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INVERSE SEMIGROUPS OF HOMEOMORPHISMS ARE
HOPFIAN

BRIDGET B. BAIRD

If X is a nonempty topological 7'; space then the set of all homeomorphisms
whose domains and ranges are closed subsets of X forms a semigroup under
partial composition of functions. We call it I(X). If, in a semigroup, every
element a is matched with a unique element b such that abe = « and bab =)
then the semigroup is an inverse semigroup (b is called the inverse of « and is
denoted by ¢='). We have that [,(X) is an inverse semigroup with the alge-
braic inverse of a map f being just the inverse map f~!. In this paper we examine
epimorphisms from [z(X) onto Iz(Y). The main theorem gives conditions
under which an epimorphism must be an isomorphism. A consequence of this
theorem is that for many spaces X (including all finite #-dimensional Euclidean
cubes [", all finite n-dimensional spheres S”, and the Cantor discontinuum %)

every epimorphism from I(X) onto Ir(¥) must be an isomorphism (¥ is an
arbitrary first countable 7'y space). Thus for all of these spaces the semigroup
Ir(X) is hopfian (every surjective endomorphism is an isomorphism). Another
theorem shows that I»(R) is also hopfian (R denotes the real line). In [1] a
research article stated some of these results. The case where X is the unit
interval or the Cantor discontinuum was mentioned. The present paper extends
those results but uses entirely different techniques.

These inverse semigroups (X ) behave nicely in the sense that I(X) and
I17(Y) are isomorphic if and only if X and Y are homeomorphic (see [4]). In
fact, if ¢ is an isomorphism from 7(X) onto I(Y) then there is a homeomor-
phism % from X onto ¥V such that ¢(f) = hofo k' forallf € [x(X). Idempo-
tents (elements f such that fof = f) in [z(X) are identity maps on closed
subsets K of X and will be denoted by (K ). The identity map on the point y
will be denoted by (y). The zero of the semigroup I»(X) is just the empty map
and will be denoted by 0. Throughout this paper we shall assume that | X| > 2,
X is T9, and Y is nontrivial 7 (i.e., ¥ has more than one point). We also
assume that ¢ is an epimorphism from [.(X) onto /z(YV). Note that we then
have that ¢(0) = 0 and (¢(f))~! = ¢(f~'). Epimorphisms carry idempotents
to idempotents and so if (F) € I.(X) then ¢(F) = (R) for some closed subset
R of Y. Conversely, if (R) € Ip(YV) then there exists a closed subset F of X
such that ¢(F) = (R) (see [2], p. 57). The notation (x,y) will denote the
homeomorphism whose domain is the point x and whose range is the point y.
McAlister [3] has shown that if ¢(x, y) # 0 for some x, y € X then ¢ is an

Received November 15, 1977 and in revised form November 10, 1978.
800

https://doi.org/10.4153/CJM-1979-073-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-073-5

INVERSE SEMIGROUPS 801

isomorphism. If y € Vet D, = N{F:¢(F) = (y)}. The collection { F: ¢(F) =
(y)} satisfies the finite intersection property (if ¢(F) = (y) = ¢(H) then
SHFNH)Y=¢((F)o(H)) =¢(F)o ¢(N) = (y)). Thus if X is compact then
D, #@forally € V.

LeEmMMA 1. Suppose ¢ is an epimorphism from Ip(X) onto I[.(Y). (¢) Let
k€ Ip(X) be such that K = dom k (domain of k), H = ran k (range of (k)),
&{K) = (R) and ¢{H) = (S). Then ¢ (k) maps R homeomorphically onto S. (b)
Suppose ¢{(F) = (T), R C T and R 1is homeomorphic to S. Then there exist
homeomorphic sets K and H such that HC F, ¢(H) = (R) and ¢{(K)=/{(S).

Proof. (a) We have that

dom ¢(k) = dom ((¢(k))~' 0 ¢(k)) = dom (¢ (k™) o $(k))
= dom ¢ (k7' 0 k) = dom ¢(K) = R.
Likewise ran ¢ (k) = S.
(b) Since R is homeomorphic to S there exists k € I»(X) such that ¢ (k) maps

R homeomorphically onto S. Supposedomk = J andrank = G. Then
¢(J) = ¢p(k~'ok) = (R) and ¢(G) = (S). Now

d(JNF) =¢(J)o¢(F) = (R)yo(T)=(RNT)=(R).
Let H=JMN Fand K = k(H). Then ¢(H) = (R), HC F and H is homeo-
morphic to K. We also have that
oK) =¢(k(H)) =¢(ko (H)o k™) =¢(k) op(k)™ = (o(k)(R)) =(S).
LeEMmA 2. Suppose ¢p{(F) = (p) for some p € Y and compact F C X. Then
D, # @ forally € Vand D, = N {K : ¢(K) = (y), K compact}.
Proof. We have that
D, = FON{K:¢(K) = (p)} = N{FNK:¢K) = (p)} &
NA{K : ¢(K) = (p), K compact} C D,.

Thus D, = N{K: ¢(K)={(p), K compact} and since the latter collection
has the finite intersection property, D, # (. Since [ is compact, {F) generates
an ideal % whose idempotents are all identities on compact sets. Now ¢ (%) is
an ideal of I7(Y) which contains (p) and so contains all maps of the form (y).
Therefore for any y € Y, there is a compact set K such that ¢(K) = (y). We
now apply the first part of the proof to obtain the fact that D, # @ for all y and
D, = N{K : ¢(K) = {y), K compact}.

Definition 3. X will be called admissible (respectively strongly admissible) if
whenever F is a proper compact subset of X (respectively F is a compact
subset of X'), « € FandU is any neighborhood of x, then there exists a homeo-
morphism % from F into U such that 2(x) = x.

Remark. The space S' is admissible but not strongly admissible. All noncom-
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pact admissible spaces are strongly admissible. The class of admissible spaces
is not productive (e.g., S' X S') but the class of strongly admissible spaces is
productive.

ProrositioN 4. The product of strongly admissible spaces is strongly admis-
sible.

Proof. Let Il ;¢ ; X ;be a product of strongly admissible spaces, let K be a com-
pact subset of this product, let ¢ € K and let G be a neighborhood of ¢. Then
there exists a finite set {1, 2, ..., N} andopensets G, C X,;forj=1,..., N
such that

g€ PG N ...N\ py U Gy) € G

where p; denotes the projection map onto X ;. Since each X is strongly admis-
sible there exist homeomorphisms ; (j = 1, ..., N) from p;(K) into G, such
that ,(¢;) = q,. Define k from Il ¢, p,(K) into N ; p,~1(G,) by

(h(x)); = hj(x;) for j=1,..., N

(h(x)); = x; otherwise.

Then % is a homeomorphism and %(g) = ¢q. Since K C Il,, p;(K) and
N1 2, 1(G;) € G the proof is complete.

ProrosITION 5. I", R*, I®, € (the Cantor discontinuum), the space of rational
numbers and the space of irrational numbers are all strongly admissible. S* 1s
admassible.

Proof. It follows from well known results that I, R, %, the rationals and the
irrationals are strongly admissible and that S" is admissible. Now apply
Proposition 4.

Remark. Note that the two point discrete space D is not even admissible but
the product of D with itself a countable number of times is strongly admissible
since it is homeomorphic to % .

LemMma 6. Suppose X is admissible and ¢{J) = (p) for some p € ¥V and com-
pact J C X. Lety, w € Y withy # w. Then D, N\ D, = 0.

Proof. We know that D, # @ for all y by Lemma 2. Now suppose
D,N\D, #@. Let x € D, N\ D, and let F be such that ¢(F) = (y). Then
there exists z ¢ F such that z ¢ D, (otherwise if K is such that ¢(K) = (w)
and F C K then ¢{(F) = 0 which is a contradiction). Now z ¢ D,, and so there
exists W such that ¢(W) = (w) but z ¢ W. The set W is closed and so let U
be a neighborhood of z where WM U = @. We have that X is admissible,

2 € Fand z € Uand so U contains a copy of F. Call it Z. Then o{Z) = {q)
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for some ¢ € ¥ (see Lemma 1). Now Z N\ W = @ and so Z N\ D, = 0. Hence
g#wandqg #y (x € D,ND,). Let (WU Z) = (R). Then w € R and

g€ R((w) = ¢(W) =¢W)ooe(WU Z) = (w)o(R) = ({w) N R)).

By Lemma 1 choose homeomorphic sets K and H where K C W\U Z,
&(K) = {{w, q}) and ¢(H) = {{y,w}). Let & map K onto H and let
S=KNW,Q0=KMNZ Then ¢(S) = (w)and ¢{(Q) = (¢). ButS"N\Q =90
(WNZ =@). Now k(S) C H and so ¢(k(S)) = (y) or (w). Without loss of
generality suppose ¢(k(S)) = (y). Then ¢(k(Q)) = (w). Since SN Q =0
we have that k(S) M k(Q) = B also. Butx € k(S) M k(Q) sincex € D, M D,,.
This is a contradiction. Thus D, "\ D,, = 0.

LEMMA 7. Suppose X is admissible and ¢{J) = (p) for some compact set J.
Then |D,| = 1forally € Y.

Proof. Suppose |D,| > 1 for somey € V. Letx, z € D, where x 5 z. Let U
be a neighborhood of x such that z ¢ U. Let F be such that ¢(F) = (y) and
since X is admissible let £ be a homeomorphism from Finto U where k(x) = x.
Then ¢(k(F)) = (w) for some w € Y. Now w # ysincez ¢ k(F)andz € D,.
We show that x € D,. Suppose H is such that ¢(H) = (w). Then
S(HNE(F)) = (w). Now k" '(HNk(F)) C F and is homeomorphic to
H N k(F). Therefore ¢{(k~'(H N Ek(F))) = (y). Thus x € k~1(H N k(F)).
But since k(x) = x this means that x ¢ H M k(F). Therefore x € H and so
alsox € D,. But then D, "\ D, # 0. This is a contradiction by the last lemma.
Thus |D,| = 1forally € V.

Remark. If ¢{J) = (p) for some p € Y and compact J then the last lemma
says that for each y € Y there is associated an x € X such that D, = {x}.
Define a map % from YV into X by i(y) = x. The function % will be one-to-one
by Lemma 6.

LEMMA 8. Suppose X is admissible and ¢{J) = (p) for some compact J. Then
for every y € Y and every netghborhood U of h(y) there exists a closed set F such
that F € U and ¢(F) = (y).

Proof. Suppose not. Let x = k(y) and let U be a neighborhood of x such that
for all F with ¢(F) = (y) there exists z € F — U. We first show that the col-
lection { F — U : ¢(F) = (y)} satisfies the finite intersection property (clearly
the sets are nonempty and closed). Consider iy (F; — U) = (Ni=1 Fi) — U
where ¢(F;) =(y) forall< =1...#n We have that {1 F;) = (y) also and
hence (Ni=i1 F:) — U # B by assumption. Therefore {F — U : ¢(F) = (y)}
satisfies the finite intersection property. Now

NAF:¢(F) = )} = N{F: ¢(F) = (y), F compact}
by Lemma 2. Therefore

NA{F = U:¢(F)y= ()} ="N{F—U: ¢(F)={y), Fcompact} C K
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where K is compact and ¢(K) = (v). Therefore N {F — U: ¢(F) = (y)} #= 0.
But

M{F=U: o(F) = SENIF: oF) = ()} = {x}.
Thus N {F — U: ¢(F)= (y)} = {x}. Butx € U. This is a contradiction.

LEMMA 9. Suppose X is admissible and ¢{J) = (p) for some p ¢ Y and com-
pact J. Suppose also that ¢ (k) (v) = z for some k € [p(X) wherey,z ¢ V. Then
k(h(y)) = h(z).

Proof. Letdom k = K and let F be any closed set where FF C K and
¢(F) = (y) (see Lemma 1). Then k(y) € F and

d(ko (I) = ¢(k) od(l) = ¢(k) o (y) = (v, 0(k)(y)) = (y,2).

Thus the range of ¢(ko (F)) is z. But by Lemma 1 this means that
¢(k(F)) = (z) and so k(z) € k(F). By the last lemma we can take F inside
arbitrary neighborhoods U of h(y) and so k(h(y)) = h(z).

Notation. Write y, — vy if the net {y,} converges to y.

LemMa 10. Suppose X is admissible and ${(J) = {(p) for some p ¢ V and
compact J. Then Y is not discrete.

Proof. Suppose V is discrete. We first show that 2(Y) must also be discrete.
Hence suppose £ (V) is not discrete and let & (y,) — h(y) where y, # v for all a.
Since {y,} is homeomorphic to {y.} \U {y} there exists a homeomorphism &
such that ¢ (k) maps {v.} \U {v} onto {y.}. Let ¢ (k) (y) = ys. By Lemma 9 we
have that k(h(y)) = h(ys) and k(h(ys)) € {h(vs)} for all a. But k(ya) — h(y)
and since k is a homeomorphism we have that k(k(y.)) — k(h(v)). This is a
contradiction since k(h(y)) = h(ys). Thus A(YV) is discrete. We may now
choose h(y) € h(Y) and an open neighborhood U of h(y) such that
UNR(Y) = {h(y)}. Let FC U be such that ¢{F) = (y) and F is compact.
If |F| = 1 then ¢ is an isomorphism (see [3]) and hence X is homeomorphic
to V. But then X is discrete and clearly cannot be admissible (recall that
|X| > 2). Therefore | F| = 2. Letx € Fwithx # kh(y)and let 1" be a neighbor-
hood of x such that VC U but k(y) ¢ V. Then since X is admissible there
exists a homeomorphism f from F into 17 such that f(x) = x. The set f(F) is
homeomorphic to F and so ¢{f(F)) = (z) for some z. But

fINCVCX —hY)
and so f(F) M D, = @. This is a contradiction. Thus ¥ is not discrete.

Recall that a completely (or hereditarily) normal space X is one where if 4
and B are subsets of X with A N\ B =@ = A M B then there are disjoint
open sets U and V such that 4 € U and B C V. All metric spaces are com-
pletely normal.
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LeEwwma 11. Let X be completely normal and let I and H be subsets of X where
FNH=0,x¢ FUH, F = F\U{x} and H = H\J {x}. Then there exist
disjoint open sets U and V such that F C U, HC Vand UNV = {x}.

Proof. Let Z = X — {x}. Then Z is normal, F and H are closed in Z. Thus
there are open subsets 4 and B of Zsuchthat F € 4, H C Band 4 N B = @.
Now 4 =DMNZ and B=EMNZ where D and E are open in X.
Let U =D — {x} and V = E — {x}.

TuEOREM 12. Suppose X is a completely normal space which is admissible, ¥
1s nontrivial first countable Ty, ¢ 1s an epimorphism from Ip(X) onto I.(Y) and
&(J) = (p) for some p ¢ Y and compact set J. Then ¢ 1s an isomorphism.

Proof. By Lemma 10 the space Y is not discrete. Let y, — y where y, # v
for all n. We first show that the sequence {£(y,)} accumulates at % (y). Suppose
not. Then there exists an open set U such that A(y) € U but k(y,) ¢ U for all
n. In fact, we can choose U so that k(y,) ¢ Uforall n. Let F = X — U. Then
for all n, h(y,) ¢ X — U C F. The set X — U is open and so for all n
there exists F, such that h(y,) € F, CX — U C F and ¢(F,) = (y,) (see
Lemma 8). Therefore if ¢(F) = (H) we have that y, ¢ H for all #n. But then
v € H and hence h(y) ¢ F. This is a contradiction. Therefore the sequence
{h(y,)} accumulates at #k(y). Without loss of generality assume that
k(y,) = h(y). Now choose distinct subsequences {y,’} and {v,”’} of {y,}. By
the above we may assume that h(y,’) — h(y) and k(y,”) — h(y). Let
F = {h(y,))} and H = {h(y,”")}. The sets F and H satisfy the conditions of the
last lemma and so let U and 17 be as in the lemma. Then U N V = {k(y)}. Let
o(U) = (R) and ¢(V) = (S). Since U is a neighborhood of each A(y,’) there
exist closed sets L,” such that k(y,’) € L, € U C U and ¢(L,)) = (v, ) (see
Lemma 8). Therefore v,” € R. Likewise each y,”” belongs to S. But since R and
S are closed this means that y € R/MNS. Then (RN S) = (R)o (S) =
o(Uyo (V) = ¢(UN V) = ¢(h(y)). Now since y ¢ RN S we have that
¢(h(y)) ¥ 0. But then ¢ is an isomorphism by [3] (and hence X is homeomor-
phic to Y).

COROLLARY 13. Suppose X is I, S*, € (the Cantor discontinuum) or I°. Then
any epimorphism ¢ from I.(X) onto Ix(Y) (where Y is any nontrivial first
countable Ty space) must be an 1somorphism.

Proof. Let y € Y. Then since ¢ is an epimorphism there exists a closed set J
such that ¢(J) = (y). But J must be compact since X is compact. Now apply

Theorem 12.
CorOLLARY 14. Suppose X is I", S*, % or I”. Then the semigroup I»(X) is
hopfian.

Although Theorem 12 shows that for many spaces X and Y any epimor-
phism from I7(X) onto I»(Y) must be an isomorphism this is not always the
case. If X is any space which does not contain proper closed homeomorphic
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copies of itself (for instance X could be R") and Vis trivial (i.e., ¥ = {y}) then
the following map ¢ will be an epimorphism from [(X) onto I»(Y):

¢o(f) =0 if domf =X
#(f) = (y) otherwise.

For another example of an epimorphism which is not an isomorphism let
X = R (the reals), ¥ = {y, z} and define an epimorphism ¢ by the following:

y € dom ¢(f) if [a, 00 ) C dom f for some «
z € dom ¢(f) if (—o0, d] © dom f for some b

if y € dom ¢(J) then ¢(f) () = v if fla, ) = [¢, 0 ) for some ¢,
¢(f)(y) = z otherwise
if z € dom ¢(f) then ¢(f)(z) = zif f(—o0,d] = (—0, d] for some d,

¢ (f)(z) = y otherwise
¢(f) = 0 for all other maps f.

Although not all epimorphisms from Iz(R) onto Ix(Y) are isomorphisms
we do have the result that all epimorphisms from Iz(R) onto Ix(R) are iso-
morphisms:

TaEOREM 15. I(R) s hopfian.

Proof. Let ¢ be an epimorphism from 7(R) onto [»(R). Call aset W C R
right ended (respectively left ended) if W contains a set of the form [w, o0)
(respectively (—oo0, w]). Suppose ¢ € R and ¢{(4) = {la, ©)). Choose B
homeomorphic to A4 such that ¢(B) = ((—o0,0b]) where b < a. Then
¢(A N\ B) = ¢{A) o0 ¢(B) = 0. If 4 is both right and left ended then B must
be also and hence 4 M B contains a copy of 4 (4 # R). But then
¢(4 M B) # 0 which is a contradiction. Therefore 4 cannot be both right
and left ended. If 4 is neither right nor left ended then there exist sets B and C
homeomorphic to 4 where 4, B and C are mutually disjoint. Let ¢{B) = (S)
and ¢(C) = (T'). Then S and T are homeomorphic to [a, ©0 ) and so at least
two of the three sets S, 7" and [a, 0 ) have nonempty intersection. But this is
impossible since 4, B and C are mutually disjoint. Thus if ¢{4) = ([a, ©))
then 4 must be right or left ended but not both (true for arbitrary ¢« € R and
A C R such that ¢(4) = ([¢, ©))). Without loss of generality suppose 4 is
right ended (and hence not left ended). Now let B = k(4) where k maps R
onto R by k(x) = —x. Then ¢(B) = (S) for some S homeomorphic to [a, ).
If Sis of the form [s, 00 ) then

(4 N\ B) = ¢(4)0¢(B) = ([a,0) N [s,0)).

But 4 M B is neither right nor left ended which contradicts the above result.
Therefore S is of the form (—o0, s]. Now if 4 is not contained in [w, o) for
some w then let C be homeomorphic to 4 with C right ended but 4 N\ C C
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[, 00 ) for some r. Then ¢(C) = (I") with 7" homeomorphic to [a, © ). As above
T cannot be of the form (—o0, {] since B /M C is neither right nor left ended.
Let TN [a,0) =le,0) and let W =AMNC. Then ¢(W) = {[le, ©0)),
W is right ended and W C [w, o0 ) for some w. Choose U homeomorphic to W
with ¢(U) = (—o0, e]. If Uis right ended then U M W contains a copy of W
but ¢{(U M W) = (e) which is a contradiction. Therefore U is left ended and
U C (—o0, u] for some u. But UM W is compact and ¢{U M W) = {(e). By
Theorem 12, ¢ is an isomorphism.

The author would like to thank the referee for many helpful suggestions.
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