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Introduction. It will be shown in this paper that if two chords of a closed 
plane convex curve 6 divide 6 into four arcs of equal length and intersect 
inside the domain bounded by 0, then the sum of the lengths of the two chords 
is at least equal to (y/b — 2)* times the length of 6. We shall show firstly 
that we need only consider the case when S is a convex (possibly degenerate) 
quadrilateral and then prove the result in this case. 

This result is related to a conjecture of P. Ungar in which the chords are 
assumed to be perpendicular and the factor (\/5 — 2)* is replaced by §. 
But Ungar's conjecture is neither proved nor disproved by this result. Another 
related paper "An extremal problem for plane convexities" by Chandler Davis 
has been published in the Proceedings of the Symposium on Convexity (1961). 
In this the author solves an analogous problem involving areas instead of arc 
lengths. His method is different from that employed in this paper. 

Notation. For any two points X, P let X Y denote either the segment with 
end points X, Y or the length of this segment. The context will make clear 
which particular meaning is intended. 

For any four distinct points A, B, C, D lying on a convex curve y let y (A, B) 
denote the least length of any arc of y which contains both A and B. Let 
y (A, B, C, D) be the least length of any arc of y which contains at least two 
distinct members of the set A, B, C, D. If the four points A, B, C, D lie in 
order on y and divide y into four arcs of equal length so that 

y(A9 B) = y(B, C) = 7 (C, D) = y(D, A) = y(A,B, C, D) = \l, 

where / is the length of y, then we say that A, B} C, D is a quadrisection set 
of y. The symbols y(A, B)y y(A, B, C, D) are defined whether y is of finite 
or infinite length; but y possesses a quadrisection set only if it is of finite 
length, 

Of all the quadrisection sets of a convex curve y of finite length there is at 
least one A , B} C, D for which AC + BD attains its least possible value. Such 
a set is called a minimal quadrisection set. 

If A, By C, D is a quadrisection set of some convex curve, then we shall 
simply say that A, B, C, D is a quadrisection set. 

1. Reduction to the case of a quadrilateral. The problem will be solved 
if we can snow that for any convex curve 0 and any quadrisection set A, B, C, D 
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lying on 0 (A, B, C, D is not necessarily a quadrisection set of d but the points 
A, B, C, D must necessarily lie in order on 6) 

(1) AC + BD > 4 ( V 5 -2)*0(A,B,C,D). 

For if (1) is true generally, it is true in particular when A, B, C, D is a quadri­
section set of 0, in which case d(A,ByCyD) is equal to one-quarter of the 
length of 6 and thus (1) would imply the required result. 

At each of the four points A, B, C, D select a support line of the convex set 
which is bounded by 6. The four half-planes which are bounded by these four 
lines and which contain d intersect in a convex set whose frontier is a convex 
curve r. Then T(A,B, C,D) > 6(A,B,C,D) and thus (1) would be true if 

(2) AC + BD > 4 (V5 - 2)* T(A,B, C, D). 

If we perform the construction described in the preceding paragraph but 
select support lines of the quadrilateral A BCD instead of support lines of the 
convex set bounded by B we obtain a class of convex curves which we denote 
by T. r is one member of T. By standard arguments the function y (A, B, C, D) 
regarded as a function of y with A, B, C, D fixed and defined for all y of r 
attains its largest possible value for at least one particular member of T. Such 
a member of V is called an extremal quadrilateral of A, B, C, D and we denote 
one such by a. Then a(A}B,CyD) > T(A,B,C,D) and (2) would follow if 
we could prove that 

(3) AC + BD > 4 ( V 5 - 2)*(r(i4,B, C,D). 

As a step towards the proof of (3) we next prove Theorem 1. We use the 
following notation. For any member y of V the four lines through A, B} C, D 
used in defining y will be denoted by yA, yB, yc, YD, respectively. 

THEOREM 1. Either A, B, C, D is a quadrisection set of a or a is a double 
segment or 

AC + BD > 2a(A,B, C,D). 

If A, B, C are collinear, then AC = 2o-(^4, B, C, D) and either the above 
inequality holds or a is a double segment with D coinciding with B. We assume 
in what follows that no three of A, B, C} D are collinear. 

LEMMA 1. If AC + BD < 2a(A, B, C, D) and if r of the number* a(A} B)} 

a(B, C), <r(C,A), a(A,D) are greater than <r(A,B, C, D) where 1 < r < 3, 
then there exists a* Ç T such that a* (A, B, C, D) = a (A, B, C, D) and r + 1 
of the numbers cr*(A,B), a*(B,C), <r*(C,A), <r*(A,D) are greater than 
**(A,B,C,D). 

By the hypotheses of the lemma we can find amongst the tour numbers 
<r(A, B), <r(B, C), <T(C, A), <r(D, A) two of which one is larger thaii a (4. B, C, D) 
and the other is equal to a(A, By C, D) and, moreover, the two arcsconcerned 
have one common end point. Suppose for definiteness that 
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O-04, B) > a(A, B, C, D) = <r(D, A) 
(see Fig. 1). 

FIGURE 1 

Now we know t h a t the points A, B, C, D form a quadrisection set of some 
convex curve, say of the curve /3. The support lines a t A,B,C,D to the 
convex set bounded by /3 can be used to define a member of T, say y, and 

(4) y(A, B, C, D) > 0(A, B, C, D) > AB. 

In any case *(A,B, C, D) > y(A,B, C,D). Thus , since *(A,B) > o-(A,B, 
C,D), we conclude t h a t a(A,B) > AB. Hence neither aA nor aB coincides 
with the line AB. 

If we ro ta te aA about A in the appropriate sense and denote this line in i ts 
near position by aA*, then if the rotat ion is small enough, cA*, aB} ac, &D 
define a member 0-* of r such t ha t a* (A, B) < a (A, B) and 0-* (D, A) > <r(D,A). 

Moreover, <r*(D, A) > a(D, A) unless <rD is the line DA. By choosing the 
rotat ion sufficiently small we can ensure t ha t cr*(^4, B, C, D) > a (A, B, C, D) 
(this means t h a t c*(^4, B, C, D) =a(A,B,C,D) since a is an extremal 
quadrilateral of A,B, C, D). T h u s either aD is the line DA or the lemma is 
proved. 

If <JD is the line DA (see Fig. 2), then in addition to the rotat ion of aA abou t 
A we ro ta te aD about D (in the opposite sense). T h e combined effect is to 
increase a(A, D) and of the three numbers <r(A, B), a(B, C), <r(C, D) we may 
decrease a(A,B) and <r(C, D) (if ac is the line CD, we do not reduce <r(C, D)). 
Thus , we shall be able again to construct a curve a* of the required type unless 
a(C,D) = <r(A,B, C,D). 

If aD is the line DA and <r(C, D) = <r(A, B, C, D) (see Fig. 3) we ro ta te aA 

about A as before and, if possible, aD about D, ac about C, both in the sense 
of rotat ion opposite to t h a t of aA about A. We can do this unless ac is the line 
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D 

FIGURE 3 

BC. Suppose that ac is not the line BC\ then we can choose the amount of 
rotation of aD about D and ac about C so that a(C, D) remains unaltered. 
The effect of these changes is definitely to increase a (A, D) and possibly to 
decrease (r(A, B) and <T(B, C). Thus, by choosing small rotations we can obtain 
a new curve c* of the required type unless a(B, C) — a(A, B, C, D). If a(B, C) 
is equal to a (A, B, C, D) (see Fig. 4), we can increase a(B, C) by rotating aB 
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FIGURE 4 

about B in addition to all the other rotations in the sense of rotation opposite 
to that of <JA about A. This is always possible since aB is not the line AB. If 
we choose the amount of rotation correctly, a(B, C) will remain unaltered. 
We reduce a (A, B); but if all the rotations are sufficiently small, we obtain 
a new curve a* of the required type. 

Finally, if aD is the line DA, a(C,D) = a(A,B, C, D) and ac is the line 
BC, let AC meet BD in X and the line AD meet BC in Y (see Fig. 5). The 

FIGURE 5 
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intersection of the lines AD, BC must lie on the same side of AB as do the 
points C, D since otherwise we should have 

a(C,D) > <r(A,B) > a(A,B,C,D). 

From the triangle inequality applied to the triangles AC Y and BD Y 

AC> AY - YC, BD > BY - YD. 
Thus, 

AC + BD > AY + BY- YC - YD = AD + BC> 2a(AyB,C,D), 

where AD > a(A, B, C, D), BC > a(A, B, C, D) because ac is BC and aD 

is DA ; thus, segments BC and DA form part of a. This contradicts the hypo­
thesis of the lemma. Hence, this situation cannot arise and the lemma has 
been proved. 

To complete the proof of Theorem 1 we observe that if AC + BD < 2a(A, 
B, C, D) and A, B, C, D is not a quadrisection set of a, then successive applica­
tions of Lemma 1 would lead to a member a\ of V for which all four of <r\(A, B), 
o-i(J3, C), o-i(C,Z>), <ri(D,A) would be greater than a(A, B, C,D). This 
implies <TI(A, B, C, D) > v(A, B} C, D), which is impossible since a is an 
extremal quadrilateral of A,B, C, D. 

The theorem is proved. 

Since AC + BD > 2a(A, B, C, D) implies the required result (since 
2 > 4 ( \ / 5 — 2)*), we shall assume in what follows that 

AC + BD < 2a(A,B, C,D) 

and that A, B, C, D is a quadrisection set of a. Thus, a is a quadrilateral, 
either genuine or degenerate, and we need only establish our results in the 
case of a quadrilateral. 

2. Proof of the result for a quadrilateral. Denote by n the class of all 
convex quadrilaterals IT that have the perimeter length I. II contains also 
degenerate quadrilaterals such as double segments and triangles. Denote by 
f(ir) the sum AC + BD for a minimal quadrisection set A, B, C, D of T. By 
standard arguments there is a member of II, say X, such that /(X) has the 
least possible value of all the values f(w) for TT G II. X is either a double seg­
ment, a triangle, or a genuine quadrilateral. We consider these cases separately, 
and we shall show that 

/(X) > (V5 - 2)*Z. 

This will establish the result. 
From the case of a parallelogram we know that 

f(X) < \l = 2\(A,B, C,D). 
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1 / 4 | ? 1/4 jg 
1 » 1 

x l / 4 i - x D l / 4 i C - Y 

FIGURE 6 

Case (f). X a segment. Let the segment be XY and suppose that 4̂ lies 
distant x from X (see Fig. 6). Then 

AC + BD = (J/ - 2x) + 2x = J/, 

and the result is established in this case. 

Case (ii). X is a triangle. We need the following lemma: 

LEMMA 2. Each side of X contains at least one of the points A, B, C, D as 
an interior point. 

Otherwise if a side of X contains none of the points A, B, C, D as an interior 
point, we can replace this side of X by a convex arc joining the two vertices 
of X, which with the other two sides of X forms a convex curve containing 
A,B, C, D (see Fig. 7). Denote this convex curve by 0. 

FIGURE 7 

X is an extremal quadrilateral of A, B, C, D; for otherwise there would 
exist an extremal quadrilateral Xi of A, B, C, D and by §1, A, B, C, D would 
be a quadrisection set of Xx. If X is not an extremal quadrilateral of A, B, C, D, 
then 

Xi(i4,B, C,D) > \(A,B, C,D) 

and thus the length of Xi is greater than /, say it is h. A similitude of ratio 
l\li applied to Xi transforms it into X2, where X2 G II and there are four quadri­
section points on X2 (namely the transforms of A, B, C, D), say A2, B2, C2, D2, 
such that 

A2 C2 + B2D2 < AC + BD =/(X). 
Hence 

/(X2) </(X). 

But this is impossible from the way in which X was chosen. Now 

0(A,B, C,D) > \(A,B, CD) 

and if we select support lines to 0 at A, B, C, Dy then we obtain a convex curve 
r that belongs to I\ Since 
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T(A, B, C, D) > 0(A, 5 , C, D) > \(A,B, C, D), 

T must also be an extremal quadrilateral. However, the length of r is at least 
that of 0, which is greater than that of X, and since A, B, C, D must be a 
quadrisection set both of r and of X, we have 

T(A,B, C,D) > \(A,B,C,D). 

But this contradicts the extremal property of X. 
Thus, the lemma is proved. 

Remark. An analogous result holds if X is a genuine quadrilateral. 

There are thus only two essentially distinct possible cases: 
(a) Exactly one of the four points A, B, C, D is a vertex of X and the other 

three points lie one each in the interiors of the three sides of X. 
(b) No points of A, B, C,D are vertices of X. One side of X contains two of 

the points A,B, C, D and the other two sides contain one each of these points. 
We consider case (a) first. 

FIGURE 8 

Choose the notation so that A is a vertex of X (see Fig. 8). Let 0 be the 
centre of the escribed circle of X opposite to A. Since X is divided by the points 
A and C into two arcs of equal length, it follows that C lies on this escribed 
circle. Let AO meet the escribed circle in C\. Then AC > AC\ and if C is 
not Ci, then AC > AC\. But in this case A, B, Ci, D is a quadrisection set 
of the triangle Xi formed by the lines AB, AD and the tangent to the escribed 
circle at Ci. Then 

f(\x) <ACi + BD </(X) 
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and since Xi has perimeter length I we have a contradiction with the extremal 
property of X. Thus C lies on AO. 

Let T be the point of contact of the line AB with the escribed circle. Then 

AB = \AT = AD, 

BD =2AB sin /.BAO = AT sin /BAO, 

AC = AO - OC = AO - OT = ATsec /.BAO - ^ITtan /BAO. 

Thus, writing a for /BAO, 

BD + AC = AT\ sin a + -1 ~ s i n a 

L cos a J 

= AT + AT[(seca- 1)(1 - s i n a)] 

> i 4 r = 2X(i4, JB.C,!?). 

Hence, JBD + ^4C > 2\(A,B, C,D). But this is impossible since we know 
that BD + AC < 2X(^, J5, C, D). Thus this case does not occur. 

Next consider case (b) illustrated in Fig. 9. Let X be the triangle LMN 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
M 

V 

FIGURE 9 

and suppose that the points A, B, C, D lie as follows: A on NL; B and C on 
LM; D on MN. Let M\> L\ be the centres of the escribed circles of X opposite 
respectively to M and to L. We show first that A lies on Mi C and D lies on 
U B. 

Take N' on the line MN near to N and 1/ on ik/X near to L so that N'L' 
is a tangent to the escribed circle with centre Mlt Now the circle with centre 
Mi which passes through A is either tangent to N'L' or meets N'L' in two 
points. In either case there is a point on this circle and on N'L', say A', such 
that A', B, C, D is a quadrisection set of the triangle L'MN'. By selecting N' 
either to lie between M and N or on MN beyond N, we can (unless A lies 
on Mi C) ensure that A'C < AC, But then 
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/(X') <AfC + BD < / (X) , 

which, since X' Ç II, is a contradiction with the extremal property of X. 
This is impossible. Thus the line AC passes through Mi and similarly the 

line BD passes through L\. 
Next let the centre of the escribed circle of X opposite to N be N\ (see Fig. 

10). If we rotate the line LM about Ni with points B, C rigidly fixed to LM, 

FIGURE 10 

the effect is to produce a new triangle for which the points A, D and the new 
positions of B and C form a quadrisection set. The change in AC + BD to 
the first order in 5, the angle of rotation, is 

(BNi sin DBNx - CNY sin A CNJô. 

This must be zero; otherwise we can again obtain a contradiction with the 
extremal property of X. Write Z LMi C — p and Z ML\ B = f. Then 

(5) sin p cos \a = sin f cos J/3. 

Denote angle LMi C by p and let the angles of LMN at L, M, iV be a, 0, 7 
respectively. Now Mi lies on the bisector of angle NML and the tangent from 
M to the escribed circle centre M\ has length \l. Thus the radius of the escribed 
circle centre M\ is \l tan J/3. Thus 

M1 L = \l tan |/3 sec | a . 

Similarly 

Li M = \l tan \a sec £0. 

Also 
LM = \l(l — tan Ja tan \&). 

Writing a = tan \a, b = tan J/3, X = tan p. F = tan f, evaluating ^4L, LC, 
DM, MB from triangles ALMU CLMU DMLU and 5 M L i respectively, and 
using the facts that AL + LC = BM + MZ> = | / and BC = il, we obtain 
(after some manipulations) 
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(6) 2bX(l + a2) = 1 - a2X2, 

(7) 2a 7(1 + b2) = 1 - b2Y2, 

(8) 2ab + aX + bY = 1. 

We assume that a > 6 and show that this assumption leads to a contra­
diction. From (5), X > Y. Subtract (6) from (7) to obtain 

(9) (2b + a)X = (2a + b) Y. 
Add (6) to (7) to obtain 

(10) 2bX + 2aY - 2ab = 1 + 2abXY. 

(8), (10), and aX + bY > bX + a F combine to give 
(11) ab < | . 

Evaluate Y in terms of a, 6 from (5) and (9). Substitute this value for Y in 
(7) to obtain 

(12) 2a(1 + b2)(2a + b)[3 - (a2 + 4ab + b2)f 

= 4a2 + 4a£ - 262 + 4a63 + a2b2 + V. 

Since ab < \ and 6 < a < 1, we have a + b < \\, and applying this in (12) 
together with b < a we obtain a contradiction. 

Thus the assumption a > b is false. Hence a K b. Similarly b < a, and 
finally we see that a = b, i.e. a = {3. 

Thus the triangle LMN is isosceles. Let P be the mid-point of LM. Then 
since ik^ ylC and Lx DB both bisect the perimeter of LMN, they must meet 
on NP. 

Denote the length LN by a. Then 

ND =\a(l + sin | 7 ) = BP. 
Thus 

£ D 2 = [Ja(l + sin i 7 ) 2 ] 2 + [[a - M l + sin JT)] cos ±y]2. 

The ratio 
BD/ail + sin | T ) 

has its least value when sin \y = (4 — ->/5)/y/5 and its value then is 
( V 5 - 2 ) * . 

Thus the required result holds in this case. 

Case (Hi). X is a genuine quadrilateral. By the remark made after Lemma 3, 
the four points A, B, C, D lie one each on each of the sides of X and they do 
not lie at the vertices of X. 

Let the vertices of X be L, M, N, P and suppose that A lies on LM, B on 
MN, C on NP, and D on PL (see Fig. 11). Let 0 be the centre of that circle 
a? which lies on the side of LM opposite to the side containing C and which 
touches the lines PL, LM, and MN. Similarly, let 0' be the centre of that 
circle o/ which lies on the side of NP opposite to the side containing A and 
which touches the lines LP, PN, and NM. 
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FIGURE 11 

If A does not lie on the line OC, we can find a point A' near to A whose 
distance from 0 is equal to that of A from 0 whilst A'C < AC. Through A' 
there pass either one or two tangents to co. Of these tangents one can be selected 
which meets line LP in L', line LN in M', and is such that A1, B, C, D is a 
quadrisection set of the quadrilateral X' with vertices L'M'NP and, moreover, 
the length of X' is I. But this means that f(\') < /(A) and since X' £ n we have 
a contradiction with the extremal property of X. 

Thus, A lies on OC and similarly C lies on A0!. Thus the points OAC0r 

are collinear. AC is the line that either (a) bisects the angle formed by the 
lines PL, MN or (b) is parallel to both PL, MN and is midway between them. 
The first alternative holds if PL, MN are not parallel and the second holds 
when they are parallel. 

Similarly, BD either (a) bisects the angle between LM and NP or (b) is 
parallel to both these lines and midway between them. 

We consider the various cases that can occur according as (a) or (b) holds 
with respect to A C or BD. There are only three essentially different cases. 

Case 1. LM \\ NP and MN || LP. LMNP is a parallelogram and AC, BD 
are parallel to its sides. Thus 

AC + BD = \l 
in this case. 
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Case 2. LM \\ NP but LP % MN. Since DB is the line midway between 
LM and PN, we have MB = NB (see Fig. 12). But LM X NP; thus 

FIGURE 12 

i C l ikfiV. Hence AM 9* NC and 

ylikf+ M £ ^ BN + NC. 

This is impossible as it implies that ^4, B, C, D is not a quadrisection set of 
LMNP. This case cannot occur. 

Case 3. LM J N P a«d LP J MN. Suppose that LP meets MN in X and 
that LM meets PN in Y. Let X^4 C meet YDB in X and suppose for definiteness 
that of the four vertices L, M, N, P it is L which lies inside the triangle X YK 
(see Fig. 13). 

Denote angles as follows: 

Z.LXM = 20, /.LIP = 20, 

Z.XAM = «, Z X B F = 0, 

ZXCN = y, ZXDY = dy ZXKY = X-
Then 

ô = x + #, P = x-o, 

a = 7T — x — <£> 7 = 7T ~ X + <£• 

Consider a variation by equal amounts of the points - 4 , 5 , C, D along the 
sides of LMNP on which they lie. The fact that A, B, C, D is a minimal quadri­
section set of X implies that 

cos a + cos /3 + cos y + cos 5 = 0 , 

i.e. x = J T or 0 = <j). 
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FIGURE 13 

If % = \TT and we reflect points in the line XC, then B reflects into D and 
BM reflects into a segment of XD\ A remains unaltered. Thus 

BM + MA = DL + LA 

only if L is the reflection of M in XC, i.e. only if LM \\ DB. Similarly PN \\ DB, 
and this is impossible since it means that LM \ \ PN, whereas in this particular 
case LM J PN. Thus x ^ \* and 6 = 4>. 

We prove next that XK = YK. Suppose that YK > XK (see Fig. 14). 

FIGURE 14 
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Mark F x on YK so that Px K = XK and draw lines Fx Mi and Yx Nx parallel 
to FM and YN respectively. The points of intersection of Yx Mi and Yx Ni 
with the lines XP and XC are shown in Fig. 14. If we reflect points in the line 
which is the bisector of angle Ax KD, we see that Ai Mi BK is congruent to 
DPi Ci K and therefore 

A1Mi + M1B = DPi + P i Ci. 
By hypothesis, 

AM + MB = DP + PC 

Now define S so that 5 lies on Lx Mi and MS \\ AK. Then 

AMi + Mi B - AM - MB = SMi - MMi. 

Similarly, define T on PN so that P1T\\AK. Then 

DPi + PiC - DP - PC = -PPi - PT. 
Therefore 

MMi - SMi = PT + PPi. 

Now MMi = PPi; for if we draw Fi E and Y± F parallel to XM and to XL 
respectively, then Z.YiF\ = Z.XPY, Z Yi £ P = ZiVikTF. But 

Z X P F + Z.NMY = ir 
and thus 

ZYiFY+ ZYiEY = TT, 

which together with the fact that Fi F bisects ZiVFM proves that Yi F 
= Yi E. Therefore, MMi = PPi. 

But then from the equation MMi — SMi = PT + PPi it follows that 
SMi = PT = 0, which means that Fi coincides with F. 

The figure is symmetric about LN and it is possible to prove that for such 
a quadrilateral the equations 

DL + LA = AM + MB = BN + NC = CP + PD 

imply that the quadrilateral is a rhombus. The proof is straightforward and, 
to save space, is omitted. 

Thus, the quadrilateral X must be a parallelogram. For a parallelogram 
AC + BD > 2\(A, B, C, D) and thus the result is established. 
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