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Spectrality of a Class of Moran Measures

Ming-Liang Chen, Jing-Cheng Liu, Juan Su, and Xiang-Yang Wang

Abstract. Let {Mn}
∞
n=1 be a sequence of expanding matrices with Mn = diag(pn , qn), and let

{Dn}
∞
n=1 be a sequence of digit sets with Dn = {(0, 0)t , (an , 0)t , (0, bn)t ,±(an , bn)t}, where pn ,

qn , an and bn are positive integers for all n ⩾ 1. If supn⩾1{
an
pn
, bnqn
} < ∞, then the inûnite convolution

µ{Mn},{Dn} = δM−1
1 D1

∗δ(M1M2)−1D2
∗⋅ ⋅ ⋅ is a Borel probabilitymeasure (Cantor–Dust–Moranmea-

sure). In this paper, we investigate whenever there exists a discrete set Λ such that {e2πi⟨λ ,x⟩
∶ λ ∈ Λ}

is an orthonormal basis for L2
(µ{Mn},{Dn}).

1 Introduction

Let µ be a Borel probability measure with compact support onRn . We call it a spectral
measure if there exists a countable subset Λ ⊂ Rn such that EΛ = {e2πi⟨λ ,x⟩ ∶ λ ∈ Λ}
forms an orthonormal basis for L2(µ). he set Λ is called a spectrum of µ, we also say
that (µ, Λ) is a spectral pair. In particular, if µ is the normalized Lebesgue measure
supported on a Borel set Ω, then Ω is called a spectral set. In the seminal paper [13],
Fuglede pioneered the study of spectral sets, and raised the famous conjecture: Ω is
a spectral set if and only if Ω is a translational tile. his conjecture has been proved
to be false by Tao and others in both directions in dimension three or higher (see
[18, 19, 28]), but it is still open in dimensions 1 and 2.

he ûrst example of a singular, non-atomic, spectral measure was given by
Jorgensen and Pedersen in [17]. hey showed that the standard middle-fourth Can-
tor measure on R is a spectral measure, and Strichartz supplemented their result
with a simpliûed proof [26]. his surprising discovery has drawn great attention
in the area of fractal geometry, and the spectrality of self-similar/aõne measures
has become a important topic. Nowadays, many new spectral measures were found
in [3–11, 13, 15–17, 20, 22, 23, 25] and the references therein. Among those, Hu and
Lau [16] made a start in studying the spectrality of Bernoulli convolutions, classify-
ing the contraction ratios with inûnitely many orthogonal exponential functions. It
was completed by Dai [3], who proved that the only spectral Bernoulli convolutions
are of contraction ratio 1/(2k). his is generalized further to the N-Bernoulli con-
volutions [4, 5]. In the higher-dimensional case, Deng and Lau [6], Li [22] and Liu
and Luo [25] gave some further spectral results which related to the Sierpinski-type
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self-aõne measures. In another direction, there are considerable studies for the non-
spectral measures, please see [21, 24] and the references therein. A more general case
is the Moran measure, which is a non-self-similar extension of the Cantor measure
through the inûnite convolution. Until now, there are few results on the spectrality of
Moran measures [1, 2, 12, 14, 27, 29, 30].

Let {ρn}∞n=1 be a sequence of integers bigger than 1 and let {Dn}∞n=1 be a sequence of
ûnite digit sets in Z. Let ∣D∣ = max{∣d∣ ∶ d ∈ D}, it is well known that if ∣Dn ∣/ρn < ∞,
then the inûnite convolution δρ−1

1 D1
∗δ(ρ1ρ2)−1D2∗⋅ ⋅ ⋅ ∶= µ{ρn},{Dn} is a Borel probability

measure (Moranmeasure), where ∗ is the convolution sign, δE = 1
#E ∑e∈E δe , #E is the

cardinality of a set E, and δe is theDiracmeasure at the point e. In [27], Strichartz ûrst
studied the spectrality of µ{ρn},{Dn}. A�er that, An andHe [1] considered the case that
Dn = {0, 1, . . . , dn − 1} with dn > 1; they showed that µ{ρn},{Dn} is a spectral measure
if dn ∣ ρn . Recently, He et al. [14] studied the case that Dn = {0, dn} with 0 < dn < ρn
for all n ≥ 1, and proved that if 2 ∣ ρn/gcd(dn , ρn), then µ{ρn},{Dn} is a spectral mea-
sure. In [30], Wang, Dong, and Liu further considered Dn = {0, αn , βn} = {0, 1, 2}
(mod 3) and gave some suõcient conditions for µ{ρn},{Dn} to be a spectral measure.

Observe that the above results were obtained under the assumption of ∣Dn ∣/ρn ≤ 1
[1, 14], or that there exists an increasing subsequence {nk}∞k=1 of N such that
∣Dnk ∣/ρnk ≤ 1 for all k ≥ 1 [30]. Can we also say something about the spectrality
of µ{ρn},{Dn} without the above restrictions on the digit sets? Motivated by this ques-
tion and their results, in this paper we focus on a class of Moran measures with four-
element digit sets on R2. Let {Mn}∞n=1 be a sequence of diagonal matrices as follows

(1.1) Mn = [pn 0
0 qn

] , pn , qn ∈ Z ∩ [2,+∞),

and let {Dn}∞n=1 be a sequence of digit sets with

(1.2) Dn = {(0
0
), (an

0
), ( 0

bn
),±(an

bn
)} , an , bn ∈ Z ∩ [1,+∞).

hroughout the paper, we assume that

(1.3) c ∶= sup
n≥1

an

pn
< ∞, d ∶= sup

n≥1

bn

qn
< ∞.

Let Mn = M1M2 ⋅ ⋅ ⋅Mn = diag(Pn ,Qn), where Pn = ∏n
i=1 p i , Qn = ∏n

i=1 q i . Under
the above assumptions, associated to the sequence {Mn ,Dn}∞n=1, there exists a
Borel probability measure µ{Mn},{Dn}, which is deûned by the following inûnite
convolution

(1.4) µ{Mn},{Dn} = δM−1
1 D1

∗ δM−1
2 D2

∗ ⋅ ⋅ ⋅ ,

and the convergence is in the weak sense. We call the measure µ{Mn},{Dn} a Cantor–
Dust–Moran measure, which is supported on the following Cantor–Dust–Moran set:

T({Mn}, {Dn}) ∶= {
∞

∑
n=1

M−1
n dn ∶ dn ∈Dn} =

∞

∑
n=1

M−1
n Dn .

In this paper, we will study the spectrality of the Cantor–Dust–Moran measures
µ{Mn},{Dn}. Our ûrst main result is the following theorem.
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heorem 1.1 Let Mn , Dn and µ{Mn},{Dn} be deûned by (1.1), (1.2) and (1.4) respec-
tively and satisfy c, d ≤ 1, where c and d are deûned by (1.3). If gcd(pn/gcd(an , pn),
qn/gcd(bn , qn)) ∈ 2Z for all n ≥ 1, then µ{Mn},{Dn} is a spectral measure.

To some extent,heorem 1.1 is an extension of the results in [1,14,30], which studied
Moranmeasures onR, and the proof ofheorem 1.1 is inspired by the ideas from them.
We remark that the condition gcd(pn/gcd(an , pn), qn/gcd(bn , qn)) ∈ 2Z for n ≥ 2 is
essential; we will give an example to explain it (see Example 2.3).

Moreover, we further obtain another suõcient condition for µ{Mn},{Dn} to be a
spectral measure without the restrictions c, d ≤ 1. Now we state our second main
theorem.

heorem 1.2 Let Mn , Dn and µ{Mn},{Dn} be deûned by (1.1), (1.2) and (1.4) re-
spectively and satisfy gcd(pn/gcd(an , pn), qn/gcd(bn , qn)) ∈ 2Z for all n ≥ 1. If
limn→∞ pn = limn→∞ qn = ∞, then µ{Mn},{Dn} is a spectral measure.

Some ideas in the proof of heorem 1.2 are of independent interest. he main
diõculty of the proof is to construct candidate spectra for diòerent cases, which are
given in the proof of Proposition 3.1. It is worth noting that the proof of Proposition 3.1
is technical.

Remark 1.3 In the case whenDn = {(0, 0)t , (an , 0)t , (0, bn)t , (an , bn)t}, themea-
sure µ{Mn},{Dn} is the cross product of two two-dimensional Moran measures. We
remark that the conditions c, d ≤ 1 in heorem 1.1 are similar to those of the results
in [1, 14, 30]. Interestingly, heorem 1.2 implies that µ{Mn},{Dn} can also be a spectral
measure without the conditions c, d ≤ 1.

he paper is organized as follows. In Section 2, we introduce some basic deûni-
tions and properties of spectral measures. In Sections 3 and 4, we proveheorems 1.2
and 1.1, respectively.

2 Preliminaries

In this section, we give some preliminary deûnitions and lemmas that we need to
prove our main results. Let µ be a probability measure with compact support on R2.
he Fourier transform of µ is deûned by µ̂(ξ) = ∫ e−2πi⟨x ,ξ⟩dµ(x) as usual. Let Mn ,
Dn and µ{Mn},{Dn} be deûned by (1.1), (1.2) and (1.4), respectively. It follows from [9]
that

(2.1) µ̂{Mn},{Dn}(ξ) =
∞

∏
n=1

mDn(Mn
−1ξ),

where

mDn(x) =
1
4
∑

dn∈Dn

e−2πi⟨dn ,x⟩ = 1
4
(1 + e−2πian x1 + e−2πibn x2 + e±2πi(an x1+bn x2))
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is the mask polynomial ofDn . It is clear that mDn(x) is a Z2-periodic function since
Dn ⊂ Z2. Let

D+
n = {(0

0
), (an

0
), ( 0

bn
), (an

bn
)} and D−

n = {(0
0
), (an

0
), ( 0

bn
), (−an

−bn
)} .

Let Z(h) = {x ∶ h(x) = 0} be the zero set of the function h. hen

(2.2) Z(mDn) = Z(mD+
n
) or Z(mDn) = Z(mD−

n
),

where

Z(mD+
n
) =

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

2k1+1
2an

ξ1

⎞
⎠
, (

ξ2
2k2+1
2bn

) ∶ k1 , k2 ∈ Z, ξ1 , ξ2 ∈ R
⎫⎪⎪⎬⎪⎪⎭
,

Z(mD−
n
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

2k1+1
2an

k2
2bn

⎞
⎠
,
⎛
⎜
⎝

k′1
2an

2k′2+1
2bn

⎞
⎟
⎠
∶ k1 , k2 , k′1 , k

′
2 ∈ Z

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

It follows from (2.1) that

(2.3) Z(µ̂{Mn},{Dn}) =
∞

⋃
n=1

Mn(Z(mDn)) .

We say that Λ is an orthogonal set of µ if EΛ is an orthonormal family for L2(µ).
It is easy to show that Λ is an orthogonal set of µ if and only if µ̂(λ − λ′) = 0 for any
λ ≠ λ′ ∈ Λ, which is equivalent to

(2.4) (Λ − Λ)/{0} ⊂ Z(µ̂).
It is easy to see that a spectrum of a measure is always an orthonormal set of the same
measure.

Let QΛ(ξ) = ∑λ∈Λ ∣µ̂(ξ + λ)∣2. We recall the fundamental criterion for the spec-
trality of µ, which is a directed application of Parseval’s identity.

heorem 2.1 ([17]) Let µ be a Borel probability measure with compact support on
Rn , and let Λ ⊂ Rn be a countable subset. hen
(i) Λ is an orthonormal set of µ if and only if QΛ(ξ) ≤ 1 for ξ ∈ Rn ;
(ii) Λ is a spectrum of µ if and only if QΛ(ξ) ≡ 1 for ξ ∈ Rn ;
(iii) if Λ is an orthonormal set of µ, then QΛ(z) is an entire function.

he following lemma is an eòective method to illustrate that a countable set Λ
cannot be a spectrum of a measure µ, which will be used in Example 2.3.

Lemma 2.2 ([5]) Let µ = µ0 ∗ µ1 be the convolution of two probability measures µ i ,
i = 0, 1 who are not Dirac measures. Suppose that Λ is an orthogonal set of µ0 with
0 ∈ Λ, then Λ is also an orthogonal set of µ but cannot be a spectrum of µ.

he following example indicates that the hypothesis gcd(pn/gcd(an , pn),
qn/gcd(bn , qn)) ∈ 2Z for n ≥ 2 in heorem 1.1 is essential.

Example 2.3 Let Dn = {(0, 0)t , (1, 0)t , (0, 1)t , ±(1, 1)t}, M1 = diag(4, 4), M2 =
diag(3, 3) and Mn = diag(4, 4) for n ≥ 3. hen the measure µ{Mn},{Dn} is not a
spectral measure.
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Proof For convenience, we let κn ∶= gcd(pn/gcd(an , pn), qn/gcd(bn , qn)) for all
n ≥ 1. It is direct to calculate that c = d = 1

3 and κn = κ1 = 4 ∈ 2Z for n ≥ 3, but
κ2 = 3 ∉ 2Z. Let µ1 = δM−1

1 D1
∗δM−1

3 D3
∗δM−1

4 D4
∗ ⋅ ⋅ ⋅, then µ{Mn},{Dn} = δM−1

2 D2
∗ µ1.

By (2.1), we have

µ̂{Mn},{Dn}(ξ) = mD1(
ξ
4
)mD2(

ξ
12

)
∞

∏
k=2

mDk(
ξ

3 ⋅ 4k )

= mD1(
ξ
4
)mD2(

ξ
12

) µ̂{M1},{D1}(
ξ
12

) .

It is easy to check that Z(mD2( ξ
12 )) ⊂ Z(mD1( ξ

4 )) , thus Z(µ̂{Mn},{Dn}) = Z(µ̂1).
Hence the assertion follows by Lemma 2.2. ∎

hroughout this paper, we write

(2.5) µn = δM−1
1 D1

∗ ⋅ ⋅ ⋅ ∗ δM−1
n Dn

and µ>n = δM−1
n+1Dn+1

∗ δM−1
n+2Dn+2

∗ ⋅ ⋅ ⋅ .

hen µ{Mn},{Dn} = µn ∗ µ>n . Moreover, we let an = 2sn a′n , bn = 2tnb′n for n ≥ 1, where
sn , tn ≥ 0 and a′n , b′n are odd. Since gcd(pn/gcd(an , pn), qn/gcd(bn , qn)) ∈ 2Z for
all n ≥ 1, we can rewrite pn = 21+sn p′n and qn = 21+tnq′n , where p′n and q′n may be even.
Let σ = σ1σ2 ⋅ ⋅ ⋅, σ ′ = σ ′1 σ ′2 ⋅ ⋅ ⋅ ∈ (2Z + 1)N. Now we construct a countable set Λσ ,σ ′ in
terms of ({Mn}, {sn}, {tn}, {σn}, {σ ′n}). Let

(2.6) Λσ ,σ ′
n =

n

∑
i=1

Mi

⎧⎪⎪⎨⎪⎪⎩
(00) , (

σ i
21+s i

0 ) , (
0
σ ′i

21+t i

) ,
⎛
⎝

σ i
21+s i

σ ′i
21+t i

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
and Λσ ,σ ′ =

∞

⋃
n=1

Λσ ,σ ′
n .

Lemma 2.4 Let Mn , Dn and µ{Mn},{Dn} be deûned by (1.1), (1.2) and (1.4), respec-
tively. With the same notations as above, then the setΛσ ,σ ′

n is a spectrum of µn andΛσ ,σ ′

is an orthogonal set of µ{Mn},{Dn} for each σ , σ ′ ∈ (2Z + 1)N.

Proof For convenience, we let Li = {(0, 0)t , ( σ i
21+s i , 0)t , (0, σ ′i

21+t i )t , ( σ i
21+s i ,

σ ′i
21+t i )t}.

hen, for any λ ≠ λ′ ∈ Λσ ,σ ′
n , we have λ = ∑n

i=1 Mi l i and λ′ = ∑n
i=1 Mi l ′i , where

l i , l ′i ∈ Li . Let κ be the ûrst index such that lκ ≠ l ′κ , then λ − λ′ = Mκ[(lκ − l ′κ) +
∑n

i=κ+1 MiM
−1
κ (l i − l ′i)]. It is easy to check that lκ , l ′κ and lκ − l ′κ belong to Z(mDκ)

(see (2.2)). Note that p i = 21+s i p′i and q i = 21+t i q′i , we have M i(l i − l ′i) ∈ Z2. hen
MiM

−1
κ (l i − l ′i) = Mκ+1 ⋅ ⋅ ⋅M i(l i − l ′i) ∈ Z2 for i ≥ κ + 1. herefore

λ − λ′ ∈Mκ(Z(mDκ) +Z2) =Mκ(Z(mDκ)) ⊂
n
⋃
i=1

Mi(Z(mDi )) = Z(µ̂n).(2.7)

his and (2.4) imply that Λσ ,σ ′
n is an orthogonal set of µn . hen Λσ ,σ ′

n is a spectrum
of µn because the dimension of L2(µn) is 4n , which is the cardinality of the set Λσ ,σ ′

n .
Next we prove that Λσ ,σ ′ is an orthogonal set of µ{Mn},{Dn}. For any λ ≠ λ′ ∈ Λσ ,σ ′ ,

there exists an integer n such that λ, λ′ ∈ Λσ ,σ ′
n . As µ{Mn},{Dn} = µn ∗ µ>n , it follows

from (2.3) that Z(µ̂n) ⊂ Z(µ̂{Mn},{Dn}). his together with (2.7) yields that λ − λ′ ∈
Z(µ̂{Mn},{Dn}), by (2.4), the assertion follows. ∎
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3 Proof of Theorem 1.2

In this section, we ûrst give a proposition and then use it to complete the proof of
heorem 1.2. Note that pn , qn ≥ 2 for n ≥ 1, then Pn ,Qn ≥ 2n , which will be used
many times in the rest of this paper. To simplify notations, we write Pn ,m = ∏m

i=n p i

and Qn ,m = ∏m
i=n q i . Let Λσ ,σ ′

n ∶= (Λ1
n , Λ

2
n)t , Λσ ,σ ′ ∶= (Λ1 , Λ2)t , which are deûned

by (2.6). hen Λ1
n = ∑n

i=1 Pi{0, σ i
21+s i }, Λ2

n = ∑n
i=1 Qi{0, σ ′i

21+t i }. To prove heorem 1.2,
we will construct diòerent sets Λ1

n and Λ2
n for Λσ ,σ ′ being spectra.

Proposition 3.1 Under the conditions of heorem 1.2, then there exist an increasing
subsequence {nk}∞k=1 of N, some σ , σ ′ ∈ (2Z + 1)N and a constant α > 0 such that

∣µ̂>nk(ξ + λ)∣ ≥ α for k > 1, ξ ∈ [0, 1]2 and λ ∈ Λσ ,σ ′
nk

.

Proof For simplicity, we write

J j(x) ∶= ∣mD j(M j
−1x)∣ = 1

4
∣ 1 + e2πiη j,1(x) + e2πiη j,2(x) + e±2πi(η j,1(x)+η j,2(x))∣ ,

where η j ,1(x) = −P−1
j a jx1, η j ,2(x) = −Q−1

j b jx2 for x = (x1 , x2)t . For ξ = (ξ1 , ξ2)t ∈
[0, 1]2 and λ = (λ1 , λ2)t ∈ Λσ ,σ ′

nk
, we use η j ,1 , η j ,2 to denote η j ,1(ξ+ λ) and η j ,2(ξ+ λ)

respectively, that is,

η j ,1 = −P−1
j a j(ξ1 + λ1), η j ,2 = −Q−1

j b j(ξ2 + λ2).

It follows from (2.5) that ∣µ̂>nk(ξ+ λ)∣ = ∏∞
j=nk+1 J j(ξ+ λ). Recall that an = 2sn a′n and

bn = 2tnb′n with a′n , b′n ∉ 2Z, for the two sequences {sn}∞n=1 and {tn}∞n=1, it is easy to
show that there must exist an increasing subsequence {nk}∞k=1 ofNwith nk+1−nk ≥ 2
and two nonnegative integers s, t such that one of the following cases holds:

Case I: limk→∞ snk = limk→∞ tnk = ∞;
Case II: limk→∞ snk = ∞ and tnk = t for all k ≥ 1;
Case III: limk→∞ tnk = ∞ and snk = s for all k ≥ 1;
Case IV: snk = s and tnk = t for all k ≥ 1.

As limn→∞ pn = limn→∞ qn = ∞, we further suppose that the sequence {nk}∞k=1
satisûes pn ≥ max{10cπ, 10} and qn ≥ max{10dπ, 10} for n ≥ n1. We will choose
diòerent σ , σ ′ ∈ (2Z + 1)N in Λσ ,σ ′

n for the above four cases.
By (1.3), it is clear that there exist an increasing subsequence of {nk}∞k=1 (we replace

it by the original sequence) and two constants c′ , d′ such that

lim
k→∞

ank+1/pnk+1 ∶= c′ < ∞ and lim
k→∞

bnk+1

qnk+1
∶= d′ < ∞.(3.1)

We will illustrate our following four steps needed to complete the proof.
Step 1. We ûrst give the choices of σ and σ ′ for diòerent cases.
In Case I, we can further suppose that the sequence {nk}∞k=1 satisûes snk ≥ max

{2, ⌊log2 4c⌋ + 1} and tnk ≥ max{2, ⌊log2 4d⌋ + 1} for all k ≥ 1, where ⌊x⌋ = max
{n ∈ Z ∣ n ≤ x}. Choose σi , σ ′i = 1 for all i ≥ 1. hen, for λ = (λ1 , λ2)t ∈ Λσ ,σ ′

n−1 ,
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we have

∣λ1∣
Pn

≤
n−1

∑
i=1

1
Pi+1,n

1
21+s i

≤
n−1

∑
i=1

1
2Pi+1,n

≤ 1
pn

∞

∑
i=1

1
2i ≤

1
pn
,(3.2)

∣λ2∣
Qn

≤
n−1

∑
i=1

1
Qi+1,n

1
21+t i

≤
n−1

∑
i=1

1
2Qi+1,n

≤ 1
qn

∞

∑
i=1

1
2i ≤

1
qn

.(3.3)

In Case II, we further suppose that the sequence {nk}∞k=1 satisûes snk ≥ max
{2, ⌊log2 4c⌋ + 1} for all k ≥ 1. Let σi = 1 for all i ≥ 1, then ∣λ1 ∣

Pn
≤ 1

pn
for λ1 ∈ Λ1

n−1

by (3.2). For the choice of σ ′i , we divide it into two cases.
Case II1: d′ ∈ N + { 1

2}. Let σ
′
i = 1 for all i ≥ 1, then ∣λ2 ∣

Qn
≤ 1

qn
for λ2 ∈ Λ2

n−1 by (3.3).
Case II2: d′ ∉ N + { 1

2}. Let σ
′
i = 1 if i ∉ {nk ∶ k ≥ 1} and σ ′nk

∈ {q′nk+1 , q′nk+1 + 1} ∩
(Z/2Z). As nk+1 − nk ≥ 2 and σ ′nk

≤ qnk+1, we have

∣λ2∣
Qnk

≤
nk−1

∑
i=1

σ ′i
2Qi+1,nk

≤ 1
2qnk

+
nk−2

∑
i=1

1
2Qi+2,nk

≤ 1
2qnk

( 1 +
∞

∑
i=0

1
2i ) ≤ 3

2qnk

(3.4)

for λ2 ∈ Λ2
nk−1 and

∣λ2∣
Qnk+1

≤
nk

∑
i=1

σ ′i
2Qi+1,nk+1

≤
q′nk+1 + 1
2qnk+1

+
nk−1

∑
i=1

1
2Qi+2,nk+1

≤ 1
4
+ 3

2qnk+1
(3.5)

for λ2 ∈ Λ2
nk
.

In Case III, similar to Case II, we let {nk}∞k=1 satisfy tnk ≥ max{2, ⌊log2 4d⌋+ 1} for
all k ≥ 1. Let σ ′i = 1 for all i ≥ 1, then ∣λ2 ∣

Qn
≤ 1

qn
for λ2 ∈ Λ2

n−1 by (3.3). For the choice
of σi , we divide it into two cases.
Case III1: c′ ∈ N + { 1

2}. Let σi = 1 for all i ≥ 1, then ∣λ1 ∣

Pn
≤ 1

pn
for λ1 ∈ Λ1

n−1 by (3.2).
Case III2: c′ ∉ N + { 1

2}. Let σi = 1 if i ∉ {nk ∶ k ≥ 1} and σnk ∈ {p′nk+1 , p′nk+1 + 1} ∩
(Z/2Z). Note that σnk ≤ pnk+1, similar to (3.4) and (3.5), we have ∣λ1 ∣

Pnk
≤ 3

2pnk
for

λ1 ∈ Λ1
nk−1 and

∣λ1 ∣

Pnk+1
≤ 1

4 +
3

2pnk+1
for λ1 ∈ Λ1

nk
.

In Case IV, the choices of σi and σ ′i are the same as Cases IIIκ and IIκ respectively,
where κ = 1 or 2. Here we omit these estimates.

In order to estimate the lower bound of ∏∞
j=nk+1 J j(ξ + λ), where ξ = (ξ1 , ξ2)t ∈

[0, 1]2 and λ ∈ Λσ ,σ ′
nk

, we will consider two cases: λ ∈ Λσ ,σ ′
nk−1 and λ ∈ Λσ ,σ ′

nk
/Λσ ,σ ′

nk−1.

Step 2. We then estimate the lower bound of∏∞
j=nk+1 J j(ξ + λ) for λ = (λ1 , λ2)t ∈

Λσ ,σ ′
nk−1.
Observe that ∣λ1 ∣

Pnk
, ∣λ2 ∣
Qnk

≤ 3
2pnk

for all cases. It follows from pn ≥ 10cπ and qn ≥ 10dπ
for n ≥ n1 that

2π∣η j ,1∣ = 2π∣
a j

p j

ξ1 + λ1

Pnk

1
Pnk+1, j−1

∣ ≤ 2πc( 1
pnk

+ 3
2pnk

) 1
2 j−nk−1 ≤

1
2 j−nk
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and similarly, 2π∣η j ,2∣ ≤ 1
2 j−nk

. Applying cos x ≥ 1 − 1
2 x

2, we obtain
∞

∏
j=nk+1

J j(ξ + λ) ≥
∞

∏
j=nk+1

1
4
∣ 1 + cos(2πη j ,1) + cos(2πη j ,2) + cos(±2π(η j ,1 + η j ,2)) ∣

≥
∞

∏
j=nk+1

1
4
∣ 1 + 3 cos

1
2 j−nk−1 ∣ ≥

∞

∏
j=0

( 1 − 3
8

1
4 j ) ∶= α1 > 0.(3.6)

Step 3. We estimate the lower bound of ∏∞
j=nk+2 J j(ξ + λ) for λ = (λ1 , λ2)t ∈

Λσ ,σ ′
nk

/Λσ ,σ ′
nk−1.

We ûrst claim that 2π∣η j ,1∣, 2π∣η j ,2∣ ≤ 1
2 j−nk−1 for j ≥ nk + 2. In Cases I, II and III1,

by ∣λ1 ∣

Pnk+1
≤ 1

pnk+1
and pn ≥ 10cπ for n ≥ n1, we have

2π∣η j ,1∣ = 2π∣
a j

p j

ξ1 + λ1

Pnk+1

1
Pnk+2, j−1

∣ ≤ 2πc( 1
pnk+1

+ 1
pnk+1

) 1
2 j−nk−2

≤ 8cπ
pnk+1

1
2 j−nk−1 ≤

1
2 j−nk−1 .

In Case III2, by
∣λ1 ∣

Pnk+1
≤ 3

2pnk+1
and pn ≥ max{10cπ, 10} for n ≥ n1, we have

2π∣η j ,1∣ = 2π∣
a j

p j

ξ1 + λ1

Pnk+1

1
Pnk+2, j−1

∣ ≤ 2πc( 1
4
+ 5

2pnk+1
) 1
10cπ

1
2 j−nk−3

≤ 1
10

1
2 j−nk−3 ≤ 1

2 j−nk−1 .

Similarly, we can prove that 2π∣η j ,2∣ ≤ 1
2 j−nk−1 for all cases. hus the claim follows.

Similar to (3.6), we deduce that
∞

∏
j=nk+2

J j(ξ + λ) ≥
∞

∏
j=nk+2

1
4
∣ 1 + 3 cos

1
2 j−nk−2 ∣ ≥

∞

∏
j=0

( 1 − 3
8

1
4 j ) > 0.(3.7)

Step 4.Weestimate the lower bound of Jnk+1(ξ+λ) for λ = (λ1 , λ2)t ∈ Λσ ,σ ′
nk

/Λσ ,σ ′
nk−1.

he diõcult case is that j = nk + 1. Since λ ∈ Λσ ,σ ′
nk

/Λσ ,σ ′
nk−1, we have

−ηnk+1,1 =
ank+1

pnk+1

ξ1 + λ1

Pnk

= ank+1

pnk+1

σnk

21+snk
+ ank+1

Pnk+1
(ξ1 + λ′1),

−ηnk+1,2 =
bnk+1

qnk+1

ξ2 + λ2

Qnk

= bnk+1

qnk+1

σ ′nk

21+tnk
+ bnk+1

Qnk+1
(ξ2 + λ′2)

for some λ′ = (λ′1 , λ′2)t ∈ Λσ ,σ ′
nk−1. It should be noted that λ1 = λ′1 and λ2 = λ′2 cannot

hold at the same time. Without loss of generality, we always suppose that λ i ≠ λ′i for
all i = 1, 2. Otherwise, λ i ∈ Λ i

nk−1 for i = 1 or 2 and the estimates can be obtained
by using the same method as before. We now focus on estimating Jnk+1(ξ + λ) for all
cases.

In Case I, since snk ≥ max{2, ⌊log2 4c⌋ + 1}, tnk ≥ max{2, ⌊log2 4d⌋ + 1}, pnk ≥
10cπ > 8c and qnk ≥ 10dπ > 8d, it follows from σnk , σ

′
nk
= 1, (3.2) and (3.3) that

∣ηnk+1,1∣ =
ank+1

pnk+1

1
21+snk

+ ank+1

pnk+1

ξ1 + λ′1
Pnk

≤ c
21+snk

+ 2c
pnk

≤ 3
8
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and similarly, ∣ηnk+1,2∣ ≤ 3
8 . hen (ηnk+1,1 , ηnk+1,2) ∈ [− 3

8 ,
3
8 ]

2 ∶= Θ0. Nowwe consider
the continuous function

f (x , y) ∶= 1
4
∣1 + e2πix + e2πi y + e±2πi(x+y)∣, (x , y)t ∈ R2

and let

f + = 1
4
∣1 + e2πix + e2πi y + e2πi(x+y)∣, f − = 1

4
∣1 + e2πix + e2πi y + e−2πi(x+y)∣.

It is easy to calculate that Z( f ) = Z( f +) or Z( f ) = Z( f −), where

Z( f +) = {(
1
2 + k1
ξ1

) , ( ξ2
1
2 + k2

) ∶ k1 , k2 ∈ Z, ξ1 , ξ2 ∈ R} ,

Z( f −) = {(
1
2 + k1

k2
2

) , (
k′1
2

1
2 + k′2

) ∶ k1 , k2 , k′1 , k
′
2 ∈ Z} .

It is clear that Θ0 ∩ Z( f ) = ∅. Observe that f (η j ,1 , η j ,2) = J j(ξ + λ), we conclude
from (ηnk+1,1 , ηnk+1,2) ∈ Θ0 and the integer-periodicity of f that

min
ξ∈[0,1]2 ,λ∈Λσ ,σ′

nk
/Λσ ,σ′

nk−1

Jnk+1(ξ + λ) ≥ min
(x ,y)∈Θ0

f (x , y) ∶= γ0 > 0.

Consequently,

Jnk+1(ξ + λ) ≥ γ0 > 0.(3.8)

In Case II, it is proved in Case I that ηnk+1,1 ∈ [− 3
8 ,

3
8 ], so we only need to estimate

ηnk+1,2. Corresponding to Cases II1 and II2, we will give diòerent estimates.
We ûrst consider Case II1. As σ ′nk

= 1, we have −ηnk+1,2 = 1
21+t

bnk+1

qnk+1
+ bnk+1

Qnk+1
(ξ2+λ′2),

where 0 ≤ t < ∞. Let δ0 ∶= ∣( d′
21+t )− 1

2 ∣, where (x) = x−⌊x⌋, then δ0 > 0 by d′ ∈ N+{ 1
2}.

Since limk→∞
bnk+1

qnk+1
= d′ and limk→∞ qnk = ∞, we further suppose that the sequence

{nk}∞k=1 satisûes ∣ 1
21+t

bnk+1

qnk+1
− d′

21+t ∣ < δ0
4 and qnk ≥ max{10dπ, 10, 16d

δ0
} for all k ≥ 1. hen

1
21+t

bnk+1

qnk+1
∈ [( d′

21+t ) −
δ0
4
, ( d′

21+t ) +
δ0
4
] +Z(3.9)

⊂ ([−δ0
4
,
1
2
− δ0

4
] ∪ [ 1

2
+ δ0

4
, 1 + δ0

4
]) +Z.

Furthermore, it follows from ∣λ′2 ∣
Qnk

≤ 1
qnk

and bnk+1

qnk+1
≤ d that ∣ bnk+1

qnk+1

λ′2
Qnk

+ bnk+1

qnk+1

ξ2
Qnk

∣ ≤
2d
qnk

≤ δ0
8 . his implies from (3.9) that

ηnk+1,2 ∈ ([−3δ0
8
,
1
2
− δ0
8
] ∪ [ 1

2
+ δ0
8
, 1 + 3δ0

8
]) +Z ∶= E0 .

Let Θ1 ∶= [− 3
8 ,

3
8 ] × E0, so (ηnk+1,1 , ηnk+1,2) ∈ Θ1. Clearly, Θ1 ∩ Z( f ) = ∅. Similar to

(3.8), we have Jnk+1(ξ + λ) ≥ γ1 > 0, where γ1 ∶= min(x ,y)∈Θ1 f (x , y).
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We then consider Case II2. As σ ′nk
∈ {q′nk+1 , q′nk+1+1}∩(Z/2Z), we have bnk+1

qnk+1

σ ′nk
21+t ∈

{ b
′

nk+1

22+t ,
b′nk+1

22+t + 1
21+t

bnk+1

qnk+1
}, where 0 ≤ t < ∞. Let

δ1 ∶= min
1≤ j≤22+t−1, j∉2Z

{( j
22+t + ( d′

21+t ) −
1
2
) , 1 − ( j

22+t + ( d′

21+t ) −
1
2
) , 1

22+t } ,

where (x) = x − ⌊x⌋, then δ1 > 0 by d′ ∉ N + { 1
2}. Since limk→∞

bnk+1

qnk+1
= d′ and

limk→∞ qnk = ∞, suppose that the sequence {nk}∞k=1 satisûes ∣ 1
21+t

bnk+1

qnk+1
− d′

21+t ∣ < δ1
4

and qnk ≥ max{10dπ, 10, 20d
δ1

} for all k ≥ 1. hen we conclude from b′nk+1 ∈ Z/2Z that

b′nk+1

22+t + 1
21+t

bnk+1

qnk+1
∈ [ j

22+t + ( d′

21+t ) −
δ1
4
,

j
22+t + ( d′

21+t ) +
δ1
4
] +Z.

By the deûnition of δ1, we have

j
22+t + ( d′

21+t ) ∈ ([0, 1
2
− δ1] ∪ [ 1

2
+ δ1 , 1]) +Z

⊂ ([0, 1
2
− δ1

2
] ∪ [ 1

2
+ δ1

2
, 1]) +Z.

Hence
b′nk+1

22+t + 1
21+t

bnk+1

qnk+1
∈ ([−δ1

4
,
1
2
− δ1

4
] ∪ [ 1

2
+ δ1

4
, 1 + δ1

4
]) +Z ∶= Eδ1 .

It is easy to see that
b′nk+1

22+t ∈ Eδ1 . Consequently, bnk+1

qnk+1

σ ′nk
21+t ∈ Eδ1 . As ∣λ′2 ∣

Qnk
≤ 3

2qnk
and

bnk+1

qnk+1
≤ d, we further have

∣ bnk+1

qnk+1

λ′2
Qnk

+ bnk+1

qnk+1

ξ2
Qnk

∣ ≤ 5d
2qnk

≤ δ1
8
.

It follows that

ηnk+1,2 ∈ ([−3δ1
8
,
1
2
− δ1
8
] ∪ [ 1

2
+ δ1
8
, 1 + 3δ1

8
]) +Z ∶= E1 .

Let Θ2 ∶= [− 3
8 ,

3
8 ]×E1, then (ηnk+1,1 , ηnk+1,2) ∈ Θ2. Similar to (3.8), by Θ2∩Z( f ) = ∅,

we have Jnk+1(ξ + λ) ≥ γ2 > 0, where γ2 ∶= min(x ,y)∈Θ2 f (x , y).
In Case III, it is proved in Case I that ηnk+1,2 ∈ [− 3

8 ,
3
8 ]. he estimate of ηnk+1,1 is

similar to that of ηnk+1,2 in Case II. Using the similar argument as in Case II, we can
prove that there exists a constant γ3 > 0 such that Jnk+1(ξ + λ) ≥ γ3.

In Case IV, the estimates of ηnk+1,1 and ηnk+1,2 are similar to that of ηnk+1,2 in
Case II. Hence, using the similar argument as before, we can ûnd a constant γ4 > 0
such that Jnk+1(ξ + λ) ≥ γ4.

herefore, we have Jnk+1(ξ + λ) ≥ min{γ0 , γ1 , γ2 , γ3 , γ4} ∶= γ > 0 for all cases. By
(3.7), we obtain∏∞

j=nk+1 J j(ξ + λ) ≥ γ∏∞
j=0(1 − 3

8
1
4 j ) ∶= α2 > 0 for λ ∈ Λσ ,σ ′

nk
/Λσ ,σ ′

nk−1.
his together with (3.6) shows that ∣µ̂>nk(ξ+λ)∣ = ∏∞

j=nk+1 J j(ξ+λ) ≥ α for λ ∈ Λσ ,σ ′
nk

,
where α ∶= min{α1 , α2}. Hence, the proof is completed. ∎
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Deûne

Qn(ξ) = ∑
λ∈Λσ ,σ′

n

∣µ̂{Mn},{Dn}(ξ+ λ)∣2 and QΛσ ,σ′ (ξ) = ∑
λ∈Λσ ,σ′

∣µ̂{Mn},{Dn}(ξ+ λ)∣2 .

We now present the proof of heorem 1.2.

Proof of Theorem 1.2 Let Λσ ,σ ′= ⋃∞k=1 Λσ ,σ ′
nk

, where Λσ ,σ ′
nk

is given inProposition 3.1.
We will prove that Λσ ,σ ′ is a spectrum of µ{Mn},{Dn}. It follows from µ̂{Mn},{Dn} =
µ̂nk µ̂>nk and Proposition 3.1 that ∣µ̂{Mn},{Dn}(ξ + λ)∣2 ≥ α2∣µ̂nk(ξ + λ)∣2. By heo-
rem 2.1(ii) and Lemma 2.4, we have ∑λ∈Λσ ,σ′

nk
∣µ̂nk(ξ + λ)∣2 = 1. hen, for k > 1, we

get

Qnk(ξ) = Qnk−1(ξ) + ∑
λ∈Λσ ,σ′

nk
/Λσ ,σ′

nk−1

∣µ̂{Mn},{Dn}(ξ + λ)∣2

≥ Qnk−1(ξ) + α2( 1 − ∑
λ∈Λσ ,σ′

nk−1

∣µ̂nk(ξ + λ)∣2) .(3.10)

If QΛσ ,σ′ (ξ) /≡ 1, then there exists ξ0 ∈ [0, 1]2 such that QΛσ ,σ′ (ξ0) < 1. Let ϑ0
satisfy max{QΛσ ,σ′ (ξ0), e−2} < ϑ0 < 1. Assume that {nk}∞k=1 satisûes the conditions
of Proposition 3.1 and nk+1 − nk ≥ 2 − log4 lnϑ

−1/2
0 for k ≥ 1 (otherwise we choose a

subsequence of {nk}∞k=1 to replace it). Now we prove that

∣µ̂>nk(ξ0 + λ)∣ ≥
√
ϑ0 for k > 1 and λ ∈ Λσ ,σ ′

nk−1
.

It can be seen from the proof of Proposition 3.1 that

2π∣η j ,1(ξ0 + λ)∣, 2π∣η j ,2(ξ0 + λ)∣ ≤ 1
2 j−nk−1−1

for j > nk and λ ∈ Λσ ,σ ′
nk−1

. Hence, using cos x ≥ 1 − 1
2 x

2 and ln(1 − x) ≥ −5x for
0 ≤ x ≤ 4/5, we have

∣µ̂>nk(ξ0 + λ)∣ =
∞

∏
j=nk+1

J j(ξ0 + λ) ≥
∞

∏
j=nk+1

1
4
( 1 + 3 cos

1
2 j−nk−1−2 )

=
∞

∏
j=0

1
4
( 1 + 3 cos

1
2 j+nk−nk−1−1 ) ≥

∞

∏
j=0

( 1 − 3
8

1
4 j+nk−nk−1−1 )

≥ exp(− 15
8

∞

∑
j=0

1
4 j+nk−nk−1−1 ) ≥ exp(−42−nk+nk−1) ≥

√
ϑ0 .

hus ∣µ̂{Mn},{Dn}(ξ0 + λ)∣2 ≥ ϑ0∣µ̂nk(ξ0 + λ)∣2, and hence (3.10) becomes

Qnk(ξ0) ≥ Qnk−1(ξ0) + α2( 1 − ϑ−1
0 ∑

λ∈Λσ ,σ′
nk−1

∣µ̂{Mn},{Dn}(ξ0 + λ)∣2)

≥ Qnk−1(ξ0) + α2( 1 − ϑ−1
0 QΛσ ,σ′ (ξ0)) .

herefore

1 ≥ QΛσ ,σ′ (ξ0) ≥ Qnk(ξ0) ≥ Qn1(ξ0) + (k − 1)α2( 1 − ϑ−1
0 QΛσ ,σ′ (ξ0))
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for k > 1, which is impossible when k is large enough. Hence, QΛσ ,σ′ (ξ) ≡ 1 and the
assertion follows by heorem 2.1. ∎

4 Proof of Theorem 1.1

In this section, we will prove heorem 1.1 by decomposing it into two cases.
CaseA:here exists an increasing subsequence {nk}∞k=1 ofN such that ank+1

pnk+1
, bnk+1

qnk+1
≤

r for some r < 1.

Case B: limn→∞
an
pn

= 1 or limn→∞
bn
qn

= 1. We begin with two propositions for the

above two cases respectively. Recall that Λσ ,σ ′
n and Λσ ,σ ′ are deûned by (2.6).

Proposition 4.1 Under the conditions of heorem 1.1, suppose that Case A holds and
let l be a positive integer such that 2 l−1

+1
2 l−1 < min{ 1

2r ,
2
π }. hen there exist σ , σ ′ ∈ {−1, 1}N

such that the following statements hold:

(i) there exists αr , l > 0 such that ∣µ̂>nk(ξ + λ)∣ ≥ αr , l for k > 1, ξ ∈ [0, 1]2 and
λ ∈ Λσ ,σ ′

nk
;

(ii) if nk − nk−1 ≥ 3, then ∣µ̂>nk(ξ + λ)∣ ≥ exp(−44−nk+nk−1) for k > 1, ξ ∈ [0, 1]2 and
λ ∈ Λσ ,σ ′

nk−1
.

Proof
(i) Without loss of generality, we assume that {nk}∞k=1 satisûes nk+1 − nk ≥ l for each
k ≥ 1 and n1 ≥ l . Choose σ and σ ′ such that σi , σ ′i = 1 if i ∈ {nk ∶ k ≥ 1} and σi , σ ′i = −1
for otherwise. First, we claim that

(4.1)
∣λ1∣
Pnk

≤ 2l−1

2l − 1
,

∣λ2∣
Qnk

≤ 2l−1

2l − 1
for λ = (λ1 , λ2)t ∈ Λσ ,σ ′

nk
and k > 1.

In fact, for λ ∈ Λσ ,σ ′
nk−1, we have λ1 ∈ ∑nk−1

i=1 Pi{0, σ i
21+s i } and λ2 ∈ ∑nk−1

i=1 Qi{0, σ ′i
21+t i }.

hen

∣λ1∣
Pnk

≤
nk−1

∑
i=1

Pi

Pnk

1
21+s i

= 1
pnk

( 1
21+snk−1

+
nk−2

∑
i=1

1
Pi+1,nk−1

1
21+s i

)

≤ 1
21+snk

∞

∑
i=1

1
2i =

1
21+snk

≤ 2l−1

2l − 1

and similarly, ∣λ2 ∣
Qnk

≤ 2 l−1

2 l−1 . For λ ∈ Λσ ,σ ′
nk

/Λσ ,σ ′
nk−1, we have λ1 ∈ ∑nk

i=1 Pi{0, σ i
21+s i } and

λ2 ∈ ∑nk
i=1 Qi{0, σ ′i

21+t i }. hen there exist l i ∈ {0, σ i
21+s i } and l ′i ∈ {0, σ ′i

21+t i } such that λ1 =
∑nk

i=1 Pi l i and λ2 = ∑nk
i=1 Qi l ′i , where lnk = 0 and l ′nk

= 0 cannot hold at the same time.

Without loss of generality, we always suppose that lnk =
σnk

21+snk
and l ′nk

= σ ′nk

21+tnk
. Oth-

erwise, λ i ∈ Λ i
nk−1 for i = 1 or 2 and the estimates can be obtained by using the same

method as before. Hence, by σnk = σ ′nk
= 1 and nk − n i = ∑k−1

j=i (n j+1 − n j) ≥ (k − i)l ,
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we have

λ1

Pnk

≥ 1
21+snk

− 1
pnk

( 1
21+snk−1

+
nk−2

∑
i=1

1
Pi+1,nk−1

1
21+s i

)

≥ 1
21+snk

( 1 −
nk−1

∑
i=1

1
2nk−i ) ≥ 0

and similarly, λ2
Qnk

≥ 0. Moreover,

λ1

Pnk

≤ 1
21+snk

+
k−1

∑
i=1

1
Pn i+1,nk

1
21+sni

≤ 1
2
( 1 +

k−1

∑
i=1

1
2nk−n i

) ≤ 1
2

∞

∑
i=0

1
2l i =

2l−1

2l − 1

and similarly, λ2
Qnk

≤ 2 l−1

2 l−1 . hus the claim follows.

herefore, for ξ = (ξ1 , ξ2)t ∈ [0, 1]2, since n1 ≥ l and Pnk , Qnk ≥ 2nk , by (4.1), we
have

∣ ξ1 + λ1

Pnk

∣ ≤ 1
Pnk

+ 2l−1

2l − 1
≤ 2l−1 + 1

2l − 1
, ∣ ξ2 + λ2

Qnk

∣ ≤ 1
Qnk

+ 2l−1

2l − 1
≤ 2l−1 + 1

2l − 1
.(4.2)

When j = nk+1, . . . , nk+3, since 2 l−1
+1

2 l−1 < min{ 1
2r ,

2
π }, it follows from a j ≤ p j , b j ≤ q j ,

(4.2) and ank+1

pnk+1
, bnk+1

qnk+1
≤ r that

∣η j ,1∣ = ∣
a j

p j

ξ1 + λ1

Pnk

1
Pnk+1, j−1

∣ ≤ 2l−1 + 1
2l − 1

∣ ank+1

pnk+1
∣ ≤ 2l−1 + 1

2l − 1
r < 1

2

and similarly, ∣η j ,2∣ ≤ 2 l−1
+1

2 l−1 r < 1
2 . Let Θ3 ∶= [− 2 l−1

+1
2 l−1 r, 2 l−1

+1
2 l−1 r]2, then (η j ,1 , η j ,2) ∈ Θ3.

Similar to (3.8), by Θ3 ∩ Z( f ) = ∅, we obtain

nk+3
∏

j=nk+1
J j(ξ + λ) ≥ β3

r , l > 0, where βr , l ∶= min
(x ,y)∈Θ3

f (x , y).(4.3)

When j ≥ nk + 4, as a j ≤ p j , b j ≤ q j , it follows from (4.2) and 2 l−1
+1

2 l−1 < min{ 1
2r ,

2
π }

that

2π∣η j ,1∣ = 2π∣
a j

p j

ξ1 + λ1

Pnk

1
Pnk+1, j−1

∣ ≤ 2l−1 + 1
2l − 1

π
2 j−nk−2 ≤ 1

2 j−nk−3(4.4)

and similarly, 2π∣η j ,2∣ ≤ 1
2 j−nk−3

. hen∏∞
j=nk+4 J j(ξ+λ) ≥ ∏∞

j=0(1− 3
8

1
4 j ) > 0 (similar to

(3.6)). Combining with (4.3), we get that ∣µ̂>nk(ξ+λ)∣ ≥ β3
r , l ∏

∞
j=0(1− 3

8
1
4 j ) ∶= αr , l > 0.

(ii) For λ = (λ1 , λ2)t ∈ Λσ ,σ ′
nk−1

and ξ = (ξ1 , ξ2)t ∈ [0, 1]2, similar to (4.2) and (4.4),
we can obtain that ∣ ξ1+λ1

Pnk−1
∣, ∣ ξ2+λ2

Qnk−1
∣ ≤ 2 l−1

+1
2 l−1 and 2π∣η j ,1∣, 2π∣η j ,2∣ ≤ 1/2 j−nk−1−3. herefore,
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according to cos x ≥ 1 − 1
2 x

2 and ln(1 − x) ≥ −5x for 0 ≤ x ≤ 4/5, we have

∣µ̂>nk(ξ + λ)∣ =
∞

∏
j=nk+1

J j(ξ + λ) ≥
∞

∏
j=nk+1

1
4
( 1 + 3 cos

1
2 j−nk−1−4 )

=
∞

∏
j=0

1
4
( 1 + 3 cos

1
2 j+nk−nk−1−3 ) ≥

∞

∏
j=0

( 1 − 3
8

1
4 j+nk−nk−1−3 )

≥ exp(− 15
8

∞

∑
j=0

1
4 j+nk−nk−1−3 ) ≥ exp(−44−nk+nk−1).

Hence, we complete the proof of Proposition 4.1. ∎

Proposition 4.2 Under the conditions of heorem 1.1, suppose that Case B holds.
hen there exist an increasing subsequence {nk}∞k=1 of N, some σ , σ ′ ∈ (2Z+ 1)N and a
constant α > 0 such that

∣µ̂>nk(ξ + λ)∣ ≥ α for k > 1, ξ ∈ [0, 1]2 and λ ∈ Λσ ,σ ′
nk

.

Proof Without loss of generality, we only consider the case that limn→∞
an
pn

= 1. hen
limn→∞ pn = ∞. here are two possible situations: limn→∞

bn
qn

= 1 or limn→∞
bn
qn

≠ 1.
If limn→∞

bn
qn

= 1, then limn→∞ qn = ∞. his implies that the conditions of heo-
rem 1.2 hold, and hence the assertion follows by Proposition 3.1.

We now prove the case that limn→∞
bn
qn

≠ 1. In this case, there exist a subsequence

{nk}∞k=1 of N, a constant r0 ∈ (0, 1) and a positive integer l0 such that bnk+1

qnk+1
≤ r0 and

n1, nk+1 − nk ≥ l0 for k ≥ 1, where l0 satisûes 2 l0−1
+1

2 l0−1 < min{ 1
2r0
, 2
π }. hat is, the

conditions of Proposition 4.1 hold. Choose σ ′i = 1 if i ∈ {nk ∶ k ≥ 1} and σ ′i = −1
otherwise in Λ2

n . hen, for λ2 ∈ Λ2
nk
and ξ2 ∈ [0, 1], we can similarly prove that

η j ,2 = −Q−1
j b j(ξ2 + λ2) ∈ E2 ∶= [− 2 l0−1

+1
2 l0−1 r0 , 2 l0−1

+1
2 l0−1 r0] ⊂ (− 1

2 ,
1
2 ) for nk + 1 ≤ j ≤ nk + 3

and 2π∣η j ,2∣ ≤ 1
2 j−nk−3

for j ≥ nk + 4. For the choice of σ in Λ1
n , note that c′ = 1

(see (3.1)), we use the same choice of Case I or Case III2 of Proposition 3.1, which
depends on snk (in this process, maybe we need a subsequence of {nk}∞k=1 to replace
it). herefore, applying a similar argument as that in the proof of Proposition 3.1, we
can show that there exists a closed set E3 with κ

2 ∉ E3 (κ ∉ 2Z) such that ηnk+1,1 ∈ E3

and 2π∣η j ,1∣ ≤ 1
2 j−nk−1 for j ≥ nk + 2.

Hence, when j ≥ nk +4, by 2π∣η j ,2∣ ≤ 1
2 j−nk−3

and 2π∣η j ,1∣ ≤ 1
2 j−nk−1 ≤ 1

2 j−nk−3
, similar

to (3.6), we obtain that
∞

∏
j=nk+4

J j(ξ + λ) ≥
∞

∏
j=0

( 1 − 3
8

1
4 j ) > 0.(4.5)

When j = nk + 1, . . . , nk + 3, let E4 = [− 1
2π ,

1
2π ], then (ηnk+1,1 , ηnk+1,2) ∈ E3 × E2 and

(ηnk+i ,1 , ηnk+i ,2) ∈ E4 × E2 for i = 2, 3. Similar to (3.8), it follows from (E3 × E2) ∩
Z( f ) = ∅ and (E4 × E2) ∩ Z( f ) = ∅ that ∏nk+3

j=nk+1 J j(ξ + λ) ≥ γ3
5 > 0, where

γ5 ∶= min(x ,y)∈(E3×E2)∪(E4×E2) f (x , y). his and (4.5) imply ∣µ̂>nk(ξ + λ)∣ ≥ γ3
5∏∞

j=0

(1 − 3
8

1
4 j ) ∶= α > 0. Hence the proof is completed. ∎
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Now we are ready to proveheorem 1.1. Recall that

Qn(ξ) = ∑
λ∈Λσ ,σ′

n

∣µ̂{Mn},{Dn}(ξ+ λ)∣2 and QΛσ ,σ′ (ξ) = ∑
λ∈Λσ ,σ′

∣µ̂{Mn},{Dn}(ξ+ λ)∣2 .

Proof of Theorem 1.1 If Case A holds, without loss of generality we assume that
the sequence {nk}∞k=1 satisûes the conditions of Proposition 4.1. Since µ̂{Mn},{Dn} =
µ̂nk µ̂>nk , it follows from Proposition 4.1(i) that ∣µ̂{Mn},{Dn}(ξ + λ)∣2 ≥ α2

r , l ∣µ̂nk

(ξ+ λ)∣2. Byheorem 2.1(ii) and Lemma 2.4, we know that∑λ∈Λσ ,σ′
nk

∣µ̂nk(ξ+ λ)∣2 = 1.
Hence, for k > 1, we have

Qnk(ξ) = Qnk−1(ξ) + ∑
λ∈Λσ ,σ′

nk
/Λσ ,σ′

nk−1

∣µ̂{Mn},{Dn}(ξ + λ)∣2

≥ Qnk−1(ξ) + α2
r , l( 1 − ∑

λ∈Λσ ,σ′
nk−1

∣µ̂nk(ξ + λ)∣2) .(4.6)

If QΛσ ,σ′ (ξ) /≡ 1, then there exists ξ0 ∈ [0, 1]2 such that QΛσ ,σ′ (ξ0) < 1. Let ϑ0
satisfy max{QΛσ ,σ′ (ξ0), e−2} < ϑ0 < 1. Without loss of generality we can assume
that nk − nk−1 ≥ max{l , 4 − log4 lnϑ

−1/2
0 } for k > 1 (otherwise we choose a sub-

sequence of {nk}∞k=1 to replace it). By Proposition 4.1(ii), we have ∣µ̂>nk(ξ0 + λ)∣ ≥
exp(−44−nk+nk−1) ≥

√
ϑ0 > 0 for λ ∈ Λσ ,σ ′

nk−1
, and hence ∣µ̂{Mn},{Dn}(ξ0 + λ)∣2 ≥

ϑ0∣µ̂nk(ξ0 + λ)∣2. Consequently,

∑
λ∈Λσ ,σ′

nk−1

∣µ̂nk(ξ0 + λ)∣2 ≤ 1
ϑ0

∑
λ∈Λσ ,σ′

nk−1

∣µ̂{Mn},{Dn}(ξ0 + λ)∣2 ≤ 1
ϑ0

QΛσ ,σ′ (ξ0) < 1.

his implies from (4.6) that Qnk(ξ0) ≥ Qnk−1(ξ0) + α2
r , l(1 − ϑ−1

0 QΛσ ,σ′ (ξ0)) . By re-
cursion,

1 ≥ QΛσ ,σ′ (ξ0) ≥ Qnk(ξ0) ≥ Qn1(ξ0) + (k − 1)α2
r , l(1 − ϑ−1

0 QΛσ ,σ′ (ξ0))
for k > 1, which is impossible when k is large enough. his implies QΛσ ,σ′ (ξ) ≡ 1, and
the result follows by heorem 2.1.

For the proof of Case B, it is similar to that of heorem 1.2, we only need to use
Proposition 4.2 instead of Proposition 3.1. ∎

Acknowledgements he authors would like to thank the referee for their many
valuable comments and suggestions. ∎
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