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INVERSE SEMIGROUPS OF HOMEOMORPHISMS ARE 
HOPFIAN 

BRIDGET B. BAIRD 

If X is a nonempty topological J\ space then the set of all homeomorphisms 
whose domains and ranges are closed subsets of X forms a semigroup under 
partial composition of functions. We call it IF(X). If, in a semigroup, every 
element a is matched with a unique element b such that aba = a and bab = b 
then the semigroup is an inverse semigroup (b is called the inverse of a and is 
denoted by a - 1)- We have that IF(X) is an inverse semigroup with the alge­
braic inverse of a m a p / being just the inverse m a p / - 1 . In this paper we examine 
epimorphisms from IF(X) onto IF(Y). The main theorem gives conditions 
under which an epimorphism must be an isomorphism. A consequence of this 
theorem is that for many spaces X (including all finite w-dimensional Euclidean 
cubes In, all finite ^-dimensional spheres Sn, and the Cantor discontinuum cê) 

every epimorphism from IF(X) onto IF(Y) must be an isomorphism (F is an 
arbitrary first countable Ti space). Thus for all of these spaces the semigroup 
IF{X) is hopfian (every surjective endomorphism is an isomorphism). Another 
theorem shows that IF(R) is also hopfian (R denotes the real line). In [1] a 
research article stated some of these results. The case where X is the unit 
interval or the Cantor discontinuum was mentioned. The present paper extends 
those results but uses entirely different techniques. 

These inverse semigroups IF{X) behave nicely in the sense that IF(X) and 
IF(Y) are isomorphic if and only if X and F are homeomorphic (see [4]). In 
fact, if </> is an isomorphism from IF(X) onto IF{ Y) then there is a homeomor-
phism h from X onto F such that </>(/) = h of o hrl for a l l / Ç IF(X). Idempo-
tents (elements/ such t h a t / o / = / ) in IF(X) are identity maps on closed 
subsets K of X and will be denoted by (K). The identity map on the point y 
will be denoted by (y). The zero of the semigroup IF(X) is just the empty map 
and will be denoted by 0. Throughout this paper we shall assume that \X\ > 2, 
X is r2 , and Y is nontrivial 1\ (i.e., Y has more than one point). We also 
assume that <j> is an epimorphism from IF(X) onto IF(Y). Note that we then 
have that 0(0) = 0 and (</>(/))-1 = </>(/-1)- Epimorphisms carry idempotents 
to idempotents and so if (F) t IF(X) then 4>(F) = (R) for some closed subset 
R of F. Conversely, if (R) Ç IF(Y) then there exists a closed subset F of X 
such that (t>{F) = (R) (see [2], p. 57). The notation (x, y) will denote the 
homeomorphism whose domain is the point x and whose range is the point y. 
McAlister [3] has shown that if 4>(x, y) ^ 0 for some x, y G X then </> is an 
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isomorphism. If y 6 F let Dy = C\ { F : </>(F) = (y)}. The collection { F : (j>(F) = 
(y)\ satisfies the finite intersection property (if <j)(F) = (y) = 4>(H) then 
<f*(F C\H) = 4>((F) o (H)) = <j>(F) o c/)(N) = (y)). Thus if X is compact then 
Dy j± 0 for all y e Y. 

LEMMA 1. Suppose </> is an epimorphism from IF(X) onto IF(Y). (a) Let 
k G IF{X) be such that K = dom k (domain of k), H = ran k (range of (&)), 
<t>(K) = (i?) and #(-ff) = (•S). 77&ew 4>(k) maps R homeomorphically onto S. (b) 
Suppose 4>(F) = (T), R C T and R is homeomorphic to S. Then there exist 
homeomorphic sets K and H such that H Q F, <t>(H) = (R) and 4>{K) = (S). 

Proof, (a) We have tha t 

dom <t>(k) = dom ((4>(k))~l o <j>(k)) = dom (</>(&_1) o (/>(&)) 

= dom <t>(k~l o k) = dom </>(i£) = # . 

Likewise ran <j>(k) = S. 
(b) Since R is homeomorphic to S there exists & Ç IF(X) such tha t </>(&) maps 

R homeomorphically onto S. Suppose dom k = J and ran k = G. Then 
(/>(/) = cKAr1 o k) = (R) and </>(G) = (S). Now 

0(/ n F) = 0(/) o 0 (F) = <#> o <r> = (R n r> = <#>. 

Let i f = J H F and 2£ = fe(#). Then <t>(H) = (R), H Q F and H is homeo­
morphic to K. We also have tha t 

<t>(K) = d>(k(H)) = ct>(ko (H)ok~l) =<\>(k) ocl>(k)-1 = (ci>(k)(R)) =(S). 

LEMMA 2. Suppose </>(F) = (p) for some p Ç F awcZ compact F Ç X . T ^ n 

A ^ 0 / o r a// 3/ G Faw(i £>, = P\ {i£ : </>(i£) = (y), X" compact]. 

Proof. We have tha t 

Dp = Fn{K: <j>{K) = (p)} = n{FC\K: 4>{K) = {p)\ C 

H {K : 0(2f ) = <£>, K compactj C £>p. 

Thus P p = P\ {X : <t>(K) = (p), K compact} and since the lat ter collection 
has the finite intersection property, Dv 9^ 0. Since F is compact, (F) generates 
an ideal % whose idempotents are all identities on compact sets. Now 4>(^) is 
an ideal of IF(Y) which contains (p) and so contains all maps of the form (y). 
Therefore for any y Ç Y, there is a compact set K such tha t 4>{K) = (y). We 
now apply the first par t of the proof to obtain the fact tha t Dy 7^ 0 for all y and 
Dy = H {K : <I>(K) = (y), K compact}. 

Definition 3. X will be called admissible (respectively strongly admissible) if 
whenever F is a proper compact subset of X (respectively F is a compact 
subset of X), x (z F and U is any neighborhood of x, then there exists a homeo-
morphism h from F into U such tha t A(x) = x. 

Remark. The space Sl is admissible but not strongly admissible. All noncom-
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pact admissible spaces are strongly admissible. T h e class of admissible spaces 
is not productive (e.g., S1 X S1) bu t the class of strongly admissible spaces is 
productive. 

PROPOSITION 4. The product of strongly admissible spaces is strongly admis­
sible. 

Proof. Let I l i € ^ X ; be a product of strongly admissible spaces, let K be a com­
pact subset of this product , let a £ K and let G be a neighborhood of q. Then 
there exists a finite set {1, 2, . . . , N\ and open sets Gj Q X j for j = 1, . . . , N 
such t ha t 

q Ç Pi-l(Gl)^...r\pN~'{GN) QG 

where pj denotes the projection map onto Xj. Since each Xj is strongly admis­
sible there exist homeomorphisms hj (j = 1, . . . , N) from pj(K) into Gj such 
tha t hj(qj) = q^. Define h from YljeJ pj(K) into Cu= i p fl {G f) by 

(h(x))j = hj(xj) for j = 1, . . . , N 

(h(x))j = Xj otherwise. 

Then h is a homeomorphism and h(q) = q. Since K Ç Y[jeJ pj(K) and 
Pl;=i Prl{Gj) ^ G the proof is complete. 

PROPOSITION 5. In, Rn, 7°°, ^ (the Cantor discontinuum), the space of rational 
numbers and the space of irrational numbers are all strongly admissible. Sn is 
admissible. 

Proof. I t follows from well known results t ha t I, R, *io , the rat ionals and the 
irrationals are strongly admissible and tha t Sn is admissible. Now apply 
Proposition 4. 

Remark. Note t ha t the two point discrete space D is not even admissible bu t 
the product of D with itself a countable number of times is strongly admissible 
since it is homeomorphic to %f. 

LEMMA 6. Suppose X is admissible and (j>(J) = (p) for some p (z Y and com­
pact J Q X. Let y, w £ Y with y ^ w. Then Dy C\ Dw = 0. 

Proof. We know tha t Dy ^ 0 for all y by Lemma 2. Now suppose 
Dvr\Dw ?± 0. Let x e DyC\Dw and let T be such t ha t 4>(F) = (y). Then 
there exists z G F such t ha t z $ Dw (otherwise if K is such t ha t 4>(K) = (w) 
and F C K then <j>{F) — 0 which is a contradict ion) . Now z $ Dw and so there 
exists W such tha t <t>(W) = (w) bu t z Q W. The set W is closed and so let U 
be a neighborhood of z where W C\ U = 0. We have t ha t X is admissible, 
z Ç F and s Ç £ /and so £/ contains a copy of F. Call it Z. Then $ ( Z ) = (q) 
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for some q Ç F (see Lemma 1). Now Z C\W = 0 and so Z C\ Dw = 0. Hence 
^ w a n d g ^ ^ x G ^ n Dw). Let 0(W \J Z) = (R). Then w Ç F and 

g e R((w) = 0(W> = * ( l f > o ^ U Z ) = <w)o (F) = ({w\ H i ? » . 

By Lemma 1 choose homeomorphic sets if and H where K C W^J Z, 
4>(K) = ({w, g} ) and 0(i?) = ({y, w}). Let & map if onto iJ and let 
S = KC\W, Q = KC\Z. Then 0(5) = (w) and 0(C) = (q). But 5 H Q = 0 
( i r n Z = 0). Now fe(5) C if and so 0(fe(S)> = (y) or (w). Without loss of 
generality suppose <j)(k(S)) = (y). Then <t>{k{Q)) = (w). Since S H Ç = 0 
we have that k (S) H k (Q) = 0 also. But x G & (5) H fe (Q) since x £ Dv C\ Dw. 
This is a contradiction. Thus Dv C\ Dw = 0. 

LEMMA 7. Suppose X is admissible and <t>(J) = (p) for some compact set J. 
Then \Dy\ = 1 for all y G F. 

Proof. Suppose |Z>J > 1 for some y £ F. Let x, z £ Dy where x 5̂  2. Let t/ 
be a neighborhood of x such that z (? [/. Let F be such that <I>(F) = (y) and 
since X is admissible let & be a homeomorphism from F into [/where k(x) = x. 
Then 4>(k(F)) = (w) for some w Ç F. Now w ^ y since z (? k(F) and 2 £ FV 
We show that x £ A*- Suppose i? is such that <t>(H) — (w). Then 
(f>(H r\ k(F)) = (w). Now k~l(Hr\k(F)) Q F and is homeomorphic to 
HC\k(F). Therefore <t>{k~l{H C\ k{F))) = (y). Thus x Ç k'^H C\ k(F)). 
But since &(x) = x this means that x £ H r\ k(F). Therefore x £ H and so 
also x G Dw. But then P w C\ Dy 9e 0. This is a contradiction by the last lemma. 
Thus \DV\ = 1 for all y Ç F. 

Remark. If </>(/) = (p) for some £ Ç F and compact / then the last lemma 
says that for each y £ F there is associated an x Ç X such that F>y = {xj. 
Define a map /& from F into X by h(y) = x. The function /& will be one-to-one 
by Lemma 6. 

LEMMA 8. Suppose X is admissible and <t>{J) = (p) for some compact J. Then 
for every y £ F and every neighborhood U of h(y) there exists a closed set F such 
that F C U and 0(F) = (y). 

Proof. Suppose not. Let x = h(y) and let U be a neighborhood of x such that 
for all F with <t>(F) — (y) there exists z £ F — U. We first show that the col­
lection {F — U : <t>(F) = (y)} satisfies the finite intersection property (clearly 
the sets are nonempty and closed). Consider Pll=i (Ft — U) = (Pu=i Ft) — U 
where 0(F*) = (y) for a l i i = 1 . . . n. We have that 0(Pw=i Ft) = (3;) also and 
hence (Pll=i Ft) — U 9e 0 by assumption. Therefore {F — £/ : 0(F) = (3/)) 
satisfies the finite intersection property. Now 

C\ {F : 0(F) = (y)} = C\ {F : 0(F) = (y), F compact} 

by Lemma 2. Therefore 

H {F - U: 0(F) = (y)} = H {F - U : 0(F) = (y), F compact} Ç if 
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where K is compact and <t>(K) = (y). Therefore H { F — U : 0 ( F ) = (y)} ^ 0. 
But 

C\\F-U: 0 ( F ) = (y)} Q^{F: 0 ( F ) = (y)} = {x}. 

Thus r\ {F — £/ : 0 ( F ) = (y)} = {x}. But x ^ U. This is a contradiction. 

LEMMA 9. Suppose X is admissible and <t>(J) = (p) for some p £ Y and com­

pact J. Suppose also that 4>{k)(y) = z for some k £ IF(X) where y, z Ç F. Fhen 

k(h(y)) = h(z). 

Proof. Let dom k = K and let F be any closed set where F Q K and 
0 ( F ) = (y) (see Lemma 1). Then h(y) Ç F and 

0 (&o (F) ) = «(E) o 0 ( F ) = 0 ( £ ) o ( : y ) = <y, *(£) (?)> = (y, *>. 

T h u s the range of 0(& o (F) ) is 2. But by Lemma 1 this means tha t 
0(&(F)) = (z) and so h(z) (E &(F). By the last lemma we can take F inside 
a rb i t ra ry neighborhoods f/of h(y) and so k(h(y)) = h(z). 

Notation. Wri te ya —> 3> if the net {ja} converges to 3;. 

LEMMA 10. Suppose X is admissible and 0 ( 7 ) = (p) for some p d Y and 
compact J. Then Y is not discrete. 

Proof. Suppose F i s discrete. We first show tha t h(Y) mus t also be discrete. 
Hence suppose h(Y) is not discrete and let h(ya) —-> h(y) where ya 9^ y for all a. 
Since {ya} is homeomorphic to {ya} U {3;} there exists a homeomorphism k 
such tha t 0(&) maps {ya} U {3/} onto {ya}. Let <i>(k)(y) = 3^. By Lemma 9 we 
have tha t k(h(y)) = h(y0) and k(h(ya)) £ {/&(?«)} f o r a 1 1 «• B u t M3O —> A(y) 
and since & is a homeomorphism we have tha t k(h(ya)) —+ k(h(y)). This is a 
contradiction since k(h(y)) = h(y^). T h u s h(Y) is discrete. We may now 
choose h(y) (E h(Y) and an open neighborhood U of h(y) such t h a t 
U H h(Y) = {h(y)\. Let F Q U be such tha t 0 ( F ) = (3/) and F is compact . 
If | F | = 1 then 0 is an isomorphism (see [3]) and hence X is homeomorphic 
to F. But then X is discrete and clearly cannot be admissible (recall t h a t 
\X\ > 2) . Therefore I F | ^ 2. Let x £ F w i t h x ^ ^(3/) and let F b e a neighbor­
hood of x such tha t F Ç {/ bu t ^(3/) $ F. Then since X is admissible there 
exists a h o m e o m o r p h i s m / from F into F such t h a t / ( x ) = x. The s e t / ( F ) is 
homeomorphic to F and so 0 ( / ( F ) ) = (2) for some 2. Bu t 

/ ( F ) çz 7 Ç Z - i ( F ) 

and s o / ( F ) H F>2 = 0. This is a contradiction. T h u s F is not discrete. 

Recall t ha t a completely (or hereditari ly) normal space X is one where if A 
and B are subsets of X with A C\ B = $ = Â C\ B then there are disjoint 
open sets U and V such t ha t A C [/ and F> C F. All metric spaces are com­
pletely normal. 
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LEMMA 11. Let X be completely normal and let F and H be subsets of X where 
FC\H = 0, x $'_ FU H, F = FU {x} and H = HKJ \x). Then there exist 
disjoint open sets U and V such that F Ç U, H Q V and Û P\ V = {x}. 

Proof. Let Z = X — {x}. Then Z is normal, F and H are closed in Z. T h u s 
there are open subsets A and B of Z such tha t F Ç A, H Ç B and A C\ B = 0. 
Now 4̂ = D H Z and B = E C\ Z where D and £ are open in X. 
Let U = D - {x} and V = E - {x}. 

T H E O R E M 12. Suppose X is a completely normal space which is admissible, Y 
is nontrivialfirst countable 7 \ , 0 is an epimorphism from IF(X) onto IF(Y) and 
(t>(J) = (p) for some p £ Y and compact set J. Then 0 is an isomorphism. 

Proof. By Lemma 10 the space Y is not discrete. Let yn —> y where yn j* y 
for all n. We first show tha t the sequence {h(yn)\ accumulates a t h(y). Suppose 
not. Then there exists an open set U such tha t h(y) £ U but h(yn) (? U for all 
n. In fact, we can choose f/so tha t M3O $ V for all n. Let F = X — £/. Then 
for all w, ^(yw) (z X — Û Ç1 F. The set X — Û is open and so for all n 
there exists Fn such tha t &(;yw) G Fn Ç X — £7 Ç T7 and <j>{Fn) = (yn) (see 
Lemma 8). Therefore if 0(7 ') = (77) we have tha t ;yn G 77 for all w. But then 
y (z H and hence &(;y) Ç F. This is a contradiction. Therefore the sequence 
{h(yn)\ accumulates a t h(y). Wi thout loss of generality assume tha t 
h(yn) —>h(y). Now choose distinct subsequences {yn') and \yn"} of \yn\. By 
the above we may assume tha t h(yn

;) —> &(;y) and h(yn") —» fe(y). Let 
F = {h (yn

f ) ) and H = {h (yn
rf) }. The sets £ and 77 satisfy the conditions of the 

last lemma and so let t / a n d F be as in the lemma. Then Û C\ V = {h(y)}. Let 
<t>(Û) = (R) and 0 ( F ) = (S). Since £7 is a neighborhood of each h(yn') there 
exist closed sets Ln

f such tha t h(yn') Ç Lw' Ç JJ C £7 and 4>(Ln') = (jn) (see 
Lemma 8). Therefore 3// G 7?. Likewise each yn" belongs to 5. But since R and 
S are closed this means tha t y Ç R C\ S. Then {R C\ S) = {R) o (S) = 
4>{Ù) o 0 ( 7 ) = </>(c7n F ) = <t>(h(y)). Now since j ^ H ^ w e have tha t 
cj)(h(y) ) 7^ 0. But then 0 is an isomorphism by [3] (and hence X is homeomor-
phic to Y). 

COROLLARY 13. Suppose X is P, Sn, ^ {the Cantor discontinuum) or 7°°. Then 
any epimorphism 0 from IF(X) onto IF{Y) (where Y is any nontrivial first 
countable T1 space) must be an isomorphism. 

Proof. Let y Ç Y. Then since 0 is an epimorphism there exists a closed set / 
such tha t 4>{J) = (y). But / must be compact since X is compact. Now apply 
Theorem 12. 

COROLLARY 14. Suppose X is P, Sn, ^ or 7°°. Then the semigroup IF{X) is 
hopfian. 

Although Theorem 12 shows tha t for many spaces X and Y any epimor­
phism from IF(X) onto IF{Y) must be an isomorphism this is not always the 
case. If X is any space which does not contain proper closed homeomorphic 
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copies of itself (for instance X could be Rn) and F is trivial (i.e., Y = {y}) then 
the following map </> will be an epimorphism from IF(X) onto IF(Y)\ 

</>(/) = 0 if d o m / ^ X 

<t>U) = (j) otherwise. 

For another example of an epimorphism which is not an isomorphism let 
X = R (the reals), Y = {y, z} and define an epimorphism </> by the following: 

y G dom </>(/) if [a, oo ) C d o m / for some a 

z Ç dom # ( / ) if ( —oo , 6] C d o m / for some b 

if 3/ Ç dom </>(/) then </>(/) (3/) = y if / [a , 00 ) = [c, 00 ) for some c, 

</>(/) (3O = s otherwise 

if ^ G dom </>(/) then </>(/) (z) = s i f / ( — GO , 6] = ( — 00 , d] for some d, 

4>U)iz) = ^o the rwi se 
</>(/) = 0 for all other m a p s / . 

Although not all epimorphisms from IF(R) onto i V ( F ) are isomorphisms 
we do have the result t ha t all epimorphisms from IF(R) onto IF(R) are iso­
morphisms: 

T H E O R E M 15. IF(R) is hopfian. 

Proof. Let <f> be an epimorphism from IF(R) onto IF(R). Call a set P f Ç i ^ 
right ended (respectively left ended) if W contains a set of the form [w, 00 ) 
(respectively ( — co,w]). Suppose a £ R and 4>(A) = ([a, 00)) . Choose B 
homeomorphic to A such t ha t <t>(B) = (( — 00 ,6] ) where b < a. Then 
4>(A C\ B) = (t>(A) o (t>(B) = 0. If 4 is both right and left ended then 5 must 
be also and hence A C\ B contains a copy of 4̂ ( ^ 4 ^ 7 ^ ) . Bu t then 
<j){A C\ B) ^ 0 which is a contradict ion. Therefore A cannot be both right 
and left ended. If A is neither right nor left ended then there exist sets B and C 
homeomorphic to A where A, B and C are mutual ly disjoint. Let <j>{B) = (S) 
and 4>(C) = (T). Then 5 and T are homeomorphic to [a, 00 ) and so a t least 
two of the three sets S, T and [a, 00 ) have nonempty intersection. Bu t this is 
impossible since A, B and C are mutual ly disjoint. T h u s if <t>(A) = ([a, 00)) 
then A must be right or left ended bu t not both (true for a rb i t ra ry a (E R and 
A Ç1 R such tha t <t>{A) = ([a, 00 ) ) ) . Wi thou t loss of generali ty suppose A is 
r ight ended (and hence not left ended) . Now let B = k(A) where k maps R 
onto R by k(x) = — x. Then 4>{B) = (S) for some 51 homeomorphic to [a, 00 ). 
If S is of the form [s, 00 ) then 

4>{A C\B) = ct>(A) o <t>(B) = ([a, 00) Pi [5 ,00)) . 

But yl P\ J3 is neither right nor left ended which contradic ts the above result. 
Therefore S is of the form ( — 00 , s]. Now if A is not contained in [w, 00 ) for 
some w then let C be homeomorphic to A with C r ight ended bu t A H\ C ÇZ 
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[r, oo ) for some r. Then </>(C) = (T) with T homeomorphic to [a, oo). As above 
T cannot be of the form ( — 00, t] since B C\ C is neither right nor left ended. 
Let m [a, 00) = [e, 00) and let W = A C\ C. Then 0<W> = ([e, 00)), 
W is right ended and W Q [w, 00) for some w. Choose U homeomorphic to W 
with <j> ( U) = ( — 00 , e]. If U is right ended then U C\ W contains a copy of W 
but </>(£/ Pi W) = (e) which is a contradiction. Therefore U is left ended and 
U Q ( — 00, u] for some w. But U C\ W is compact and <£([/ H W) = (e). By 
Theorem 12, 0 is an isomorphism. 

The author would like to thank the referee for many helpful suggestions. 
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