
∗Þ is the

so-called self-similarity of x!
∗
. Furthermore, the vector y! is a collection of the output values y from the N

training samples. While the predictive mean μ∗ in equation (3) is the estimated regression output for a test
sample x!

∗
, the GP framework allows for quantifying the uncertainty of this estimate via the predictive

variance σ2∗ (equation (4)). A visualization of both predictive mean and predictive variance is given in
Figure 4.
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4. Experimental Setup and Results

In this section, we present the results we have obtained from our experiments. First, we motivate our
strategy of explicitly distinguishing different genera of trees in Section 4.1. We then describe the basic
setup of our experiments for assessing the prediction performances of the two analyzed machine learning
methods for estimating tree-ring indices (Section 4.2). Afterwards in Sections 4.3–4.6, we discuss the
individual findings and present the corresponding results. Further results are summarized in Appendix A.

4.1. Distinguishing different tree genera

We already mentioned in the introduction that we estimate tree-ring growth rates for different genera,
because each genus responds differently to the same climate conditions. This can already be inferred from
the tree-ring chronologies in the dataset that we are using. In particular, we identified 57 locations in our
dataset where we have a tree-ring chronology for both beech trees (Fagus) and oak trees (Quercus). At
each of these locations, the beech trees and the oak trees have encountered the same environmental
conditions that are represented by the different climate variables. For each pair of chronologies, we
computed the correlation coefficient taking only the years of the common time period into account. The
distribution of the resulting correlation coefficients is shown as a histogram in Figure 5. Out of the 57 pairs
of chronologies, 45 pairs obtain a value smaller than 0.45, which indicates no clear correlation and at most
a rather weak connection. Hence, this small analysis supports our strategy of training regression models
individually for each genus.

4.2. Basic setup

We have learned individual regression models for each of the six most prominent genera in Europe,
namely Abies (fir), Fagus (beech), Larix (larch), Picea (spruce),Pinus (pine), andQuercus (oak), with the
distribution of chronologies among the genera depicted in Figure 2. For matching the tree-ring data with
corresponding predictor variables that describe the environmental conditions, we only used the tree-ring
indices corresponding to a year between 1901 and 2013 from each tree-ring chronology. Qualitative
results are obtained using the predictions of a cross-validation scheme, more precisely a modified leave-
one-site-out cross-validation for each genus. Leave-one-site-out means that for estimating the tree-ring
growth rates at one site, regression models are learned using data from all the remaining sites that provide

Figure 4. Example of GP regression for one-dimensional inputs (single predictor variable). Blue crosses
indicate training data, the red curve is the estimated posterior mean function that defines the output
values μ∗ for the targets y

∗, and the shaded regions in orange visualize the uncertainties of the predictions
by plotting the standard deviation derived from the posterior variance σ2∗ at each position x∗ in the
predictor space.
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tree-ring data for the same genus. We have slightly modified this scheme by also excluding those sites
from a training set, whose spatial coordinates fall into the same grid cell at half-degree resolution. This is
due to the fact that our climate variables from the CRU TS dataset (Section 2.2) are at half-degree spatial
resolution and we want to avoid different sites with probably different tree-ring chronologies having the
exact same values for the predictor variables, whichwould lead to biased results. Themodified leave-one-
site-out is repeated such that data from each site is used in the test set once.

A quality criterion can be computed for each genus by comparing corresponding observations with
predictions. In addition, an overall accuracy is provided by comparing observations and predictions
across all genera. The quality measures that we have used to determine the performance of the different
prediction approaches are theNash–Sutcliffemodel efficiency (Nash and Sutcliffe, 1970), the RMSE, and
Pearson correlation coefficient. In addition, we have computed the decompositions of the mean-square
error (MSEs) following Gupta et al. (2009) to obtain bias errors, variance errors, and phase errors. While
bias errors denote an offset of individual predictions on average and variance errors indicate a different
range of values for the predictions, phase errors for tree-ring chronologies at annual scale correspond to
mismatches of the predicted interannual variability. Thus, phase errors indicate that peaks in the
chronologies of observed and predicted values are not aligned or changes from reduced to increased
tree-ring growth (change in tree-ring index from less than 1 to greater than 1) or vice versa happen in
different years when comparing observations with predictions. For more details on these metrics in
general, we refer to the original work (Gupta et al., 2009). When evaluating our different prediction
approaches, we mainly focus on the model efficiency, which is similar to the coefficient of determination
(R2) and roughly summarizes the fraction of variance in the observations that can be explained by the
predictions. The complete list of results regarding all six evaluationmeasures can be found inAppendix B.

Our experiments are done in Matlab (version 2016b) using the TreeBagger function for RDF
regression with its default parameter settings and specifying 100 decision trees in the ensemble. This
means that the minimum node size, that is, the minimum number of samples in a leaf node, is set to five
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Figure 5. Distribution of correlation coefficients computed from pairs of chronologies consisting of one
chronology for beech trees (Fagus) and one chronology for oak trees (Quercus) both sampled at the same
site. This highlights the fact that trees from different genera respond different to the same climatic
conditions.
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and for each split at an inner node, one third of all predictor variables are considered to find the best
threshold. For GP regression, we have used the toolbox provided by Rasmussen and Nickisch (2015).We
have optimized the hyperparameters of the GP model (parameters of the kernel function as well as the
noise variance) via likelihood maximization. It is important to note that a normalization of the predictor
variables is required for the GP model in order to avoid numerical problems or instabilities (mainly when
evaluating the kernel function and performing algebraic operations) and to allow for both robust learning
and faster hyperparameter optimization. In all our experiments, we tried both: (a) normalization of
predictor values to the interval 0,1½ � and (b) applying z-transformations such that the values of the
individual predictor variables have zero mean and unit variance (following a standard normal distribu-
tion). Interestingly, there are hardly any differences in the prediction performance of the GP model with
respect to the chosen normalization strategy. Throughout this article, we report results from our
experiments when using the z-transformation z= x�μ

σ

� �
for each individual predictor variable x with μ

and σ being the correspondingmean and standard deviation, respectively. Note that the performance of the
RDF models are not affected by the normalization strategies, because the order of the values is preserved
after the transformations and the RDF uses thresholds for splitting the data into subsets without any
arithmetic calculations. Hence, normalization only changes the ranges for the randomized threshold
selections during learning of the decision trees but there are no numerical issues that need to be
considered.

4.3. The impact of climate in the previous year

It is well-known in the field of dendrochronology that the width of tree-rings does not only depend on the
environmental conditions during the corresponding year, but that growth is partially also responding to
the climate conditions the tree had to cope with in the previous year (Fritts, 1976). Hence, our first
hypothesis states that we gain additional information for the prediction of tree-ring indices by machine
learning methods when we directly incorporate climate predictors from the year before each tree-ring was
formed. This should then lead to improved prediction performance compared to regression models that
only take the climate of the same year corresponding to the tree-ring into account.

The results of our experiments are shown in Figure 6. It can be observed that for both regression
models, RDF and GP, the modeling efficiencies in general slightly increase when taking the monthly
climate predictors of the previous year into account. This holds for the overall results as well as for the
predictions of individual genera and supports our initial hypothesis. Except for the RDF predictions of
tree-ring indices for Fagus (model efficiency: 0.31) as well as GP predictions for Larix (model efficiency:
0.18) and Quercus (model efficiency: 0.35), a small improvement is visible. Although one might be
tempted to say that these small improvements are not meaningful, it is important to mention again that the
reported model efficiencies are computed from a set of leave-one-site-out experiments within each genus,
hence for a large number of sites corresponding to each genus. The improvements are therefore achieved
by models who have not seen the sites they predict and averaged over a whole genus.

Furthermore, we observe that applying GP regression yields larger model efficiencies than the RDF
models across all genera. In total, the best results are achieved by the GP regression approach with an
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Figure 6.Comparing the performance of RDF andGPmodels for predicting annual tree-ring indices for
either considering only the monthly climate conditions of the same year (that corresponds to the tree-ring
measurement) or for also taking the monthly climate of the previous year into account.
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overall model efficiency of 0.33 as well as the largest model efficiency for a single genus (0.37 for Picea).
When considering the properties of model efficiency (optimal value is 1 and a value of 0 can already be
obtained by simply predicting the overall mean value of the time series in each year), values between 0.3
and 0.4 seem to be quite low in general, since this corresponds to only 30–40% of explained variance.
However, taking into account that methods for reconstructing climate in the past from tree-ring chron-
ologies are often able to explain less than 50%of the signal variance at a single site (Esper et al., 2016) and
our estimations of tree-ring indices from climate data (the other way around) tackle a much harder task by
generalizing from a subset of sites to a different location (leave-one-site-out cross-validation), these initial
results are quite promising. Note that the FLUXCOM studies (Jung et al., 2019, 2020) also report similar
quality levels for their upscaling when considering annual integrals of the estimated carbon and energy
fluxes because predicting interannual variability is a hard task in general. These studies consider two
carbon fluxes, namely gross primary production (GPP) and net ecosystem exchange (NEE), and three
energy fluxes (net radiation, sensible heat, and latent heat flux), while we report results for upscaling tree-
ring indices.

In our experiments, it is also interesting to observe that when comparing the results of the different tree
genera, model efficiencies for Larix are notably smaller. On the one hand, the tree-ring dataset provides
the smallest number of samples for Larix (see Figure 2) such that it is more difficult for amachine learning
model to identify the relationship between predictor variables (climate) and the target variable (tree-ring
index) due to the limited amount of example data. On the other hand, there is evidence that Larix in Europe
is more sensitive to biological impacts. For instance, the larch budmoth is a widespread defoliator that
feeds off fresh larch needles and periodically reaches outbreak levels (Esper et al., 2007; Hartl-Meier et al.,
2017b). These events are demarcated in the wood and partly obscure the obtained relationships between
radial tree growth and climate. Since the influence of the larch budmoth complex population dynamics is
not encoded in the predictor variables, important information is missing in the prediction models. The
lower model efficiencies for larch trees can be observed in all our other experimental results that follow in
the next sections but we will not repeat the previous explanations there.

Besides the model efficiencies, we also look at further evaluation measures mentioned in the previous
section and the results are summarized in Table 4. The RMSE is largest for Larixwith about 0.20 followed
by Faguswith 0.17 to 0.18. The smallest RMSE is obtained for Piceawith less than 0.13 and overall, the
RMSE across all genera is between 0.14 and 0.15. While the RMSE for Fagus deviates more from the
errors for other genera as well as from the overall values, the Pearson correlation forFagus is similar to the
overall correlation and to the one obtained for Abies, Picea, and Quercus. This is especially interesting
when comparing the results forFagus andPicea: Pearson correlation is almost the samewhereas RMSE is
clearly different. Hence, it is important to look at different evaluation measures.

We also computed error terms obtained from the decomposition of the MSEs (Gupta et al., 2009) and
results are also summarized in Table 4. Note that for the bias errors, we report values that need to be scaled
by a factor of 10�6. Therefore, we observe that all bias errors are smaller than 10�3, which shows that there
is no bias in any of the predictions, and the errors are distributed among the variance errors and the phase
errors. For the predictions of the RDF models, we see that variance errors and phase errors are almost the
same for three of the six genera (Larix, Picea, Pinus) and overall, both errors are roughly 0.01. Hence, for
RDF models, the MSE is distributed rather equally among variance error and phase error. This is in
contrast to the predictions of the GP models, where the phase error is two to three times larger than the
variance error for each individual genus. Since variance errors for the GP models are lower than for the
RDF models, we conclude that the GP models capture the variability in the tree-rings slightly better and
have more problems in getting the phase, here the interannual variability, correctly.

4.4. Climate predictors: Monthly versus seasonal scale

Given the fact that we use quite a large number of predictor variables due to the monthly time scale for the
same and the previous year (2 years times 12months times 10 climate variables= 240 predictor variables),
wewant to find out how prediction performance for tree-rings changeswhenwemove from amonthly to a
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Table 4. Comparing the performance of RDF and GP models for predicting annual tree-ring indices with respect to six evaluation measures when taking monthly climate data from 1 or 2 years into
account.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Climate data of Model efficiencies

same year 0.315 0.309 0.144 0.293 0.226 0.315 0.276 0.344 0.351 0.177 0.362 0.274 0.346 0.320

same and previous year 0.328 0.312 0.156 0.308 0.239 0.326 0.287 0.352 0.358 0.181 0.371 0.280 0.349 0.326

Climate data of RMSEs

same year 0.148 0.180 0.206 0.129 0.131 0.137 0.146 0.145 0.174 0.201 0.122 0.127 0.134 0.141

same and previous year 0.147 0.179 0.204 0.127 0.130 0.136 0.145 0.144 0.173 0.201 0.121 0.127 0.134 0.141

Climate data of Pearson correlation coefficients

same year 0.570 0.563 0.382 0.561 0.490 0.569 0.535 0.587 0.592 0.423 0.602 0.524 0.588 0.565

same and previous year 0.581 0.561 0.399 0.572 0.503 0.578 0.543 0.594 0.598 0.432 0.610 0.530 0.591 0.571

Climate data of Bias errors (�10�6) of the MSE decomposition

same year 0.234 3.384 3.214 0.005 0.155 0.453 0.008 1.233 3.400 34.294 0.724 2.502 2.246 2.540

same and previous year 0.442 20.605 2.007 0.101 0.238 0.273 0.161 0.062 0.613 108.260 0.604 0.523 1.891 1.699

Climate data of Variance errors of the MSE decomposition

same year 0.009 0.013 0.022 0.008 0.009 0.008 0.010 0.006 0.007 0.014 0.004 0.005 0.004 0.005

same and previous year 0.009 0.011 0.021 0.008 0.008 0.007 0.009 0.006 0.007 0.013 0.004 0.004 0.004 0.005

Climate data of Phase errors of the MSE decomposition

same year 0.013 0.019 0.020 0.009 0.009 0.011 0.012 0.015 0.023 0.026 0.011 0.011 0.014 0.014

same and previous year 0.013 0.021 0.020 0.009 0.009 0.011 0.012 0.015 0.023 0.028 0.011 0.012 0.014 0.015

Abbreviations: GP, Gaussian process; MSE, mean-square error; RDF, random decision forest; RMSE, root-mean-square error.
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seasonal time scale for the predictor variables. Hence, we averaged the monthly values within seven
seasons of the 2 years (MAM, JJA, SON, DJF, MAM, JJA, SON) to obtain 70 predictor variables
(7 seasons times 10 climate variables) and performed the experiments with the aggregated data.

As it can be observed from Figure 7, the prediction performances in terms of model efficiency drop
clearly for each genus. Comparing the two regression approaches, the reduction is larger for RDF
regression (overall: from 0.29 to 0.22) compared to GP regression (overall: from 0.33 to 0.29). Thus,
some important information for the prediction is lost when first computing seasonal means instead of
using the monthly values directly. We conclude that in order to achieve better prediction performance,
monthly climate data should be used rather than seasonal climate aggregations for estimating tree-ring
indices.

4.5. Taking monthly climate anomalies into account

Since tree-ring indices are relative growth values due to their dependency on an estimated trend that takes
aging effects into consideration (see Section 2.1), they mainly represent deviations from an expected
growing process and hence encode anomalies. This observation has brought us to another hypothesis that
the climate conditions do not have a direct influence on the tree-ring growth rates but rather the climate
anomalies, that is, the deviations from the average climate conditions at each site.We therefore performed
experiments with anomalies of the climate predictors by subtracting the mean seasonal cycles that has
been obtained by averaging over the years 1901–2000. The comparison of results from both settings,
using anomalies or using the plain values, is shown in Figure 8.

It can be clearly observed that our approach for predicting tree-ring growth rates benefits from the
information that is encoded in the climate anomalies. Especially for RDF regression, substantial improve-
ments can be observed. In this case, the overall performance increases from a model efficiency of 0.29 to a
value of 0.34. While the GP regression models benefit less from the climate anomalies (but slight
improvements are still visible), the largest increases in model efficiency occur for larch trees (Larix), the
most difficult genus due to the small amount of available samples and the problems described in Section 4.3.

It is interesting to see that when using climate anomalies as predictors, the RDF regression approach is
able to close the gap in performance that has been observed in the previous experiments, where GP
regression achieved superior model efficiencies. By using the climate anomalies, both regression
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Figure 7. Comparing the performance of RDF and GP models for predicting annual tree-ring indices
regarding a monthly and a seasonal time scale of the predictor variables.
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Figure 8. Comparing the performance of RDF and GP models for predicting annual tree-ring indices by
using either plain values of the climate variables or climate anomalies.

e9-14 Environmental Data Science

https://doi.org/10.1017/eds.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.8


approaches are able to achieve an overall model efficiency of 0.34 for predicting tree-ring indices. At the
genus level, both RDF andGP regression achieve amodel efficiencies of 0.37 forAbies andFagus as well
as a model efficiency of 0.35 for Quercus. The model efficiencies for Picea are on the same level but
slightly vary between both methods (RDF: 0.36, GP: 0.37), whereas the performance is worse for the
remaining to genera (Larix and Pinus) considered in our studies.

In addition, we tested whether additional information is contained in the climate anomalies compared
to the plain values of the climate variables. We therefore performed experiments with a set of predictor
variables containing both the plain values and the anomalies of the climate variables and compared the
results to the best ones achieved so far, that is, only using the climate anomalies. The correspondingmodel
efficiencies are reported in Figure 9 and there are hardly any differences between the performance
measurements, neither overall (model efficiency of 0.34 for both sets of predictor variables and both
regression approaches) nor at a genus level (same values for Abies and Quercus, minor variations for the
remaining four genera). Hence, we can conclude that all important information for predicting tree-ring
indices from climate conditions is contained in the climate anomalies.

4.6. Incorporating static WorldClim data

So far, we have included climate conditions at a coarse spatial scale as predictor variables in our regression
approaches. However, tree growth also depends on site-specific topographic characteristics that change
much faster for different locations on much smaller spatial scales. To address this issue, we further use
mean seasonal cycles of high-resolution climatic and bioclimatic variables from theWorldClim dataset as
mentioned in Section 2.3. Note that these predictor variables are static and do not change over time.
Hence, they cannot be used alone for estimating tree-ring growth rates in different years without any other
predictors. However, they offer a way to incorporate site-specific topographic characteristics at high
spatial resolution because they represent average conditions at each location and can thus be used in
addition to time-varying climate predictor variables obtained from data products at coarser spatial scales.

From an ecological perspective, it is important to consider both types of variables together (high-
resolution static climate data and low-resolution time-varying climate predictors), because a given climate
anomaly, for example, a temperature increase of two degrees, has a different impact at different sites
depending on the specific environmental conditions. On the one hand, if the baseline temperature is low
and the growing season short, a two degree temperature increase will have a big impact on the tree growth
rate. On the other hand, if the baseline temperature is high and the growing season long, the same climate
anomaly will not have the same positive impact because the trees are already closer to a temperature
optimum. It can even have a negative impact because water demand rises. By adding the staticWorldClim
data, we incorporate the baseline climate information such that the same climate anomalies can have a
different impact on the tree growth rates.

Furthermore, local adaptations of trees might influence responses to climate anomalies as well,
depending on what the trees are used to. However, we are missing corresponding data containing more
detailed site-specific information, for example, for rooting depth, soil characteristics, as well as for
properties of the stand, like density, age structure, and composition. Although this kind of data would be
important to analyze forest adaptation and stand dynamics even better, it is not possible to incorporate

Abies Fagus Larix Picea Pinus Quercus Overall
0.00

0.20

0.40

0.60

0.80

0.37 0.37

0.23

0.36
0.29

0.35 0.340.37 0.37

0.22

0.36
0.29

0.35 0.340.37 0.37

0.23

0.37
0.31 0.35 0.340.37 0.37

0.22

0.38
0.31 0.35 0.34

M
od

el
effi

ci
en

cy

climate anomalies of previous and same year & RDF climate predictors and anomalies of previous and same year & RDF
climate anomalies of previous and same year & GP climate predictors and anomalies of previous and same year & GP

Figure 9.Comparison of the performances obtained with RDF andGPmodels for predicting annual tree-
ring indices concerning the amount of information within the plain values and the anomalies of the
climate predictor variables.

Paul Bodesheim et al. e9-15

https://doi.org/10.1017/eds.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.8


factors like this for the predictions of the tree-ring indices given the available data. Another idea for
modeling local adaptations would be to take the distance of a site to the edge of the species distribution
range into account, but this is not straightforward and therefore left for future work. In this article, we only
consider the static WorldClim data.

In Figure 10, we compare the previous best results using climate anomalies of the previous and same
year as predictor variables with the setup in which we additionally use the static predictor variables from
the WorldClim dataset, that is, the mean seasonal cycles of all variables from this dataset. The results
clearly reveal the impact and the importance of high-resolution and site-specific topographic properties,
because obtained modeling efficiencies are improved for each genus as well as overall by quite some
margin when incorporating the WorldClim data. For the GP regression approach, the overall prediction
performance in terms of modeling efficiency increases from 0.34 to 0.38 and for the RDF regression
approach, an improvement from 0.34 to 0.36 can be observed. Looking at individual genera, largest
improvements have been made for Larix (from 0.23 to 0.29) and Picea (from 0.37 to 0.44), which is very
likely due to the fact that these are the genera with the strongest elevation gradient in the dataset.

For more detailed investigations, we also show scatter plots of the predictions from the different
regression models in Figure 11. It can be observed that the variance in the predictions of the GPmodels is
slightly larger than in the predictions of the RDFmodels. This holds for all genera and is also reflected by
the corresponding small differences in the modeling efficiencies. The variance in the observations is
clearly larger for all genera compared to the variances in the predictions. Note that the scatter plots for the
predictions from the previous experiments using other sets of predictor variables look quite similar andwe
therefore only include these plots here for giving more insights in the results with the best predictions.

The positive impact of the high-resolution static predictor variables can also be observedwhen looking
at further evaluation measures summarized in Table 5. While the RMSE is only slightly reduced for all
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Figure 10. Comparison of the performances obtained with RDF and GP models for predicting annual
tree-ring indices with respect to the impact of high-resolution static data from the WorldClim dataset.
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Figure 11. Scatter plots for the predictions obtained with RDF models (a–f) and GP models (g–l) when
using high-resolution static data from theWorldClim dataset in addition to themonthly climate anomalies
of the CRU TS dataset.
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Table 5. Comparing the performance of RDF and GP models for predicting annual tree-ring indices with respect to six evaluation measures when either only considering monthly climate anomalies
as predictor variables or also taking static WorldClim data into account.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Climate anomalies of Model efficiencies

same and previous year 0.370 0.374 0.231 0.357 0.297 0.354 0.338 0.370 0.374 0.225 0.373 0.309 0.352 0.343

þ static WorldClim data 0.387 0.394 0.271 0.400 0.306 0.366 0.360 0.388 0.403 0.288 0.435 0.327 0.366 0.375

Climate anomalies of RMSEs

same and previous year 0.142 0.171 0.195 0.123 0.125 0.133 0.139 0.142 0.171 0.196 0.121 0.124 0.134 0.139

þ static WorldClim data 0.140 0.168 0.190 0.119 0.124 0.132 0.137 0.140 0.167 0.187 0.115 0.123 0.132 0.136

Climate anomalies of Pearson correlation coefficients

same and previous year 0.609 0.613 0.483 0.602 0.549 0.596 0.583 0.608 0.612 0.476 0.611 0.556 0.593 0.586

þ static WorldClim data 0.624 0.630 0.529 0.641 0.559 0.608 0.604 0.623 0.635 0.537 0.660 0.572 0.606 0.612

Climate anomalies of Bias errors (�10�6) of the MSE decomposition

same and previous year 0.093 0.091 2.354 0.090 0.077 0.135 0.019 0.520 1.508 5.539 0.471 0.207 1.939 0.824

þ static WorldClim data 0.306 0.024 1.462 0.244 0.038 0.083 0.052 0.783 0.292 11.261 0.366 0.076 1.918 0.678

Climate anomalies of Variance errors of the MSE decomposition

same and previous year 0.006 0.008 0.015 0.005 0.006 0.005 0.006 0.005 0.006 0.012 0.004 0.004 0.004 0.005

þ static WorldClim data 0.006 0.008 0.016 0.005 0.006 0.006 0.006 0.005 0.006 0.009 0.003 0.004 0.004 0.004

Climate anomalies of Phase errors of the MSE decomposition

same and previous year 0.014 0.021 0.022 0.010 0.010 0.012 0.013 0.015 0.023 0.026 0.011 0.011 0.014 0.015

þ static WorldClim data 0.014 0.020 0.020 0.009 0.009 0.012 0.012 0.015 0.022 0.026 0.010 0.011 0.014 0.014

Abbreviations: GP, Gaussian process; MSE, mean-square error; RDF, random decision forest; RMSE, root-mean-square error.
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genera, Pearson correlation increases clearly. For the overall predictions of both regression approaches,
the correlation coefficients exceed a value of 0.6 when using static WorldClim data as additional
predictors. The bias errors of the MSE decompositions are all smaller than 10�3, that is, there is no bias
in the predictions. Note that this is the case for the results of all our experiments, as shown in Table B4. In
contrast to the results fromSection 4.3, where the ratio of variance errors and phase errors was different for
RDF predictions andGP predictions, we now see for both regression approaches that the largest amount of
the MSE comes from the phase error, whereas the variance errors are clearly smaller. Concerning the
overall predictions, the variance errors are between 0.004 and 0.006, while the phase errors are between
0.012 and 0.015. Although both errors hardly vary between the different sets of predictor variables
(because also RMSE and hence MSE only differ slightly), model efficiencies and correlation coefficients
are larger when taking the WorldClim data into account.

Hence, we conclude that incorporating static predictor variables of high spatial resolution leads to clear
performance boosts when estimating tree-ring growth rates and chronologies at unseen sites. As a next
step, we perform an upscaling of site-level chronologies to gridded data products that are presented in the
next section.

5. Gridded Tree-Ring Data Products for Europe

Encouragingly, with our machine learning approaches we are able to obtain spatialized and yearly
resolved tree-ring indices. From the chronologies of in situ measurements at individual sites, we have
learned regression models for each genus using all available chronologies of trees from the corresponding
genus. We have computed dense products at two different spatial resolutions. For the coarser data
products with 0.5° spatial resolution, we only used the time-varying predictor variables as done in our
cross-validation experiments, that is, climate anomalies of the previous and the same year as in
Section 4.5, which are extracted for each spatial grid cell in Europe. We also provide high-resolution
data products at 0.0083° spatial resolution (roughly 1 km2), where we follow the approach of the previous
section and use mean seasonal cycles of the variables from theWorldClim dataset as additional predictors
beside the time-varying predictors that are extracted from the corresponding grid cells of the CRU TS
dataset. The produced data products are available at https://www.doi.org/10.17871/BACI.248
(Bodesheim et al., 2021) and cover the years 1902–2013.

Note that the data products at both spatial resolutions differ in the way they have been calculated and
one product is not simply the spatial aggregation of the other one. This is also discussed in Section 5.1 and
shown in Figure 14. For the product at 0.5° spatial resolution, we restricted the set of predictor variables to
the time-varying ones such that the resolution of the predictor variables matches the resolution of the
obtained data product. For the product at 0.0083° spatial resolution, we additionally incorporated static
data in terms of mean seasonal cycles of variables from the WorldClim dataset as additional predictor
variables. Although this higher spatial resolution then only comes from static predictor variables that do
not change over time, they are used in combination with the time-varying predictors when estimating the
tree-ring indices in each year. Hence, for each individual prediction at a single grid cell, a different set of
values for the predictor variables is used compared to the other grid cells. Thus, when considering the
high-resolution grid cells that belong to a single grid cell at 0.5° spatial resolution, the patterns that are
induced by values estimated for the high-resolution grid cells may vary across different years.

For both spatial resolutions, we also used both the RDF regression approach and the GP regression
approach to perform the upscaling task. Regarding the hyperparameters of the individual methods, we
used the same values as for the cross-validation experiments discussed in the previous sections. Based on
the regression models for each genus as well as the predictor variables for each grid cell and each year,
spatialized tree-ring indices can be estimated.

Of course, it only makes sense to predict tree-ring indices for grid cells where the trees of the
corresponding genus occur. Therefore, we made use of the tree species distribution maps from the
European Atlas of Forest Tree Species (de Rigo et al., 2016) containing relative probabilities of presence.
The high-resolution data with grid cell sizes of 1 km2 has been used to decide whether we predict the tree-
ring index at each spatial location. For our data product at 0.0083° spatial resolution, we could directly
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match the species distribution information and estimated tree-ring indices for those grid cells that have a
value larger than 5% in the species distributing maps, that is, an occurrence probability higher than 5%.
Since our estimated tree-ring indices are on the genus level, we consider each grid cell in which the
presence of at least one corresponding species is at least 5%. For our data product at 0.5° spatial resolution,
we need to aggregate the information from the species distributionmaps. In particular, we have treated the
large grid cell as a valid one for a genus if at least in one smaller grid cell of corresponding species
distribution maps, the presence of the trees is at least 5%. Thus, we could restrict our estimations to a
smaller set of grid cells compared to whole Europe.

At this point, we already want to add a cautious note regarding the interpretation and usage of our data
products. As indicated above, our regression models are learned with data from sites whose locations are
shown in Figure 2. For some genera, for example, Fagus, the utilized network of sites does not span the
whole continent, but we, nevertheless, predict tree-ring indices across whole Europe. Hence, there might be
some extrapolation involved in the predictions, in particular for regions with climate conditions that are
potentially not observed during training of themodel.We therefore encourage to always consider the spatial
locations of the sites used during model training shown in Figure 2 as well when interpreting our data
products or when drawing further conclusions that probably also arise in future studies. Although thismight
look like a limitation for our approach and our provided data products, it is still the bestwe can do so far with
the limited availability of tree-ring data.We believe that our data products are nevertheless a valuable source
for future research and we want to highlight again that results need to be interpreted with caution.

5.1. Example maps at two spatial resolutions

To illustrate our computed data products, some examplemaps are provided in Figure 12.We have selected
two genera (Fagus and Quercus) and show corresponding maps at 0.5° spatial resolution for the

(a) (b) (c)

(d) (e) (f)

Figure 12. Estimated tree-ring indices of Fagus (a–c) and Quercus (d–f) at 0.5° spatial resolution in
Europe from the RDF regression approach are visualized for the years 1980, 1990, and 2000,
respectively.
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(randomly selected) years 1980, 1990, and 2000, respectively. One can observe from thesemaps that trees
of different genera respond differently to the same climate conditions when comparing maps of the same
year, for example, looking at the same regions in both the map for Fagus of the year 2000 and the map for
Quercus of the year 2000. Thus, it is important to make appropriate distinctions on the genus or species
level. We also verified this observation based on the chronologies from the in situ measurements
(Section 4.1 and Figure 5).

In Figure 13, we display maps corresponding to the year 1990 at the two different spatial resolutions
(0.5° and 0.0083°).We have selected the estimations for Fagus from the RDF regression approach as well
as the estimations for Quercus from the GP regression approach. In both cases, we observe that the same
patterns are obtained when comparing predictions at different spatial resolutions, for example, the green
regions in the maps for Fagus and Quercus as well as the dark red area in the maps for Fagus.

To show the differences of the predictions that are achieved for the different resolutions, we compute
spatially aggregated maps by calculating average values from corresponding grid cells of the high-
resolution product (0.0083°) to match the lower resolution (0.5°). We are then able to determine the
difference maps between the data products at 0.5° spatial resolution and the spatial aggregations of the
data products at 0.0083° spatial resolution. These difference maps are shown in Figure 14 for the same
examples as in Figure 13. In total, differences are rather small, since the same patterns are found in both

(a) (b)

(c) (d)

Figure 13.Comparing the data products of the different spatial resolutions 0.5° (a,c) and 0.0083° (b,d) by
the corresponding maps of the year 1990 for the RDF regression approach and Fagus (a,b) as well as for
the GP regression approach and Quercus (c,d).
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versions of the tree-ring maps. Interestingly, the absolute differences in the maps for Fagus are largest in
Western Europe (larger negative differences) and South Eastern Europe (larger positive differences),
while absolute differences in the maps for Quercus are largest in Central Europe (larger negative
differences).

From the distributions of differences in Figure 14, we observe that a different resolution for the
prediction does not lead to a bias in the estimated values. The variance of the differences is larger for
Fagus than for Quercus, which can be explained by the larger variability of tree-ring indices for Fagus.
For the maps of Quercus, there is hardly any difference between the predictions at 0.5° spatial resolution
and the aggregated predictions at 0.0083° spatial resolution.

5.2. Differences in estimations of different regression approaches

In this section, we compare the estimations of the two regression approaches using the gridded data
products at 0.5° spatial resolution. Difference maps of selected years are found in Figure 15 for predicted
tree-ring indices of Fagus and in Figure 16 for predicted tree-ring indices of Quercus.

Considering the predictions for Fagus in Figure 15, we observe that the GP approach produces larger
values for tree-ring growth in 1980 in Central Europe due to the red region in the difference map, where
both regression approaches estimate a large increase in tree growth indicated by the green color in the
original tree-ring maps. For the years 1990 and 2000, largest differences are observed in Western Europe
and Eastern Europe. However, both regression approaches produce the same patterns for all the years, that
is, red regions for reduced tree-ring growth and green regions for increased tree-ring growth match quite
well. This can also be observed for the tree-ring predictions of Quercus in Figure 16.

When looking at the distributions of differences in Figure 16, we see that there is no bias when
comparing the predictions of the RDF and the GP models for Quercus, since the distributions are
symmetric and centered around zero. Interestingly, this is not the case for the distributions of
differences in the predictions when considering tree-rings of Fagus. In Figure 15, the distributions
are skewed and shifted by an offset that can be either positive or negative. Hence, there is no consistent
bias meaning that for some years, RDF produces larger values than GP and for some years, it is vice

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Comparing the differences between the data product at 0.5° spatial resolution and spatial
aggregations of the high-resolution product (0d0083@0d50) using the corresponding maps of the year
1990 for the RDF regression approach and Fagus (a–d) as well as for the GP regression approach and
Quercus (e–h).
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versa. However, the absolute differences in the predictions are overall rather small compared to the
variability of the estimated tree-ring indices (less than 0.2) and the produced spatial patterns are still
the same for both regression approaches. The different behavior when comparing Fagus and Quercus
might come from the different variability in the tree-ring indices for the different genera, which is also
visualized in Figure 11. Hence, the two regression approaches handle the varying amount of variability
in the target variable differently.

5.3. Tree-ring maps for selected years with extreme climate conditions

To further highlight the benefits of our upscaling approach and the derived data products, we explore tree
growth patterns for years with extreme climate conditions. The years 1976 and 2003 are known to be very
hot and dry ones (Rammig et al., 2015; Zhang et al., 2018). We further selected extreme years by
considering monthly temperature and precipitation values from the CRU TS dataset. In particular, mean
temperature and total precipitation aggregated over the 12 months have further been averaged spatially
across the whole continent to obtain an average temperature and an average precipitation for each year.
After sorting the years according to these two values, we have identified two hot and wet years (1999 and
2002), two cold and wet years (1940 and 1965), and two cold and dry years (1908 and 1942).
Corresponding maps for Fagus and Quercus obtained by the two different regression approaches are
shown in Figure 17. Note that these extreme conditions have been determined by taking average values

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15. Comparing the differences between the predictions from the RDF approach and the GP
approach for the estimated tree-ring indices of Fagus at 0.5° spatial resolution in the years 1980 (a–d),
1990 (e–h), and 2000 (i–l), respectively.
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across the whole continent into account. Hence, tree-ring indices might vary a lot when comparing local
regions with probably larger deviations from the average climate conditions.

Nevertheless, it is interesting to see how different tree genera respond differently to extreme climate
conditions. From Figure 17, we observe that beech and oak trees suffered a lot from heat and dryness in
1976 because the maps show many red and orange pixels indicating tree-ring indices smaller than one.
Interestingly, similar conditions have been less detrimental for the trees in 2003, where mainly regions in
Eastern Europe show reduced growth rates. One reasonmight be that tree growth is also influenced by the
climate conditions of the previous year and 2002 has been one of the years with largest average
precipitation. While also during hot years, tree growth in 2002 as well as in 1999 is less affected by
the high temperatures due to higher water availability caused by more precipitation. In 1999, larger green
areas can be observed in the map for Fagus, which is an indicator for increased growth rates with tree-ring
indices larger than one. For the two cold andwet years 1940 and 1965, it can be observed that reduced tree
growth especially happened in the very cold year 1940 for both Fagus andQuercus.During the two cold
and dry years 1942 and 1908, we see that tree growth for oak trees was more inhibited compared to the
growth of beech trees, which suffered more from the conditions in the very cold year 1942.

Last but not least, we want to look at tree-ring indices for the three consecutive years 2002, 2003,
and 2004, which are all hot years. The associated maps for Fagus and Quercus are shown in Figure 18.
As mentioned before, 2002 was a very wet year and hence, also large tree-ring indices greater than one
appear in a region in Central Europe, whereas the tree growth is negatively affected in Southern

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 16. Comparing the differences between the predictions from the RDF approach and the GP
approach for the estimated tree-ring indices ofQuercus at 0.5° spatial resolution in the years 1980 (a–d),
1990 (e–h), and 2000 (i–l), respectively.
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Europe. In the following extreme year 2003, there is still one larger green region visible in the maps
for Fagus, despite the very hot and dry conditions during this year. However, one year later in 2004,
this green region turned into a red one, which indicates that the impact of the extremely hot and dry
year 2003 is stronger for the tree growth in the following year 2004. This nicely highlights the lag
effect of the climate conditions on tree growth. Furthermore, the effects of climate anomalies on tree
growth also depend much on the time when the anomalies happen during a year. For example, a hot
and dry event during (late) summer might have less severe consequences for the tree growth in the
same year if large amounts of the tree-ring have been built already during the months before with

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 17. Predicted tree-ring maps of Fagus and Quercus at 0.5° spatial resolution from RDF models
and GPmodels for years with extreme climate conditions: 2003 and 1976 as two hot and dry years (a–d),
2002 and 1999 as two hot and wet years (e–h), 1965 and 1940 as two cold and wet years (i–l), as well as
1942 and 1908 as two cold and dry years (m–p).
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better conditions. The negative outcome is then visible for the year after, as in the example for the
years 2003 and 2004. In contrast, an anomaly during the early months of a year has more impact on
the tree-ring formed in the same year. Hence, the timing of the anomalies plays a crucial role as well.
All these examples show that tree-ring growth patterns can be laid out and interpreted even for years
with extreme climate conditions.

6. Conclusions and Future Work

In this study, we investigated how to best compute gridded data products of annual tree growth variability
by applying machine learning methods for regression tasks that have been trained at the site-level data.
Our approach is based on the correlation between annual tree-ring indices and climatic conditions that
were predominated throughout the same and the previous year. We have tested several prediction
strategies in leave-one-site-out experiments and found that it is important, (a) to take the climate from
the previous year into account, (b) to keep themonthly time scale of the climate variables rather than using
seasonal aggregations, and (c) to use climate anomalies by subtracting mean seasonal cycles instead of
using the plain values.

With our proposed upscaling approach, we were able to estimate gridded data products of annual tree-
ring growth at half-degree spatial resolution across Europe, focusing on the six most dominant genera
(Abies, Fagus, Larix, Picea, Pinus, Quercus) and covering the years 1902–2013. However, our approach
can easily be applied to both other regions and further genera.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 18. Predicted tree-ring maps of Fagus and Quercus at 0.5° spatial resolution from RDF models
and GP models for the three consecutive hot years 2002 (a–d), 2003 (e–h), and 2004 (i–l).
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In addition, we showed that incorporating site-specific topographic characteristics in terms of mean
seasonal cycles for climate variables from the high-resolution WorldClim dataset as additional predictor
variables leads to further improvements of the estimations. For our experiments, we used mean seasonal
cycles of the variables from the WorldClim dataset. Although being static information, the high spatial
resolution of this data turned out to be beneficial for our upscaling task. Hence, we were also able to
compute high-resolution gridded tree-ring data products across Europe for the abovementioned genera
and years at 0.0083° spatial resolution. Furthermore, the prediction performance of the machine learning
approaches might be improved in the future by incorporating actual climate data at higher spatial
resolutions if available at continental scales, which would better represent varying growth conditions
at the individual site-level of the training data and therefore allows for better exploiting the influence of
local climate on site-level tree growth.

We believe that our provided data products of spatially resolved tree-ring indices in Europe will be an
interesting data source for other studies that deal with long-term trends of tree growth as well as anomaly
detection at annual time scales. In our evaluations, we showed the effects of several extreme climate
conditions on the estimated tree-ring indices.

Our analysis also revealed that auto-correlation within the tree-ring chronologies has not been
exploited for the prediction and proper incorporation in the prediction approach is left for future research.
Besides that, there are other factors besides climate that influence the formation of the tree-rings and
which are not covered by our approach. Hence, identifying further relevant predictor variables will be of
great importance.
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A. Appendix A: Further Experimental Results
In this section, we want to shortly discuss results of further experiments that we have conducted but which did not lead to an
improved prediction performance. First, we tested whether soil properties obtained from the individual sites would be beneficial for
predicting tree-rings. For this purpose, we extracted static predictor variables from the Harmonized World Soil Database (version
1.2; http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) at the corres-
ponding sites. We used the following variables: fractions of clay, sand, silt, gravel, and organic carbon, as well as the available soil
texture classes for both top soil and sub soil levels. These soil properties were used together with the climate variables as predictors
for the regression. However, the obtained results did not change significantly compared to only using climate variables.We therefore
conclude that the static soil properties do not add any valuable information to the prediction of tree-ring indices.

In further experiments, we incorporated estimates of GPP at a monthly time scale obtained from different global vegetation
models also known as TRENDYmodels (Sitch et al., 2015). The GPP estimates of five different models have been tested: CABLE,
ISAM,LPJ,VEGAS, andVISIT.However, for all of thesemodels, we did not find any improvements in the tree-ring predictionswhen
the corresponding GPP estimates are used as additional predictor variables together with the climate variables. There seems to be no
additional information in GPP estimates for predicting tree-ring indices beyond the information already present in the climate
variables.

It has already been mentioned in Section 4.4 that we incorporated quite a large number of predictor variables by using ten
variables at a monthly time scale over two years to predict a single tree-ring index. This holds for both using the plain values of the
climate variables and using climate anomalies. In Section 4.4, we have shown that seasonal aggregation of the climate data leads to
decreased prediction performances. We further pursued a dimensionality reduction approach by applying principal component
analysis (PCA) prior to learning the regression models. The number of principal components, that is, the resulting dimension has
been varied between 5 and 50 (the seasonal aggregation has led to 70 predictor variables) and prediction performances of RDF
regression models are compared to those without applying PCA. As it can be seen from Figure A1, PCA only leads to an improved
prediction performance when using plain values of the climate predictors (blue curve), which is still lower than for the approaches
that take climate anomalies into account. With the climate anomalies, the model efficiencies saturate for an increasing number of
principal components at a performance level that is lower than for the regression approach without applying PCA. Thus, the best
results are achieved by using the full set of predictor variables at a monthly time scale.

Furthermore, we analyzed the auto-correlationwithin the chronologies aswell as within our predictions and the residuals. As one
example, we have focused on beech trees (Fagus). The largest auto-correlation (about 30% on average) in the corresponding
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chronologies has been observed for a lag of one year, whereas larger lags show negligible auto-correlation on average as it can be
observed from Figure A2. This is in line with the observations that environmental conditions of the previous year have an impact on
forming a tree-ring (see Section 4.3). Although we have also incorporated monthly values of the previous year for each predictor
variable in our cross-validation experiments, it turned out that the auto-correlation with a lag of one year is still present in the
residuals of our predictions. In fact, it is not even reduced but remains on a comparable level. Thus, simply using environmental
conditions of the previous year as additional predictor variables does not exploit the auto-correlation that is present in the tree-ring
chronologies. Further studies on this issue are required as a topic for future research. One idea is to investigate modern deep learning
methods from themachine learning literature that are designed for time series predictions and directlymodelmemory and lag effects,
for example, LSTM models (Hochreiter and Schmidhuber, 1997; Greff et al., 2017).

B. Appendix B: Detailed Lists of Experimental Results According to Six Evaluation Measures
To allow for fast and easy comparison, our experimental results are summarized in six tables. The first three tables contain the
following performance measure that have been computed to judge on the quality of the predictions: model efficiency (Table B1),
RMSE (Table B2), and Pearson correlation (Table B3). The remaining tables show the performance measures that arise from the
decomposition of theMSE as proposed by Gupta et al. (2009): the bias error (Table B4), the variance error (Table B5), and the phase
error (Table B6).

Cite this article: Bodesheim P. Babst F. Frank DC. Hartl C. Zang CS. Jung M. Reichstein M. and Mahecha MD. (2022).
Predicting spatiotemporal variability in radial tree growth at the continental scale with machine learning. Environmental Data
Science, 1: e9. doi:10.1017/eds.2022.8
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Table B1. Model efficiencies obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data of same year 0.315 0.309 0.144 0.293 0.226 0.315 0.276 0.344 0.351 0.177 0.362 0.274 0.346 0.320

of same and previous year 0.328 0.312 0.156 0.308 0.239 0.326 0.287 0.352 0.358 0.181 0.371 0.280 0.349 0.326

Monthly climate anomalies of same year 0.368 0.367 0.221 0.348 0.286 0.348 0.331 0.365 0.369 0.220 0.369 0.305 0.350 0.339

of same and previous year 0.370 0.374 0.231 0.357 0.297 0.354 0.338 0.370 0.374 0.225 0.373 0.309 0.352 0.343

Monthly climate data and monthly climate anomalies of
same year

0.367 0.360 0.214 0.350 0.284 0.347 0.328 0.364 0.363 0.215 0.377 0.302 0.353 0.338

of same and previous year 0.371 0.369 0.223 0.361 0.294 0.353 0.336 0.371 0.367 0.222 0.382 0.305 0.354 0.342

Static WorldClim data and monthly climate anomalies of
same year

0.384 0.391 0.259 0.396 0.297 0.361 0.355 0.384 0.400 0.282 0.431 0.314 0.362 0.369

of same and previous year 0.387 0.394 0.271 0.400 0.306 0.366 0.360 0.388 0.403 0.288 0.435 0.327 0.366 0.375

Abbreviations: GP, Gaussian process; RDF, random decision forest.
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Table B2. RMSEs obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data of same year 0.148 0.180 0.206 0.129 0.131 0.137 0.146 0.145 0.174 0.201 0.122 0.127 0.134 0.141

of same and previous year 0.147 0.179 0.204 0.127 0.130 0.136 0.145 0.144 0.173 0.201 0.121 0.127 0.134 0.141

Monthly climate anomalies of same year 0.142 0.172 0.196 0.124 0.126 0.134 0.140 0.142 0.172 0.196 0.122 0.124 0.134 0.139

of same and previous year 0.142 0.171 0.195 0.123 0.125 0.133 0.139 0.142 0.171 0.196 0.121 0.124 0.134 0.139

Monthly climate data and monthly climate anomalies of
same year

0.142 0.173 0.197 0.123 0.126 0.134 0.140 0.143 0.173 0.197 0.121 0.125 0.133 0.139

of same and previous year 0.142 0.172 0.196 0.122 0.125 0.133 0.140 0.142 0.172 0.196 0.120 0.124 0.133 0.139

Static WorldClim data and monthly climate anomalies of
same year

0.140 0.169 0.191 0.119 0.125 0.133 0.138 0.140 0.167 0.188 0.116 0.124 0.133 0.136

of same and previous year 0.140 0.168 0.190 0.119 0.124 0.132 0.137 0.140 0.167 0.187 0.115 0.123 0.132 0.136

Abbreviations: GP, Gaussian process; RDF, random decision forest; RMSE, root-mean-square error.
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Table B3. Pearson correlation coefficients obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data of same year 0.570 0.563 0.382 0.561 0.490 0.569 0.535 0.587 0.592 0.423 0.602 0.524 0.588 0.565

of same and previous year 0.581 0.561 0.399 0.572 0.503 0.578 0.543 0.594 0.598 0.432 0.610 0.530 0.591 0.571

Monthly climate anomalies of same year 0.608 0.608 0.474 0.596 0.540 0.592 0.578 0.604 0.608 0.470 0.607 0.553 0.592 0.582

of same and previous year 0.609 0.613 0.483 0.602 0.549 0.596 0.583 0.608 0.612 0.476 0.611 0.556 0.593 0.586

Monthly climate data and monthly climate anomalies of
same year

0.607 0.603 0.467 0.601 0.540 0.593 0.577 0.604 0.603 0.464 0.615 0.550 0.594 0.582

of same and previous year 0.610 0.609 0.475 0.608 0.548 0.597 0.583 0.609 0.606 0.473 0.618 0.553 0.595 0.585

Static WorldClim data and monthly climate anomalies of
same year

0.622 0.629 0.520 0.641 0.553 0.605 0.601 0.620 0.633 0.531 0.657 0.561 0.602 0.607

of same and previous year 0.624 0.630 0.529 0.641 0.559 0.608 0.604 0.623 0.635 0.537 0.660 0.572 0.606 0.612

Abbreviations: GP, Gaussian process; RDF, random decision forest.
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Table B4. Bias errors (�10�6) of the MSE decomposition obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data of same year 0.234 3.384 3.214 0.005 0.155 0.453 0.008 1.233 3.400 34.294 0.724 2.502 2.246 2.540

of same and previous year 0.442 20.605 2.007 0.101 0.238 0.273 0.161 0.062 0.613 108.260 0.604 0.523 1.891 1.699

Monthly climate anomalies of same year 0.071 0.370 2.857 0.030 0.012 0.135 0.014 0.631 1.368 5.727 0.472 0.327 2.019 0.902

of same and previous year 0.093 0.091 2.354 0.090 0.077 0.135 0.019 0.520 1.508 5.539 0.471 0.207 1.939 0.824

Monthly climate data and monthly climate anomalies
of same year

0.196 1.128 0.709 0.267 0.156 0.258 0.004 0.930 1.702 15.039 0.497 0.155 1.732 1.008

of same and previous year 0.242 1.050 3.219 0.176 0.048 0.173 0.018 0.309 1.083 18.126 0.306 0.026 1.500 0.672

StaticWorldClim data and monthly climate anomalies
of same year

0.294 0.168 1.831 0.250 0.014 0.083 0.050 1.255 0.455 4.416 0.290 0.061 1.900 0.611

of same and previous year 0.306 0.024 1.462 0.244 0.038 0.083 0.052 0.783 0.292 11.261 0.366 0.076 1.918 0.678

Note. Due to the indicated scaling factor, all bias errors are smaller than 10�3.
Abbreviations: GP, Gaussian process; MSE, mean-square error; RDF, random decision forest.
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Table B5. Variance errors of the MSE decomposition obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data of same year 0.009 0.013 0.022 0.008 0.009 0.008 0.010 0.006 0.007 0.014 0.004 0.005 0.004 0.005

of same and previous year 0.009 0.011 0.021 0.008 0.008 0.007 0.009 0.006 0.007 0.013 0.004 0.004 0.004 0.005

Monthly climate anomalies of same year 0.006 0.009 0.017 0.006 0.006 0.006 0.007 0.005 0.006 0.012 0.004 0.004 0.004 0.005

of same and previous year 0.006 0.008 0.015 0.005 0.006 0.005 0.006 0.005 0.006 0.012 0.004 0.004 0.004 0.005

Monthly climate data and monthly climate anomalies of
same year

0.006 0.010 0.018 0.006 0.007 0.006 0.007 0.005 0.007 0.013 0.004 0.004 0.004 0.005

of same and previous year 0.006 0.009 0.016 0.006 0.006 0.006 0.007 0.005 0.006 0.012 0.004 0.004 0.004 0.005

Static WorldClim data and monthly climate anomalies of
same year

0.006 0.009 0.017 0.005 0.006 0.006 0.007 0.005 0.006 0.010 0.003 0.004 0.004 0.004

of same and previous year 0.006 0.008 0.016 0.005 0.006 0.006 0.006 0.005 0.006 0.009 0.003 0.004 0.004 0.004

Abbreviations: GP, Gaussian process; MSE, mean-square error; RDF, random decision forest.
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Table B6. Phase errors of the MSE decomposition obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables

RDF GP regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data of same year 0.013 0.019 0.020 0.009 0.009 0.011 0.012 0.015 0.023 0.026 0.011 0.011 0.014 0.014

of same and previous year 0.013 0.021 0.020 0.009 0.009 0.011 0.012 0.015 0.023 0.028 0.011 0.012 0.014 0.015

Monthly climate anomalies of same year 0.014 0.020 0.022 0.010 0.009 0.012 0.013 0.015 0.023 0.026 0.011 0.011 0.014 0.015

of same and previous year 0.014 0.021 0.022 0.010 0.010 0.012 0.013 0.015 0.023 0.026 0.011 0.011 0.014 0.015

Monthly climate data and monthly climate anomalies of
same year

0.014 0.020 0.021 0.009 0.009 0.012 0.013 0.015 0.023 0.026 0.011 0.011 0.014 0.014

of same and previous year 0.014 0.021 0.022 0.009 0.009 0.012 0.013 0.015 0.023 0.026 0.011 0.012 0.014 0.015

Static WorldClim data and monthly climate anomalies of
same year

0.014 0.019 0.020 0.009 0.009 0.012 0.012 0.015 0.022 0.025 0.010 0.011 0.014 0.014

of same and previous year 0.014 0.020 0.020 0.009 0.009 0.012 0.012 0.015 0.022 0.026 0.010 0.011 0.014 0.014

Abbreviations: GP, Gaussian process; MSE, mean-square error; RDF, random decision forest.
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