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Spectrality of a Class of Moran Measures
Ming-Liang Chen, Jing-Cheng Liu, Juan Su, and Xiang-Yang Wang

Abstract. Let {M,},-, be a sequence of expanding matrices with M, = diag(pn,qn), and let
{Dn}2, be a sequence of digit sets with D, = {(0,0)", (an,0)",(0,b,)",+(an,bu)"'}, where py,
qn»> an and b, are positive integers for all n > 1. If sup@l{:)—:, Z—:} < oo, then the infinite convolution
B{M Dy} = 6M1" D, *O(MMy)-1D, ** - is a Borel probability measure (Cantor-Dust-Moran mea-
sure). In this paper, we investigate whenever there exists a discrete set A such that {ez”’“*" Yide A}
is an orthonormal basis for L? (BMu (DY)

1 Introduction

Let y be a Borel probability measure with compact support on R”. We call it a spectral
measure if there exists a countable subset A ¢ R" such that E, = {e2™}%) 1 ) ¢ A}
forms an orthonormal basis for L?(p). The set A is called a spectrum of y, we also say
that (u, A) is a spectral pair. In particular, if g is the normalized Lebesgue measure
supported on a Borel set (2, then Q is called a spectral set. In the seminal paper [13],
Fuglede pioneered the study of spectral sets, and raised the famous conjecture: Q is
a spectral set if and only if Q is a translational tile. This conjecture has been proved
to be false by Tao and others in both directions in dimension three or higher (see
[18,19,28]), but it is still open in dimensions 1 and 2.

The first example of a singular, non-atomic, spectral measure was given by
Jorgensen and Pedersen in [17]. They showed that the standard middle-fourth Can-
tor measure on R is a spectral measure, and Strichartz supplemented their result
with a simplified proof [26]. This surprising discovery has drawn great attention
in the area of fractal geometry, and the spectrality of self-similar/affine measures
has become a important topic. Nowadays, many new spectral measures were found
in [3-11,13,15-17, 20, 22, 23, 25] and the references therein. Among those, Hu and
Lau [16] made a start in studying the spectrality of Bernoulli convolutions, classify-
ing the contraction ratios with infinitely many orthogonal exponential functions. It
was completed by Dai [3], who proved that the only spectral Bernoulli convolutions
are of contraction ratio 1/(2k). This is generalized further to the N-Bernoulli con-
volutions [4, 5]. In the higher-dimensional case, Deng and Lau [6], Li [22] and Liu
and Luo [25] gave some further spectral results which related to the Sierpinski-type
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self-affine measures. In another direction, there are considerable studies for the non-
spectral measures, please see [21,24] and the references therein. A more general case
is the Moran measure, which is a non-self-similar extension of the Cantor measure
through the infinite convolution. Until now, there are few results on the spectrality of
Moran measures [1,2,12,14,27,29,30].

Let {p, } 52, be asequence of integers bigger than 1and let { D, } 32, be a sequence of
finite digit sets in Z. Let |D| = max{|d| : d € D}, it is well known that if [D,|/p, < oo,
then the infinite convolution 8,11, *8(p,,)-1p, **** := f{p,},{D,} is @ Borel probability
measure (Moran measure), where * is the convolution sign, 0 = 7= 3 ,cp 0, #E is the
cardinality of a set E, and &, is the Dirac measure at the point e. In [27], Strichartz first
studied the spectrality of 1, .} (p,}- After that, An and He [1] considered the case that
D, ={0,1,...,d, -1} with d, > 1; they showed that y(,  (p,} is a spectral measure
ifdy | pn. Recently, He et al. [14] studied the case that D, = {0,d, } with 0 < d,, < p,
for all # > 1, and proved that if 2| p,, /ged(d,, pu ), then g, 1 (p,y is a spectral mea-
sure. In [30], Wang, Dong, and Liu further considered D,, = {0, &, 8} = {0,1,2}
(mod 3) and gave some sufficient conditions for y(, 1 (p,} to be a spectral measure.

Observe that the above results were obtained under the assumption of |D,,|/p, <1
[1, 14], or that there exists an increasing subsequence {n;};2, of N such that
|Du.|/pn, < 1forall k >1[30]. Can we also say something about the spectrality
of 4sp.1,¢p,y Without the above restrictions on the digit sets? Motivated by this ques-
tion and their results, in this paper we focus on a class of Moran measures with four-
element digit sets on R?. Let {M,,}°°, be a sequence of diagonal matrices as follows

(1.1) M, = [Pn 0 ] P> Gn € N [2,+00),
0 gn
andlet {D, } 2, be a sequence of digit sets with

N Y A e

Throughout the paper, we assume that
n bﬂ

(1.3) c:= supa— < oo, d:=sup— <oo.

n1 pn n>1 qn
Let M,, = MiM,--- M,, = diag(P,,Q,), where P,, = [T}, pi» Q, = [1\; q;- Under
the above assumptions, associated to the sequence {M,,D,}52,, there exists a
Borel probability measure p(y,1,¢p,}> Which is defined by the following infinite
convolution
14 B0, = o, * Onegip, s

and the convergence is in the weak sense. We call the measure p (1 (0, a Cantor-
Dust-Moran measure, which is supported on the following Cantor-Dust-Moran set:

T({M,},{D,}) = {ijvt;ld,, td, € @n} - im;@n.

In this paper, we will study the spectrality of the Cantor-Dust-Moran measures
B{M,}.{D,}- Our first main result is the following theorem.
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Theorem 1.1  Let M, D, and pgp,y,(»,) be defined by (11), (1.2) and (1.4) respec-
tively and satisfy c,d < 1, where ¢ and d are defined by (1.3). If gcd(p,/ged(an, pa),
qn/gcd(bn, qn)) € 27Z for all n > 1, then pgpy,y (0, is @ spectral measure.

To some extent, Theorem 1.1 is an extension of the results in [1,14,30], which studied
Moran measures on IR, and the proof of Theorem 1.1is inspired by the ideas from them.
We remark that the condition ged(p,/ged(ay, pn)> qn/gcd (b, q,)) € 2Z for n > 2 is
essential; we will give an example to explain it (see Example 2.3).

Moreover, we further obtain another sufficient condition for yy,},(p,) to be a
spectral measure without the restrictions ¢,d < 1. Now we state our second main
theorem.

Theorem 1.2 Let My, D, and pyy, (p,, be defined by (11), (1.2) and (1.4) re-

spectively and satisfy gcd(p,/ged(an, pn)>qn/gcd(by, g,)) € 2Z for all n > 1. If
lim;, 00 pr = limy 00 gn = 00, then pgpr,y (0,1 s @ spectral measure.

Some ideas in the proof of Theorem 1.2 are of independent interest. The main
difficulty of the proof is to construct candidate spectra for different cases, which are
given in the proof of Proposition 3.1. It is worth noting that the proof of Proposition 3.1
is technical.

Remark 1.3 Inthe case when D, = {(0,0)’, (a,,0)",(0,b,)", (an, b,)'}, the mea-
sure {igp,1,¢D,} is the cross product of two two-dimensional Moran measures. We
remark that the conditions ¢,d < 1in Theorem 1.1 are similar to those of the results
in [1,14,30]. Interestingly, Theorem 1.2 implies that p{,1 ¢p,) can also be a spectral
measure without the conditions ¢,d < 1.

The paper is organized as follows. In Section 2, we introduce some basic defini-
tions and properties of spectral measures. In Sections 3 and 4, we prove Theorems 1.2
and 11, respectively.

2 Preliminaries

In this section, we give some preliminary definitions and lemmas that we need to
prove our main results. Let 4 be a probability measure with compact support on R?.
The Fourier transform of y is defined by (&) = [ e 2"*% dy(x) as usual. Let M,,
Dy and pyp,y,p,) be defined by (1.1), (1.2) and (1.4), respectively. It follows from [9]

that

21 i,y (o, (8) = [T mo, (M, '),
n=1

where

1 o 1 o s .
mop, (X) _ - z e 2mi(dy,x) _ *(1+6 2mia, x; te 2mibyx, n eiZm(a,,x1+h,,x2))
d,eD,
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is the mask polynomial of D,,. It is clear that mq,, (x) is a Z*-periodic function since
D, c Z*. Let

2= {H (6} G G e 2= {0 (5) () (o))
Let Z(h) = {x : h(x) = 0} be the zero set of the function h. Then
(2.2) Z(mp,) =2Z(mps) or Z(mp,)=2Z(mp-),

where
2ki+1 52
Z(moy) = 2an ’(2k2+1) tkiky€Z, &, 6 eRy,
& 26,

2k +1 ki

2a, 2ay, . 1o
Z(mop-) = ( . ), w | ki, ky, ki, ky€Zy.

2b, 2b,

It follows from (2.1) that

@3) 2(fa,1,(00) = UM (2(mo,)).

We say that A is an orthogonal set of y if E, is an orthonormal family for L?(u).
It is easy to show that A is an orthogonal set of g if and only if (A — A”) = 0 for any
A # A" € A, which is equivalent to

(2.4) (A= A\0} = 2(a).
It is easy to see that a spectrum of a measure is always an orthonormal set of the same
measure.

Let Qo (&) = Yyea |(E + 1)[>. We recall the fundamental criterion for the spec-
trality of 4, which is a directed application of Parsevals identity.

Theorem 2.1 ([17]) Let u be a Borel probability measure with compact support on
R", and let A c R" be a countable subset. Then
(i) A is an orthonormal set of y if and only if Qs (&) < 1for £ e R”;
(if) A is a spectrum of p if and only if Q5 (&) = 1 for £ e R";
(iil) if A is an orthonormal set of u, then Q4 (2) is an entire function.

The following lemma is an effective method to illustrate that a countable set A
cannot be a spectrum of a measure g, which will be used in Example 2.3.

Lemma 2.2 ([5]) Let y = po * uy be the convolution of two probability measures y;,
i = 0,1 who are not Dirac measures. Suppose that A is an orthogonal set of o with
0 € A, then A is also an orthogonal set of u but cannot be a spectrum of y.

The following example indicates that the hypothesis ged(p,/gcd(an, pu),
qn/gcd(by,qn)) € 2Z for n > 2 in Theorem 1.1 is essential.

Example 2.3 LetD, = {(0,0)", (1,0)", (0,1)%, £(1,1)'}, M; = diag(4,4), M, =
diag(3,3) and M, = diag(4,4) for n > 3. Then the measure pi;p,1 ¢p,) is not a
spectral measure.
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Proof For convenience, we let ,, := gcd(pn/gcd(an, prn)>qgn/ged(by, gn)) for all

n > 1. It is direct to calculate that ¢ = d = % and x, = k; = 4 € 2Z for n > 3, but

Ky = 3 ¢ 27. Let M= 6MI—I‘DI * 83‘/{;1@3 * 8M21D4 ke then .u{Mn},{'.D,,} = 8M2_1D2 * .

By (2.1), we have
oo §
Jmo.(35) L mo(5757)

) () oo (35

It is easy to check that Z(mop, (3 )) c Z(le( ), thus Z(fgmay(o0y) = 2(fh)-
Hence the assertion follows by Lemma 2.2. ]

iy, (o, (8) = le(

[N VS N VS
Bl Bl

- le(

Throughout this paper, we write

(25) Un = (SMI_IDI LR 63\/[;1@,, and Usn = 8M;l]Dn+1 83\/[ -1 Dn+2

n+2

Then pp,},{D,} = Un * th>n. Moreover, welet a, = 2°"a;, b, = 2'p! for n > 1, where
Su» ty 2 0and a),, b, are odd. Since gcd(pn/gcd(an, pn)>qn/ged(bn, qn)) € 27 for
all n > 1, we can rewrite p, = 2!**p/ and g, = 2"*'*q/,, where p’, and q/, may be even.
Let 0 = 005+, 0’ = 003 --- € (2Z +1)N. Now we construct a countable set A>° in

terms of ({M,}, {sn},{tn}> {0u},{0}}). Let

;o o 0 PEn R
o a3 (01 (7). (o) (%) ] e an- Gz
i=1 0 0 o ST n=1

Lemma 2.4 Let My, D, and pigy,y (0, be defined by (1.1), (1.2) and (1.4), respec-

tively. With the same notations as above, then the set A%° is a spectrum of y, and A%°
is an orthogonal set of (v, for each o, 0" € (2Z +1)".

o

Proof For convenience, we let £; = {(0,0), (3 ,0)%, (0, 52 ST )t (3> sz )}
Then, forany A # M € A2%, wehave A = " M;; and A’ = 7 M; I/, where
I;,11 € L;. Let k be the first index such that I, # I}, then A = " = M, [(l, - I) +
S ML = 1)]. Tt is easy to check that [, I and I, — I, belong to Z(mp,)
(see (2.2)). Note that p; = 2!**1p’ and q; = 2'*"iq], we have M;(I; - I!) € Z*. Then
MM = 1)) = Myyy - M;(1; = 17) € Z* for i > k + 1. Therefore

27) A=A e My(2(mp,) + Z2) = M(Z(mop.)) < iLZJlM,-(Z(MD,.)) = 2(fin)-

This and (2.4) imply that A% is an orthogonal set of y,,. Then A% is a spectrum
of u, because the dimension of L*(p,, ) is 4", which is the cardinality of the set AT

Next we prove that A is an orthogonal set of fhipm,},{p,}- Forany A # 1" € A%,
there exists an integer n such that A, 1" € AZ"”. AS Uipr, 3 (D, = Pn * Wsp, it follows
from (2.3) that Z(f,) © Z(fi{m,},{p,})- This together with (2.7) yields that 1 — 1" €
Z(fi1m,y,{D,1 ) by (2.4), the assertion follows. |
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3 Proof of Theorem 1.2

In this section, we first give a proposition and then use it to complete the proof of
Theorem 1.2. Note that p,, g, > 2 for n > 1, then P,,Q, > 2", which will be used
many times in the rest of this paper. To simplify notations, we write P, ,, = [172, p;
and Q,,, = [T, ;. Let A% = (AL, A2)!, A% := (A', A?)*, which are defined
by (2.6). Then A}, = ¥7, Pi{0, 58}, A2 = ¥1; Q:{0, 57 }. To prove Theorem 1.2,

we will construct different sets AL and A2 for A%’ being spectra.

Proposition 3.1  Under the conditions of Theorem 1.2, then there exist an increasing
subsequence {ny }32, of N, some o, o’ € (2Z +1)" and a constant a > 0 such that

lisn (E+ M) 2 a fork>1E€[0,1]2and L e A .
Proof For simplicity, we write
1 . ‘ .
Ji(x) := |ij(jv[j*1x)\ = Z|1+ Q2minja(x) 4 p2minja(x) eilﬂf(ﬂj,l(x)+flj,z(x))|)

where 1;1(x) = —fP]TIajxl, nj2(x) = —Q;lbsz for x = (x1,x)". For £ = (&,&,)" €

[0,1]*and A = (A1, A;)" € AZ;”/, we use 7,1, ]j,2 to denote 7, (§+ 1) and 17, (£ + 1)
respectively, that is,

nj,lz—TJ_-laj(El-i-)ul), ﬂj)zZ—QJlej(fz-F)Lz).

It follows from (2.5) that |fis., (§+A)[ = [T72,, 41 J/j(§ +A). Recall that a, = 2°"a;, and

b, =2'"b! with al,, b!, ¢ 27Z, for the two sequences {s, } 52, and {t,}52,, it is easy to
show that there must exist an increasing subsequence {1 } z2; of N with nj, — 1y > 2

and two nonnegative integers s, t such that one of the following cases holds:

Case I: limy o0 S, = limg_, oo ty,
Case II: limy_, o 54, = 00 and t,,, = tforall k > I;
Case III: limy o ty, = c0oands,, =sforallk > 1;
CaseIV:s,, =sandt,, =tforallk>1.

= 00;

As limy, o0 pu = lim, 00 gu = o0, we further suppose that the sequence {n}2,
satisfies p, > max{10c7,10} and g, > max{10dn,10} for n > n;. We will choose
different g, 0" € (2Z + 1) in A‘;’“' for the above four cases.

By (1.3), it is clear that there exist an increasing subsequence of {n } 22, (we replace
it by the original sequence) and two constants ¢’, d’ such that

bnk+1

(3.1 klim Ang+1/Prg+1:=¢ <00 and  lim i=d' < co.

k=00 gy, +1
We will illustrate our following four steps needed to complete the proof.
Step 1. We first give the choices of ¢ and ¢ for different cases.
In Case I, we can further suppose that the sequence {ny }2, satisfies s, > max
{2, |log, 4c] + 1} and t,, > max{2,|log, 4d] + 1} for all k > 1, where [x] = max
{neZ|n<x} Chooseg;,0/ =1forall i > 1 Then, for A = (A1,1,)" € A%

n-1>
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we have
n—1 n-1 oo
62) Wy L Ly L el oL
n i=1 Ti+1,n 20 g 2Pii1n Pnici2t P
(3.3) |/\2|<n_1 ! ! w1 <iii<i
Qy " Qi 25 T 2900 0 e T2 qa

In Case II, we further suppose that the sequence {n;}z, satisfies s, > max
{2,|log, 4c| +1} for all k > 1. Let o; = 1 forall i > 1, then M‘ p% for A, € AL,
by (3.2). For the choice of g;, we divide it into two cases.

CaseIl;: d’ € N+ {1}. Let o] = 1forall i > 1, then ‘g2l < L for 1, € AZ_, by (3.3).

CaseIl: d’' ¢ N+ {1}. Leto] =1ifi ¢ {nx: k >1} and o] € {q}, 1,9}, 1 +1} N
(Z\2Z). As nyyy — ny > 2and g, < gy, +1, we have
o 1ol 1

— + —— < l+
1+1 Nk Zan ; 2Qi+2,nk zan (

(3.4) | 2 g i

||M8

i) <
$21 7 2qy,
for A, € Af,k,l and

ULl ! a1l el 1 1
(3.5) 2| <> % Amn L, 3
Quer1 2 2954 1,m, 11 2G4, +1 T 2Qi2m1 4 2qnn
for A, € A,

In Case III, similar to Case II, we let {n } 32, satisfy t,,, > max{2, |log, 4d|+1} for
all k > 1. Let o] = 1forall i > 1, then M | L for A, € A2_, by (3.3). For the choice
of 0;, we divide it into two cases.

Case Ill;: ¢’ € N+ {1}. Let 0 =1 forall i > 1, then ! < L for A, € A}_, by (3.2).

CaseIlly: ¢’ ¢ N+ {3}. Let o; = 1if i ¢ {nj : k> 1} and 0,y € {p}, 11, Pl 11 +1} n
(Z\2Z). Note that g,, < Pnk+1) similar to (3.4) and (3.5), we have ‘ | < for

< 2pnk
1 M| o1 1
MeA, ;and 5 S <3t ank“ for A € A,

1
g
In Case IV, the choices of 0; and o] are the same as Cases I1I, and II, respectively,

where x = 1 or 2. Here we omit these estimates.
In order to estimate the lower bound of []72,, ., J;(§ + A), where & = (fb &) e

[0,1]*and A € AZ;”’, we will consider two cases: A € AZ;”_,I and A € AD \Ank I

Step 2. We then estimate the lower bound of T]72,, ., J;(§+ A) for 1 = (A1, 1,)" €
AU (7

ng—1°

Observe that J;'l s

for n > n, that

<
ne” Qg 2P"k

for all cases. It follows from p, > 10cwrand q,, > 10d

aj £1+)L1 1

1 3 1 1
‘ < 27tc(— ) - < —
2j—nk=1 = Qj-ng

2m =2m _—
|’1] 1| | f’lk g)nk+1,j—1 pnk zpnk
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and similarly, 271]57;,2| < 57%-. Applying cosx > 1 - 1x?, we obtain

2" "k

H Ji(§+A) > 1"[ f|l+COS(27Ti7]1)+COS(27T1’]]2)+C0$(:l:271’(1]]1+17]2))|

j=ng+l1 j=ng+l1
1 * 31

(3.6) > f|1+3c057‘ 1’1(1—7—) =y > 0.

] nk+1 2] nk_l j= 0 84

Step 3. We estimate the lower bound of [172,,.,J;(§ + A) for A = (A, 4,)" €
AGT\ADY.
We first clalm that 27|11, 2711 ;2| < = "k —=— for j > ng + 2. In Cases [, I and I11;,
by ?M L < and p, >10cn for n > ny, we have
nk+1 Pnk
+A 1 1 1 1
27|11 —271‘ a4 17‘ §27rc( + ) —
Dj iPmﬁrl (PnkJrZ,jfl Pug Prgn 2)7m
8cm 1 1
< - < — .

Puin 2i7mt 277 mt

In Case III, by 3 M‘ < pr - and p, > max{10cm,10} for n > n;, we have
a; &+ 1 1 5 1 1
271|11]1|—271‘ g btk ‘ sch(f+ ) —
p] ng+1 :Pnk+2,j71 4 2pnk+1 10cm 277~
1 1 1

S T S . 1.
10 2]711;(73 2j—nik-1
Similarly, we can prove that 27; 5| <
Similar to (3.6), we deduce that

(3.7) I 7;E+N)> I f|1+3cos lkz‘ ﬁ(1_§i)>o

j=ng+2 j=ng+2 4 j=0 8 4]

W for all cases. Thus the claim follows.

Step 4. We estimate the lower bound of],,k+1(f+/\) for)t = (A ) e AT .0’ \Ank -

The difficult case is that j = nj + 1. Since A € A \A , we have

ng—1

Anp+1 L+h _ Om+1 Opy Anp+1
- 1+s

pnk+1 ?nk pnk+1 2 "k ?nk+1

(& + /\{)’

“MNng+1,1 =

bun &a+dy  buyn Gr,lk nk+1
~Mug1,2 = = (&2+13)
et qni+1 an qni+1 21+t"" k+1

for some A’ = (1], A5)" € A‘;;"_Il. It should be noted that A; = A] and 1, = A}, cannot
hold at the same time. Without loss of generality, we always suppose that A; # A} for
all i =1,2. Otherwise, A; € A}, _, for i = 1 or 2 and the estimates can be obtained
by using the same method as before. We now focus on estimating J,,1(& + 1) for all
cases.

In Case I, since s,, > max{2, |log, 4c| + 1}, t,, > max{2,|log, 4d| + 1}, p,, >
10cm > 8c and g, > 10dm > 8d, it follows from o, , 0,',k =1, (3.2) and (3.3) that

I
A 1 Ano &+ c 2¢c 3

sl - S T
Prng+1 2ltsm Prg+1 {-Pnk 21 Pn. 8
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3 372. .
and similarly, |17, +1,2] < . Then (441,15 f1ng+1,2) € [~ 5> 517 = @o. Now we consider
the continuous functlon

1 . , )
flx,y) = 1|1 + @2 g 2 g 22| () e R
and let

f+ _ i|1+ eZm‘x +6271iy 4 eZni(x+y)|, f— _ i|1+62m‘x I eZniy 4 e—2ni(x+y)|'

It is easy to calculate that Z(f) = Z(f*) or Z(f) = Z(f~), where

+k & .
Z(f) {( & ),(;+k2)-k1,k262, fl,fZER},

K
2(f) = 2R (3 ) kK ez
72 > 1 ’ b bRAS B RAY)
2 3+ ks

It is clear that ®, N Z(f) = @. Observe that f(7;1,%;.2) = J;(§+ ), we conclude
from (9, +1,1> n,+1,2) € ¢ and the integer-periodicity of f that

min Jwent(§+4) 2 min f(x,y) =y >0.
55[0,1]2,)@:” \AG (x,y)€0@0
Consequently,
(3.8) Juer1(E+24) 29> 0.

In Case II, it is proved in Case I that 7,41, € [-3, 2], so we only need to estimate
#n, +1,2- Corresponding to Cases II; and II,, we will give different estimates

. bn n
We first consider Case II;. As g;, =1, we have =, 1.2 = 357 = + 5o~ (& +15),

21+t anﬂ n +1

where0 < £ < oo. Let §p := \(z‘f—;,)—ﬂ,where (x) = x—[x],then & > 0byd’ e N+{1}.

Since limy_, oo

bn .
ﬁ =d' and hmkﬂm qn, = 00, we further suppose that the sequence
3

np+1

{ni}e lsatlsﬁes|2m p—

21+,| <& > and g,,, > max{10d, 10, 16d <} forall k > 1. Then

(39) szZ:ﬁii () -2 (L) %)z
) 0 6 )
C([‘ZO’%‘IO] u[%+zo,l+zo]) + 7.

A, b A, b
Furthermore, it follows from Pl o 1 and 2 < g that | by L 2ment &
Qg Iy qng+1 qnj+1 an ni+1 Dy

2d o %". This implies from (3.9) that

Qny
’7nk+1,2€([—&,1—&]U[% (;0 1+ 320]) +7Z :=E,.

Let @, = [-3 5 g] x Eo, 80 (#n, 41,1 ne+1,2) € ©1. Clearly, ®; n Z(f) = @. Similar to
(3.8), we have J,, 11(§+ A) 2 y1 > 0, where y; := min(y y)co, f (X, ¥).

https://doi.org/10.4153/5000843951900047X Published online by Cambridge University Press


https://doi.org/10.4153/S000843951900047X

Spectrality of a Class of Moran Measures 375

U
We then consider Case IT,. As a,, € {q),, 1> @, 41 +1} N (Z\27Z), we have by zl”fl €
bnk+1 bnk+l 1 hnk+1 h
P g T g, }, where 0 < t < co. Let

0= 1<j<2£r+ltin1,j¢2z{( 22].“ " ( 2?1:) - %)’1_ ( 22].” ’ ( 2Lli+lt) B %) 221”},

where (x) = x — |x], then 8, > 0 by d’ ¢ N+ {3}. Since lim;_,c0 Z""“ = d’ and
nk+1

. ) b
limg . gu, = 00, suppose that the sequence {n};°, satisfies |5 q":: 21+,| < 4‘

and q,, > max{10d, 10, %} for all k > 1. Then we conclude from b;, ,, € Z\2Z that

by, 1 byt j d’ 0 d 0
92+t + L+t Qnest € [22+t + ( F) T g gt + ( 21+t) + Z] + 2.
By the definition of §;, we have

zg;ﬁ(zi’t) e([o,l_al]u[;+al,l])+z

Hence

b;k+1+ 1 bnk+1€([_51 1_51]U[1 9l 91

22+t 21+t Qi+l 4°2 4 2 4
It is easy to see that ;z’f,' € E Consequently, byt ;"f, € Es,. As M | < % and
93

bugnn < d, we further have
qnj+1

‘ bnk+1 /\3 + bnk+1 52 5d < ﬁ

an+1 an an+1 an B 2an B 8
It follows that

380 1 6 1 & o 30
’7nk+1,2€([—?,5—§]u[5 3 1+ 8])+Z.—E1.

Let ©®, := [—%, %] x Ey, then (411,15 fn+1,2) € ©2. Similar to (3.8), by ®,nZ(f) = &,
we have [, 1(§+ 1) > y2 > 0, where y; = min(, yyeo, f (%, ).

In Case I11, it is proved in Case I that #,, 41, € [—%, %] The estimate of #,,, 41,1 is
similar to that of #,, 41,5 in Case II. Using the similar argument as in Case II, we can
prove that there exists a constant y3 > 0 such that J,, 1 (£ + 1) > ys.

In Case IV, the estimates of #,, 1,1 and #,, 41,2 are similar to that of #,, .1, in
Case II. Hence, using the similar argument as before, we can find a constant y4 > 0
such that J,,, +1(£+ 1) > ya.

Therefore, we have J,,,+1(&€ + 1) > min{yo, y1, 2, ¥3, ya} :=y > 0 for all cases. By
(3.7), we obtain IT72,, 1 Jj(§ +A) > y 175, (1 - g@) = ay > 0for d e AJ) ad \AD? o
This together with (3.6) shows that |, (§+ )| = TT72,, .1 Jj(§+ 1) 2 afor A € AZk" ,
where « := min{a, a; }. Hence, the proof is completed. [
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Define
Qn(§) = Z |ﬁ{Mn},{Dn}(f+A)|2 and  Q,.. (&) = Z |ﬁ{Mn},{'Dn}(f+/1)|2-

AeA?’ AeAo-o’

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2 Let A% = (J%° ol A o where A 7' i given in Proposition 3.1.
We will prove that A%? is a spectrum of H{M,,},{m}- It follows from iy, 3. (D,} =
fin, fi>n, and Proposition 3.1 that |figy,y (p,1 (€ + A)|* > a®|f,, (& + A)[*. By Theo-
rem 2.1(ii) and Lemma 2.4, we have ZAeAz;ﬂ |fin, (€ + 1)]* = L Then, for k > 1, we

get
() =Qu O+ X i E+DF
/\sA""\A,,k1
(3.10) > Qu, (O +@(1= Y I (E+ 1)),
LeAS”

"k—1
If Qoo (€) # 1, then there exists & € [0,1]* such that Q... (&) < 1. Let 9,
satisfy max{ Q... (&), e72} < ¥y < 1. Assume that {ny } 22, satisfies the conditions

of Proposition 3.1 and ny,; — nx > 2 —log, In 19(;1/2 for k > 1 (otherwise we choose a
subsequence of {n; } 2, to replace it). Now we prove that

|fisn, (8o +A)| 209 fork>1 and Ae A‘,fk"l
It can be seen from the proof of Proposition 3.1 that

1

27|71 (o + M), 27|n;,2 (S0 + A)| < i1

for j > ng and A € AZ’k‘:. Hence, using cosx > 1 - 2x* and In(1 - x) > —5x for
0 < x < 4/5, we have

2ﬁ(1_§,;)

4j+ng—ng_1-1

j=ng+l

> 1
s, (S0 + )| = l_[ Ji(§o+A) 2 H 1Z(1+3cos
1

= ;'I:[o Z( 1+ 3cos YT —— )

15 & 1
ZeXp( Egm) >eXp( 42 Ng+ng_ 1) 2\/19_0‘

, and hence (3.10) becomes

Thus | (a3, (0, (§o + VI 2
Quy (80) 2 Qu ,(80) + (195" Y ity 0,3 (80 + V)

0,0’
)LeAnk L

> Qu (&) + @*(1- 95" Qe () ).

Therefore

1> Qpeor (§0) 2 Qu, (§0) 2 Quy (§0) + (k= 1)a* (1= 95" Qo (§0))
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for k > 1, which is impossible when k is large enough. Hence, Q.. (&) = 1and the
assertion follows by Theorem 2.1. ]

4 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by decomposing it into two cases.

Anr1 bug
k k <
an+1

Case A: There exists an increasing subsequence {71 } 32, of N'such that

r for some r < 1.

Case B: lim,,_, o % =lorlim, o Z—“ = 1. We begin with two propositions for the

above two cases respectively. Recall that A%? and A%°" are defined by (2.6).

Proposition 4.1  Under the conditions of Theorem 1.1, suppose that Case A holds and
let | be a positive integer such that Z;J;l <min{, 2}. Then there exist 5,0’ € {-1,1}"
rom

such that the following statements hold:

@ > a, fork > 1, &€ [0,1] and
Ae Ag;”’;

(i) if ng - M1 2 3, then |fisy, (€ +A)| > exp(—4*""+"1) for k > 1, & € [0,1]% and
Ae A;;l

Proof

(i) Without loss of generality, we assume that {ny } ;2 satisfies nj,; — ny > [ for each
k >1and n; > 1. Choose o and ¢’ such that g, 0] = 1ifi € {ny : k > 1} and 0;, 0/ = -1
for otherwise. First, we claim that

I-1 -1
M 27l 2

4.1 <
“ Pu, ~20-1 Q,, ~2!-

for A = (A, 45)" € AG” and k > 1.

In fact, for A € AZ "1, we have A; € Y1 'Pp.{0, -2 s pand Ay € Y 'a,{o, 21‘%‘,,}
Then

e 1 1 mzo] 1
Z l+s; 7( Trsmr T Z 1+s-)
nk -1 Q2 P N2t i=1 fPi+1,nk—1 2%
1 oo 1-1
< — Z l = L < 27
palli i S VIS |

and similarly, 8—2‘ < % For A € AZ"’ \An "> we have A, € 3% P;{0, 355 } and
3

Ay e Y0k Qi{o, ;T’,,} Then there exist [; € {0, 555 } and [} € {0, 51 e } such that A, =
Yk Piliand A, = Y7 Q;1], where I, = 0and [;, = 0 cannot hold at the same time.
Without loss of generality, we always suppose that [,,, = 1+s,, and l ! = 2‘“" . Oth-
erwise, A; € A, _, for i = 1or 2 and the estimates can be obtalned by using the same
method as before. Hence, by 0,,, = 0, =1and ny —n; = Zf;l(njﬂ -nj) 2 (k-1i)l,
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we have
nk—2
Moy L L( o ;L)
ank 21+Snk Pnk 21+Snk_1 i=1 j)i+l,nk—1 21+Si
ng—
21+Snk ( Z; )
and 51m11ar1y, > 0. Moreover,
M 1 ko 1 1, 11 2!
< + <=1+ -y — = —
P~ 2M ; Prsirm 205 2( ; 2"r"i) 2 Z: 2l 2l -1
and similarly, (j < 2—. Thus the claim follows.
ng
Therefore, for & = (fl, &) € [0,1]% since ny > I and P,,,, Q,, > 2", by (4.1), we
have

1 21—1 21 1 +1

42) €1+A1‘ PR P <2’—1+1 ‘£2+/\2‘ . .\
TP, 20-17 20— T Q,, Jo1S o1
When j = ni+1,. 5, 2}, itfollows from a; < pj, b; < g;,
ankﬂ bnkﬂ
(4.2) and Puper” dmn < r that
a; A 1 2141 2141
|’7 |_ ]£l+ 1 ‘< + ‘ank-#l < + r<
e z
P py Puy Parnja!l T 201 py il T 21 T2

and similarly, |5 2| < 2;1:;1;’ <1.Let®;:= [—%r, 2;‘:111,]2, then (#;1,7;2) € Os.
Similar to (3.8), by ®; N Z(f) = @, we obtain

(4.3) H Ji(E+A)> B2, >0, wheref, = ( m)in@ f(x, ).
x,y)€03

j=ng+l1

When j > ni +4,as a; < pj,
that

=3

a&+h 1 |<21—1+1 m 1

44) 27yl = 271‘ T 3 S e

Jj Tnk :Pnk+1,j—1

and similarly, 27|77 5| < 21-"% Then T2, 14 Ji(§+A) 2 T, (1~ 2 41]) > 0 (similar to

> B 20 (1-337) = a1 > 0.
(ii) For A = (A1, A,)" € AU " and f (&1, &))" €[0,1]% similar to (4.2) and (4.4),

k-1
we can obtain that|f‘+)“| |52”2|< 2 L and 271]17;,1], 27|n j 2| <1/277"%173 . Therefore,
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according to cosx > 1 - 2x* and In(1- x) > —5x for 0 < x < 4/5, we have

fon (0= T JE+2)2 [T 4 (1+3c0s

j=ng+l j=ng+l1

-1 1<1+3C052]'+T1nk,r3) > 1021(1—%;)

j=0 8 4j+ni—ng1-3

2j—nk-1—4 )

4
. 1 4—np+ny_
ZeXp(-EZm) ZCXP(—4 kthEk 1)'

Hence, we complete the proof of Proposition 4.1. ]

Proposition 4.2 Under the conditions of Theorem 1.1, suppose that Case B holds.
Then there exist an increasing subsequence {ny }3>, of N, some o,0" € (2Z +1)" and a
constant o > 0 such that

ldsn (E+ M) >a fork>1,E€[0,1]> and AeAy".

Proof Withoutloss of generality, we only consider the case thatlim,,_, o ;—" = 1. Then
lim, o Py = co. There are two possible situations: lim,, c lq’—: =1lorlim,_ e Z—: + L
If lim, oo Z—“ = 1, then lim, . g, = oco. This implies that the conditions of Theo-

rem 1.2 hold, and hence the assertion follows by Proposition 3.1.
We now prove the case that lim,_, o b—" # 1. In this case, there exist a subsequence

nk+1

{ni}2, of N, a constant rq € (0,1) and a positive integer Iy such that 2= < r and

m, Nge — ng > lo for k > 1, where [, satisfies 2101_+11 < mm{m, ;}. That is, the
conditions of Proposition 4.1 hold. Choose 6] = 1ifi € {ny : k > 1} and ¢] = -1
otherwise in A}. Then, for A, € A} and & € [0,1], we can similarly prove that

Hj2=-Q5';(& +A2) € By = [~ 2ty 2ot o (< Dy formy +1< j<ny +3
and 27|1j,| < W for j > ny + 4. For the choice of o in A}, note that ¢/ =1
(see (3.1)), we use the same choice of Case I or Case III, of Proposition 3.1, which
depends on s, (in this process, maybe we need a subsequence of {#n; } 2, to replace
it). Therefore, applying a similar argument as that in the proof of Proposition 3.1, we
can show that there exists a closed set E3 with § ¢ E3 (k ¢ 2Z) such that 77,41, € E3

and 2711 ,1| < S for j > g +2.

Hence, when j > n +4, by 271|1 5| < zj,iﬁ and 27]1j,| < ﬁ < ﬁ, similar
to (3.6), we obtain that

(4.5) I ]](£+A)>H(1—fi)>0.

jeng+4 j=0 84/

When j=ng+1,...,np+3,let Ey = [- 2171 2ﬂ] then (4,411 f1n,+1,2) € E3 x E; and
(Hng+ist> Mng+i2) € Eqa x Ep for i = 2,3, Similar to (3.8), it follows from (E; x E;) N

2(f) = @ and (Eq x E;) n 2(f) = @ that [T"5" J;(§+ 1) > y} > 0, where

j= nk+1
Y5 1= MiN(xy)e(EsxEy)u(ExEy) S (% >y 1132
(1-32-5) = a > 0. Hence the proof is completed. ]
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Now we are ready to prove Theorem 1.1. Recall that

Q&)=Y |y o (E+M)P and Quuw (&)= > |dgu, (. (E+ D)%

AeA?’ AeAoso’

Proof of Theorem 1.1 If Case A holds, without loss of generality we assume that
the sequence {1, };2, satisfies the conditions of Proposition 4.1. Since fi{y,},(p,} =
fing fisn;» it follows from Proposition 4.1(i) that |figy,1 (p,3 (& + A)* 2 af |fin,
(¢+1)]*. By Theorem 2.1(ii) and Lemma 2.4, we know that ZAeAg:’ |fin, (E+ L) = 1.

Hence, for k > 1, we have

Qi (&) =Qu (O + X iy oE+ 1)

AeAgo\Ape
(4.6) > Qe (O +aly(1= Y lan(E+ 1)),
AEAU,GI

k-1

If Quoo (&) # 1, then there exists & € [0,1]* such that Q... (&) < 1. Let 9
satisfy max{Q ... (&), e} < ¥y < 1. Without loss of generality we can assume
that ny — n_; > max{/,4 - log, In 1961/2} for k > 1 (otherwise we choose a sub-
sequence of {7y };2, to replace it). By Proposition 4.1(ii), we have |, ,, (& + A)| >
exp(—44"F ) > /Py > 0 for A € A‘,f’k‘:, and hence |fi{p,},(p,1 (& + 1) >

Iolfin, (&0 + 1)|?. Consequently,

N 1 . 1
Z lfin, (S0 + 1) < 9 Z e tm,3, 4.3 (8o + 1) < bTOQAN"(fO) <L

AeAﬂ’;’jl 0 /\eAﬁ;(“:l
This implies from (4.6) that Q,, (&) > Qu,_, (&) + “f,z (1 - 95" Qo (fo)). By re-
cursion,

1> Qoo (£0) = Qu(£0) = Quy (80) + (k= Daz ; (1= 95" Qo (&)

for k > 1, which is impossible when k is large enough. This implies Q y...» (§) =1, and
the result follows by Theorem 2.1.

For the proof of Case B, it is similar to that of Theorem 1.2, we only need to use
Proposition 4.2 instead of Proposition 3.1. ]
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