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Abstract

In this paper, we show that the γ-vectors of Coxeter complexes (of types A and B) and associahedrons (of
types A and B) can be obtained by using derivative polynomials of the tangent and secant functions. We
provide a unified grammatical approach to generate these γ-vectors and the coefficient arrays of Narayana
polynomials, Legendre polynomials and Chebyshev polynomials of both kinds.

2010 Mathematics subject classification: primary 05A05; secondary 05A15.

Keywords and phrases: derivative polynomials, Context-free grammars, Narayana polynomials, Legendre
polynomials.

1. Introduction

Set y = tan(x) and z = sec(x). Denote by D the differential operator d/dx. Clearly,
we have D(y) = 1 + y2 and D(z) = yz. In 1995, Hoffman [8] considered two
sequences of derivative polynomials defined respectively by Dn(y) = Pn(y) and Dn(z) =

zQn(y). From the chain rule it follows that the polynomials Pn(u) satisfy P0(u) = u
and Pn+1(u) = (1 + u2)P′n(u), and similarly Q0(u) = 1 and Qn+1(u) = (1 + u2)Q′n(u) +

uQn(u). The theory of derivative polynomials is an important part of combinatorial
trigonometry (see [1, 6, 8–12], for instance).

Let Sn denote the symmetric group of all permutations of [n], where [n] =

{1, 2, . . . , n}. The hyperoctahedral group Bn is the group of signed permutations of the
set ±[n] such that π(−i) = −π(i) for all i, where ±[n] = {±1,±2, . . . ,±n}. A permutation
π = π(1)π(2) · · · π(n), signed or not, is alternating if π(1) > π(2) < π(3) > · · · π(n). In
other words, π(i) < π(i + 1) if i is even and π(i) > π(i + 1) if i is odd. Denote by En and
EB

n the number of alternating elements in Sn and Bn, respectively. It is well known
(see [3, 21]) that

∞∑
n=0

En
xn

n!
= tan x + sec x,

∞∑
n=0

EB
n

xn

n!
= tan 2x + sec 2x.
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Define functions
f = sec(2x), g = 2 tan(2x).

It is natural to consider the following differential system:

D( f ) = f g, D(g) = 4 f 2. (1.1)

Define the function h = tan(2x). Note that f 2 = 1 + h2 and g = 2h. So the following
result is immediate.

Proposition 1.1. For n ≥ 0, we have Dn( f ) = 2n f Qn(h), Dn(g) = 2n+1Pn(h).

This paper is a continuation of [13]. In [13], we showed that the coefficient array of
the Bessel polynomials can be generated by context-free grammars. In this paper, we
show that the coefficient arrays of Narayana polynomials, Legendre polynomials and
Chebyshev polynomials of both kinds can also be generated by context-free grammars.

The organisation of this paper is as follows. In the next section we gather together
some notation and definitions that will be needed in the rest of the paper. In
Section 3 we show that the γ-vectors of Coxeter complexes (of types A and B) and
associahedrons (of types A and B) can be obtained by using (1.1). In Section 4 we
restate our main result via context-free grammars.

2. Notation, definitions and preliminaries

Recall that a descent of a permutation π ∈ Sn is a position i such that π(i) > π(i + 1),
where 1 ≤ i ≤ n − 1. Denote by des (π) the number of descents of π. Then the equations

An(x) =
∑
π∈Sn

xdes (π) =

n−1∑
k=0

〈
n
k

〉
xk,

define the Eulerian polynomial An(x) and the Eulerian number
〈

n
k

〉
(see [20,

A008292]). For each π ∈ Bn, we define

des B(π) = #{i ∈ {0, 1, 2, . . . , n − 1}|π(i) > π(i + 1)},

where π(0) = 0. Let

Bn(x) =
∑
π∈Bn

xdes B(π) =

n∑
k=0

B(n, k)xk.

The polynomial Bn(x) is called an Eulerian polynomial of type B, while B(n, k) is
called an Eulerian number of type B (see [20, A060187]).

The h-polynomial of a (d − 1)-dimensional simplicial complex ∆ is the generating
function h(∆; x) =

∑d
i=0 hi(∆)xi defined by the identity

d∑
i=0

hi(∆)xi(1 + x)d−i =

d∑
i=0

fi−1(∆)xi,
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where fi(∆) is the number of faces of ∆ of dimension i. There is a large literature
devoted to h-polynomials of the form

h(∆; x) =

bd/2c∑
i=0

γixi(1 + x)d−2i,

where the coefficients γi are nonnegative. Following Gal [7], we call (γ0, γ1, . . .) the
γ-vector of ∆, and the corresponding generating function γ(∆; x) =

∑
i≥0 γixi is the γ-

polynomial. In particular, the Eulerian polynomials An(x) and Bn(x) are respectively
known as the h-polynomials of Coxeter complexes of types A and B.

Let us now recall two classical results.

Theorem 2.1 [5, 18]. For n ≥ 1,

An(x) =

b(n−1)/2c∑
k=0

a(n, k)xk(1 + x)n−1−2k.

Theorem 2.2 [4, 16]. For n ≥ 1,

Bn(x) =

bn/2c∑
k=0

b(n, k)xk(1 + x)n−2k.

It is well known that the numbers a(n, k) satisfy the recurrence

a(n, k) = (k + 1)a(n − 1, k) + (2n − 4k)a(n − 1, k − 1),

with the initial conditions a(1, 0) = 1 and a(1, k) = 0 for k ≥ 1 (see [20, A101280]),
and the numbers b(n, k) satisfy the recurrence

b(n, k) = (2k + 1)b(n − 1, k) + 4(n + 1 − 2k)b(n − 1, k − 1), (2.1)

with the initial conditions b(1, 0) = 1 and b(1, k) = 0 for k ≥ 1 (see [4, Section 4]).
The h-polynomials of the type A and type B associahedrons are respectively given

as follows (see [14, 15, 17, 19], for instance):

h(∆FZ(An−1), x) =
1
n

n−1∑
k=0

(
n
k

)(
n

k + 1

)
xk =

b(n−1)/2c∑
k=0

Ck

(
n − 1

2k

)
xk(1 + x)n−1−2k, (2.2)

h(∆FZ(Bn), x) =

n∑
k=0

(
n
k

)2

xk =

bn/2c∑
k=0

(
2k
k

)(
n
2k

)
xk(1 + x)n−2k, (2.3)

where Ck =
(

2k
k

)
/(k + 1) is the kth Catalan number and the coefficient of xk in (2.2) is

the Narayana number N(n, k + 1).
Define

F(n, k) = Ck

(
n − 1

2k

)
, H(n, k) =

(
2k
k

)(
n
2k

)
.
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There are many combinatorial interpretations of the number F(n, k); for example,
F(n, k) is number of Motzkin paths of length n − 1 with k up steps (see [20, A055151]).
It is easy to verify that the numbers F(n, k) satisfy the recurrence relation

(n + 1)F(n, k) = (n + 2k + 1)F(n − 1, k) + 4(n − 2k)F(n − 1, k − 1),

with initial conditions F(1, 0) = 1 and F(1, k) = 0 for k ≥ 1, and the numbers H(n, k)
satisfy the recurrence relation

nH(n, k) = (n + 2k)H(n − 1, k) + 4(n − 2k + 1)H(n − 1, k − 1),

with initial conditions H(1, 0) = 1 and H(1, k) = 0 for k ≥ 1 (see [20, A089627]).

3. Main results

Define the generating functions

an(x) =
∑
k≥0

a(n, k)xk, bn(x) =
∑
k≥0

b(n, k)xk.

The first few an(x) and bn(x) are respectively given as follows:

a1(x) = 1, a2(x) = 1, a3(x) = 1 + 2x, a4(x) = 1 + 8x;
b1(x) = 1, b2(x) = 1 + 4x, b3(x) = 1 + 20x, b4(x) = 1 + 72x + 80x2.

As shown in [8], the exponential generating functions

P(u, t) =

∞∑
n=0

Pn(u)
tn

n!
and Q(u, t) =

∞∑
n=0

Qn(u)
tn

n!

are given by the explicit formulas

P(u, t) =
u + tan(t)

1 − u tan(t)
and Q(u, t) =

sec(t)
1 − u tan(t)

. (3.1)

Combining (3.1) and [4, Prop. 3.5, Prop. 4.10], we immediately get the following
result.

Theorem 3.1. For n ≥ 1,

an(x) =
1
x

 √4x − 1
2

n+1

Pn

(
1

√
4x − 1

)
, bn(x) = (4x − 1)

n
2 Qn

(
1

√
4x − 1

)
.

Assume that

( f D)n+1( f ) = ( f D)( f D)n( f ) = f D(( f D)n( f )),
( f D)n+1(g) = ( f D)( f D)n(g) = f D(( f D)n(g)).

We can now present the main result of this paper.
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Theorem 3.2. For n ≥ 1,

Dn( f ) =

bn/2c∑
k=0

b(n, k) f 2k+1gn−2k,

Dn(g) = 2n+1
bn−1/2c∑

k=0

a(n, k) f 2k+2gn−1−2k,

( f D)n( f ) = n!
bn/2c∑
k=0

H(n, k) f n+1+2kgn−2k,

( f D)n(g) = 2(n + 1)!
b(n−1)/2c∑

k=0

F(n, k) f n+2+2kgn−1−2k.

Proof. We only prove the assertion for Dn( f ), as the others can be proved similarly. It
follows from (1.1) that D( f ) = f g and D2( f ) = f g2 + 4 f 3. For n ≥ 0, we define b̃(n, k)
by

Dn( f ) =

bn/2c∑
k=0

b̃(n, k) f 2k+1gn−2k. (3.2)

Then b̃(1, 0) = 1 and b̃(1, k) = 0 for k ≥ 1. It follows from (3.2) that

D(Dn( f )) =

bn/2c∑
k=0

(2k + 1)̃b(n, k) f 2k+1gn−2k+1 + 4
bn/2c∑
k=0

(n − 2k)̃b(n, k) f 2k+3gn−2k−1.

We therefore conclude that b̃(n + 1, k) = (2k + 1)̃b(n, k) + 4(n + 2 − 2k)̃b(n, k − 1) and
complete the proof by comparing it with (2.1). �

Define the generating functions

Nn(x) =
1
n

n−1∑
k=0

(
n
k

)(
n

k + 1

)
(x + 1)k(x − 1)n−1−k,

Ln(x) =

n∑
k=0

(
n
k

)2

(x + 1)k(x − 1)n−k.

Taking f 2 = 1 + h2 and g = 2h in Theorem 3.2 leads to the following result, the
proof of which we omit since it is a straightforward application of (2.2) and (2.3).

Corollary 3.3. Let ı =
√
−1. For n ≥ 1,

( f D)n( f ) = n! f n+1(−ı)nLn(ıh),

( f D)n(g) = 2(n + 1)! f n+2(−ı)n−1Nn(ıh).

It should be noted that the polynomial Ln(x)/2n is the famous Legendre
polynomial [20, A100258]. Therefore, from Corollary 3.3, we see that the Legendre
polynomial can be generated by ( f D)n( f ).
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4. Context-free grammars

Many combinatorial objects permit grammatical interpretations (see [2, 13], for
instance). The grammatical method was systematically introduced by Chen [2] in the
study of exponential structures in combinatorics. Let A be an alphabet whose letters
are regarded as independent commutative indeterminates. A context-free grammar
G over A is defined as a set of substitution rules that replace a letter in A by a
formal function over A. The formal derivative D is a linear operator defined with
respect to a context-free grammar G. For example, if G = {u→ uv, v→ v}, then
D(u) = uv,D(v) = v,D2(u) = u(v + v2).

It follows from Theorem 3.2 that the γ-vectors of Coxeter complexes (of types A
and B) and associahedrons (of types A and B) can be respectively generated by the
grammars

G1 = {u→ uv, v→ 4u2}

and
G2 = {u→ u2v, v→ 4u3}. (4.1)

There are many combinatorial sequences that can be generated by using the
grammar (4.1). The following proposition is a special result.

Proposition 4.1. Let G be the same as in (4.1). Then

Dn(uv) = n!
b(n+1)/2c∑

k=0

4k
(
n + 1

2k

)
un+1+2kvn+1−2k.

Let Tn(x) and Un(x) be the Chebyshev polynomials of the first and second kind of
order n, respectively. We can now conclude the following result, which is based on
Proposition 4.1. The proof runs along the same lines as that of Theorem 3.2.

Theorem 4.2. If G = {u→ u2v, v→ u3}, then

Dn(uv) = n!
b(n+1)/2c∑

k=0

(
n + 1

2k

)
un+1+2kvn+1−2k,

Dn(u2) = n!
bn/2c∑
k=0

(
n + 1
2k + 1

)
un+2+2kvn−2k.

In particular,

Dn(uv) |u2=x2−1,v=x = n!(x2 − 1)(n+1)/2Tn+1(x),
Dn(u2) |u2=x2−1,v=x = n!(x2 − 1)(n+2)/2Un(x).

As an extension of the grammar (4.1), we find the following result.
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Theorem 4.3. If G = {t→ tu2, u→ u2v, v→ 4u3}, then

Dn(t2u2) = (n + 1)!t2
n∑

k=0

(
n
k

)(
n − k
b n−k

2 c

)
u2n+2−kvk,

Dn(t2u) = n!t2
n∑

k=0

(
n
k

)
2n−ku2n+1−kvk.

Proof. We only prove the assertion for Dn(t2u2), since the corresponding assertion for
Dn(t2u) can be proved similarly. Let

T (n, k) =

(
n
k

)(
n − k
b n−k

2 c

)
.

It is easy to verify that

(n + 1)T (n, k) = (2n + 1 − k)T (n − 1, k − 1) + 2T (n − 1, k) + 4(k + 1)T (n − 1, k + 1).
(4.2)

Clearly, D(t2u2) = 2t2(u4 + u3v) and D2(t2u2) = 3!t2(2u6 + 2u5v + u4v2). For n ≥ 0,
we define

Dn(t2u2) = (n + 1)!t2
n∑

k=0

T̃ (n, k)u2n+2−kvk.

Note that
Dn+1(t2u2)
(n + 1)!t2 =

∑
k

(2n + 2 − k)T̃ (n, k)u2n+3−kvk+1

+ 2
∑

k

T̃ (n, k)u2n+4−kvk + 4
∑

k

kT̃ (n, k)u2n+5−kvk−1.

Thus, we get

(n + 2)T̃ (n + 1, k) = (2n + 3 − k)T̃ (n, k − 1) + 2T̃ (n, k) + 4(k + 1)T̃ (n, k + 1).

Comparing this with (4.2), we see that the coefficients T̃ (n, k) satisfy the same
recurrence relation and initial conditions as T (n, k), so they agree. �

It is well known that
(

n
k

)(
n−k

b(n−k)/2c

)
is the number of paths of length n with steps

U = (1, 1), D = (1, −1) and H = (1, 0), starting at (0, 0), staying weakly above the
x-axis (that is, left factors of Motzkin paths) and having k H-steps (see [20, A107230]).
It should be noted that the numbers

(
n
k

)
2n−k are elements of the f -vector for the

n-dimensional cubes (see [20, A038207])
Taking u = sec2(x) and v = 2 tan(x), it is clear that D(u) = uv and D(v) = 2u. We can

easily verify another grammatical description of the γ-vectors of the type A Coxeter
complex.

Theorem 4.4. If G = {u→ uv, v→ 2u}, then

Dn(u) =

bn/2c∑
k=0

a(n + 1, k)uk+1vn−2k.
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5. Concluding remarks

Using Leibniz’s formula for differentiating products, one may easily deduce various
convolution formulas for the polynomials considered in this paper. For example, note
that

Dn( f 2) =

n∑
k=0

(
n
k

)
Dk( f )Dn−k( f ).

Then we immediately get the following convolution formula, which has also been
obtained by Chow [4, Corollary 5.2]:

2nan+1(x) =

n∑
k=0

(
n
k

)
bk(x)bn−k(x), n > 1.
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