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Abstract

Shumyatsky and the second author proved that if G is a finitely generated residually finite p-group
satisfying a law, then, for almost all primes p, the fact that a normal and commutator-closed set of
generators satisfies a positive law implies that the whole of G also satisfies a (possibly different) positive
law. In this paper, we construct a counterexample showing that the hypothesis of finite generation of the
group G cannot be dispensed with.
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1. Introduction

A group word is called positive if it does not involve any inverses of the variables. If
α and β are two different positive words, a subset T of a group G is said to satisfy the
positive law α ≡ β if every substitution of elements of T for the variables gives the
same value for α and for β. The degree of the law is the maximum of the lengths of
the words α and β. A prominent positive law is the Mal′cev law Mc(x, y) given by
the relation αc(x, y)≡ βc(x, y), where αc and βc are defined by α0 = x , β0 = y, and
the recursive relations

αc = αc−1βc−1 and βc = βc−1αc−1.

Thus M1(x, y) is the abelian law xy ≡ yx , and M2(x, y) is the law xyyx ≡ yxxy.
Throughout this paper, when we speak about a Mal′cev law Mc(x, y), we always
assume that c ≥ 1.
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Every nilpotent group of class c satisfies the law Mc(x, y), and an extension of
a nilpotent group of class c by a group of finite exponent e satisfies the positive
law Mc(xe, ye). Mal′cev asked whether, conversely, a group that satisfies a positive
law is nilpotent-by-(finite exponent). This question was answered in the negative by
Olshanskii and Storozhev in [7]. However, the answer is positive for a large class of
groups: Burns and Medvedev proved in [2] that a locally graded group satisfying a
positive law is nilpotent-by-(locally finite of finite exponent). (See also the paper [1]
by Bajorska and Macedońska.)

An interesting question regarding positive laws is the following: under what
conditions does a positive law on a set T of generators of a group G imply a (possibly
different) positive law on the whole of G? This problem is inspired by the following
particular but important case: is it true that a positive law on the set of all values of
a word w in a group G implies a positive law on the verbal subgroup w(G)? One of
the conditions that must be certainly fulfilled in the first question is that the set T of
generators has to be large in some sense. For example, a free product G = P ∗ Q
of two finite p-groups is generated by the set T = P ∪ Q that satisfies a positive law
of the form xq

≡ 1, where q is a power of p, but G does not satisfy a positive law
unless |P|, |Q| ≤ 2. On the other hand, the set of values of a word is to some extent
large; note that it is a normal subset and, on occasions, also commutator-closed (that
is, closed under taking commutators of its elements). This happens, for example, with
the simple commutators [x1, . . . , xm], and with the derived words.

Shumyatsky and the second author [4] considered the question of the previous
paragraph in the realm of finitely generated residually finite p-groups. (By a residually
finite p-group we mean a group in which the intersection of all the normal subgroups
of finite p-power index is trivial. Thus we are not speaking about p-groups, that is
groups all of whose elements have p-power order, that are at the same time residually
finite.) One of their main results is the following: for every n, there exists a finite set
P(n) of primes such that, if p 6∈ P(n) and G is a finitely generated residually finite
p-group that satisfies a law and can be generated by a normal and commutator-closed
subset T satisfying a positive law of degree n, then G also satisfies a positive law. Thus
‘normal and commutator-closed’ is a valid sense of largeness in the above setting (for
example, for soluble residually finite p-groups), a fact that can be applied to several
important instances of the problem for word values and verbal subgroups.

Our goal in this paper is to show that the hypothesis of finite generation of G cannot
be dispensed with in the previous result. More precisely, we prove the following
result.

THEOREM 1.1. For every c ≥ 3, there exists an infinitely generated metabelian group
G with the following properties.

(i) G is a residually finite p-group for all primes p.
(ii) G can be generated by a commutator-closed normal subset T satisfying the

positive law Mc(x, y).
(iii) G does not satisfy any positive laws.
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The main tool that is needed for the construction of this counterexample is to
characterize when a union of cosets of an abelian normal subgroup satisfies a Mal′cev
law, provided that the representatives of the cosets commute with each other. This is
the goal of Section 2. Once this characterization is obtained, in Section 3 we proceed to
construct the counterexample, and prove that our main theorem, Theorem 1.1, holds.
It is noteworthy that the theory of monomial ideals in polynomial algebras plays an
important role in the proof.

2. The Mal′cev law on unions of cosets of an abelian normal subgroup

If G is a group and A is an abelian normal subgroup of G, then every element
t ∈ G defines an automorphism of A by conjugation, which we denote by the same
letter t . Since the set End(A) of endomorphisms of A is a ring, we can combine these
automorphisms with the operations of addition and composition, which we denote by
juxtaposition.

We begin by determining when two elements in cosets t A and u A, with t and u
commuting, satisfy a Mal′cev law.

LEMMA 2.1. Let G be a group, and let A be an abelian normal subgroup of G.
If t, u ∈ G commute and a, b ∈ A, then the Mal′cev law Mc(x, y) holds for the
substitution x = ta, y = ub if and only if

a fc(u,t) = b fc(t,u),

where

fc(X, Y )= (X − 1)
c−2∏
i=0

(X2i
Y 2i
− 1).

PROOF. We define, for every c ≥ 1, the word wc(x, y)= βc(x, y)−1αc(x, y). The
lemma will be proved if we show that

wc(ta, ub)= a fc(u,t)b− fc(t,u).

We argue by induction on c. If c = 1, then

w1(ta, ub)= (ubta)−1(taub)= (utbt a)−1(tuaub)= au−1b1−t ,

and the result is true. Assume now that c > 1. Since

wc = β
−1
c αc = α

−1
c−1β

−1
c−1αc−1βc−1 = w

αc−1
c−1 w

−1
c−1,

it follows from the induction hypothesis that

wc(ta, ub)= (a fc−1(u,t)b− fc−1(t,u))αc−1(ta,ub)(a− fc−1(u,t)b fc−1(t,u)). (2.1)

Now, since A is abelian, in order to calculate the conjugate in this last expression, we
only need to know the value of αc−1(ta, ub) modulo A. Since αc−1 has weight 2c−2

in both x and y, and t and u commute, it follows that

αc−1(ta, ub)≡ αc−1(t, u)≡ t2c−2
u2c−2

mod A.

https://doi.org/10.1017/S1446788711001145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001145


292 C. Acciarri and G. A. Fernández-Alcober [4]

By putting this value into (2.1), we get

wc(ta, ub)= a fc−1(u,t)(t2c−2
u2c−2

−1)b− fc−1(t,u)(t2c−2
u2c−2

−1),

which concludes the proof. 2

We now characterize when the unions of cosets of A that we are interested in satisfy
a Mal′cev law.

THEOREM 2.2. Let G be a group, and let A be an abelian normal subgroup of G.
Consider a union of cosets T = t1 A ∪ · · · ∪ tn A ∪ A, where t1, . . . , tn commute with
each other. Suppose that t1, . . . , tn , as endomorphisms of A, satisfy the following
conditions.

(i) (ti − 1)c = 0 when i = 1, . . . , n.
(ii) (ti − 1)(ti t j − 1)c−1

= 0 when 1≤ i 6= j ≤ n.

Then the subset T satisfies Mc(x, y). Conversely, if T satisfies Mc(x, y), and if G is
nilpotent and A is torsion-free, then t1, . . . , tn satisfy conditions (i) and (ii) above.

PROOF. The law Mc(x, y) holds in the subset T if and only if it holds for every
substitution x = ta, y = ub, where t, u ∈ {1, t1, . . . , tn} and a, b ∈ A. By considering
the case where a = 1 and b is arbitrary, it readily follows from Lemma 2.1 that T
satisfies Mc(x, y) if and only if fc(t, u) annihilates A for every t, u ∈ {1, t1, . . . , tn}.
Put differently, a necessary and sufficient condition for T to satisfy Mc(x, y) is that the
substitution X 7→ ti in fc(X, 1) and fc(X, X), and the substitution X 7→ ti , Y 7→ t j in
fc(X, Y ), where i 6= j , always induce the zero endomorphism of A.

Since

fc(X, 1)= (X − 1)c
c−2∏
i=1

(X2i
−1
+ · · · + X + 1), (2.2)

fc(X, X)= fc(X, 1)
c−2∏
i=0

(X2i
+ 1), (2.3)

and

fc(X, Y )= (X − 1)(XY − 1)c−1
c−2∏
i=1

((XY )2
i
−1
+ · · · + XY + 1), (2.4)

it is clear that, if conditions (i) and (ii) of the statement hold, then T satisfies Mc(x, y).
This proves the first assertion of the theorem.

Conversely, suppose now that T satisfies Mc(x, y), that G is nilpotent and that A is
torsion-free. By (2.2), (2.3), and (2.4),

fc(X, 1)= (X − 1)cgc(X), fc(X, X)= (X − 1)chc(X), (2.5)
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and
fc(X, Y )= (X − 1)(XY − 1)c−1gc(XY ), (2.6)

for some polynomials gc(X), hc(X) ∈ Z[X ] that are coprime to X − 1. Now we
claim that, for every polynomial j (X) ∈ Z[X ] that is coprime to X − 1, and for
every automorphism ϕ of A that is induced by conjugation by an element of G, the
endomorphism j (ϕ) is injective. Once this is proved, it follows from (2.5) and (2.6),
and from the discussion in the first paragraph of the proof, that (i) and (ii) must hold.

Hence it only remains to prove the claim. Let k be the nilpotency class of G. Since
j (X) is coprime to X − 1, by using Bézout’s identity in Q[X ] we get an expression of
the form

p(X)(X − 1)k + q(X) j (X)= m, (2.7)

where p(X), q(X) ∈ Z[X ] and m is a positive integer. Now, G is nilpotent of class k
and ϕ is induced by conjugation by an element of G, and so (ϕ − 1)k = 0. By
substituting ϕ for X in (2.7), it follows that q(ϕ) j (ϕ)= m1A. Taking into account
the fact that A is torsion-free, we conclude that j (ϕ) is injective, as desired. 2

3. Construction of the counterexample

The key to our counterexample is the next lemma, where we show that for every
n ≥ c there exists a nilpotent group Gn that can be generated by a normal and
commutator-closed subset Tn satisfying Mc(x, y), but nevertheless Gn does not satisfy
any law Mk(x, y) for k ≤ n. Thus the ‘distance’ between the Mal′cev laws satisfied
by Tn and Gn increases as n goes to infinity.

LEMMA 3.1. Let c ≥ 3 be a fixed integer. Then, for every n ≥ c there exists a finitely
generated nilpotent torsion-free group Gn = Bn n An with the following properties.

(i) An and Bn are abelian groups. Thus Gn is metabelian.
(ii) Bn can be generated by n elements t1, . . . , tn such that the subset Tn =

t1 An ∪ · · · ∪ tn An ∪ An satisfies the law Mc(x, y).
(iii) Gn does not satisfy Mn(x, y). More precisely, for every e ≥ 1, the law Mn(x, y)

is not satisfied in the coset (t1 . . . tn)e An .

PROOF. The idea of the proof is to put An = Zd for some d (to be determined in
the course of the proof), and to let t1, . . . , tn be commuting matrices in GLd(Z) that
fulfil the necessary conditions for Tn to satisfy Mc(x, y), and for Gn not to satisfy
Mn(x, y). These are the conditions that can be read in Theorem 2.2. The matrices
t1, . . . , tn will arise from the regular representation of an appropriate quotient of the
algebra of polynomials Q[X1, . . . , Xn].

Consider the ideal

a= ((X1 − 1)c, . . . , (Xn − 1)c, (X i − 1)(X i X j − 1)c−1
| 1≤ i 6= j ≤ n)

of Q[X1, . . . , Xn]. Under the isomorphism X i 7→ X i + 1, this ideal maps onto

b= (X c
1, . . . , X c

n, X i (X i + X j + X i X j )
c−1
| 1≤ i 6= j ≤ n).
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One can readily check that b is contained in the monomial ideal

c= (X i1
1 · · · X

in
n | i1 + · · · + in = c and i j ≥ 2 for some j);

note that c ≥ 3 is necessary for this. Also, if m is the maximal ideal of Q[X1, . . . , Xn]

generated by all the indeterminates X1, . . . , Xn , then mn+1 is contained in c, since
n ≥ c.

Let e ≥ 1 be an arbitrary integer. Since

(X1 + 1)e(X2 + 1)e · · · (Xn + 1)e − 1≡ e(X1 + X2 + · · · + Xn) mod m2,

it follows that

((X1 + 1)e(X2 + 1)e · · · (Xn + 1)e − 1)n ≡ en(X1 + X2 + · · · + Xn)
n mod mn+1.

This last congruence also holds modulo c, since mn+1
⊆ c. As a consequence,

((X1 + 1)e(X2 + 1)e · · · (Xn + 1)e − 1)n ≡ enn!X1 · · · Xn mod c. (3.1)

On the other hand, by [3, Lemma 2, p. 67],

X1 · · · Xn 6∈ c,

since c is a monomial ideal and X1 · · · Xn is not divisible by any of the generators in
the definition of c. Thus, it follows from (3.1) that

((X1 + 1)e(X2 + 1)e · · · (Xn + 1)e − 1)n 6∈ c. (3.2)

Now put A =Q[X1, . . . , Xn]/c, and let d be the dimension of A as a Q-vector
space. The set

B = {X i1
1 · · · X

in
n + c | X i1

1 · · · X
in
n is not a multiple of a generator of c}

is a basis of A, by [3, Proposition 4, p. 229]. We order B first by total degree of
the monomials, and then arbitrarily among monomials of the same degree. Let us
consider the regular representation ϕ of A in Md(Q), where matrices are taken with
respect to the basis B, and put ti = ϕ(X i + 1+ c). Obviously, t1, . . . , tn commute
with each other. Also, since the basis B consists only of monomials, and these are
ordered according to their degree, the matrices ti have only 0 and 1 entries, and are
upper unitriangular. In other words, ti ∈U Td(Z), the group of upper unitriangular
matrices over the integers.

Hence, we can consider the semidirect product Gn = Bn n An of the groups An =

Zd and Bn = 〈t1, . . . , tn〉, with respect to the natural action of Bn on An . Clearly, Gn
satisfies (i). Since U Td(Z) is a torsion-free group (see [8, p. 128]), Bn is also torsion-
free. Hence the same is true for Gn . On the other hand, since An and Bn are abelian,
γi (Gn)= [An, Bn,

i−1. . ., Bn] for all i ≥ 1 (see [6, Ch. 3, Lemma 15.2]). Since Bn is
contained in the unitriangular group, it follows that Gn is a nilpotent group.
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On the other hand, since X c
i and X i (X i + X j + X i X j )

c−1 lie in c, it follows
readily that (ti − 1)c = (ti − 1)(ti t j − 1)c−1

= 0 for all 1≤ i 6= j ≤ n. Also, as a
consequence of (3.2), (te

1 · · · t
e
n − 1)n 6= 0 for every e ≥ 1. Thus we can conclude

from Theorem 2.2 that Tn satisfies Mc(x, y), and that Mn(x, y) is never satisfied in a
coset of the form te

1 · · · t
e
n An , where e ≥ 1. 2

We are now ready to prove our main theorem, Theorem 1.1.

PROOF OF THEOREM 1.1 We use the same notation as in Lemma 3.1. We define G
to be the restricted direct product

∏
n≥c Gn . Note that G is metabelian. Since Gn is

a finitely generated nilpotent torsion-free group, it is a residually finite p-group for all
primes p, by a result of Gruenberg [5]. As a consequence, the same is true for G and
(i) holds.

Since the direct product G is restricted and Gn = 〈Tn〉 for all n, it follows that the
subset T =

⋃
n≥c Tn generates G. By the definition of Tn , it is clear that it is a normal

subset of Gn , and also commutator-closed. (Recall that t1, . . . , tn commute with each
other.) As a consequence, T is commutator-closed and a normal subset of G. Also,
since every Tn satisfies the law Mc(x, y), so also does T : note that two elements from
Tn and Tm , where n 6= m, commute. Thus we obtain (ii).

Finally, let us see that G cannot satisfy a positive law. Otherwise, by the result
of Burns and Medvedev mentioned in the introduction, G has a normal nilpotent
subgroup N such that G/N has finite exponent. Let k and e be the class of N
and the exponent of G/N , respectively. Then the subgroup Ge

k satisfies the law
Mk(x, y) and, in particular, the same is true for the coset (t1 · · · tk)e Ae

k . Now, it
follows from Theorem 2.2 that the endomorphism (te

1 · · · t
e
k − 1)k is zero on the

abelian group Ae
k . Since Ak is a torsion-free group, (te

1 · · · t
e
k − 1)k is also zero as

an endomorphism of Ak . This means that the coset (t1 · · · tk)e Ak satisfies Mk(x, y),
which is a contradiction, according to part (iii) of Lemma 3.1. 2
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