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MERCERIAN CONDITIONS FOR THE METHOD (Fy dn) 

H. B. S K E R R Y 

1. Introduction. This paper sets forth conditions sufficient that the 
generalized Lototsky method {F, dn) be regular and Mercerian. If the dn's are 
real and of constant sign, then the conditions are also necessary. Moreover, 
it follows that if / is a polynomial, then under the same conditions the method 
(/, dn) is equivalent to the Sonnenschein method generated by / . Various 
related results are also given. 

2. Definitions and preliminaries. 

Definition 2.1. L e t / be a nonconstant function holomorphic on the closed 
unit disk and let {dn}\° be a complex sequence w i t h / ( l ) + dn =̂  0. Suppose 

Then the generalized Lototsky method (/, dn) is defined by the matrix 
A = (ank), where a0o = 1, aok = 0, for k > 0, and ank is as above, for n ^ 1. 
The method (F, dn) is the special case in which f(z) = z. If / ( l ) = 1 and 
dn = 0, the (/, dn) method reduces to the Sonnenschein method Z(f ). 

For a discussion of these methods see [3; 4; 10], and the literature cited 
therein. 

We shall use (1 + dn)\ for 11^(1 + dt), cA for the convergence field of A, 
s for the space of all complex sequences, and m and c for the subspaces of 
bounded and convergent sequences, respectively. 

A matrix A is called Mercerian if cA = c; this does not imply that A is 
regular, i.e., that A is consistent with the identity matrix I. 

Suppose that B = (bnk) is the inverse matrix to the (F, dn) matrix. In [4], 
Jakimovski found a formula for bnlc in the event that the dn's are real and dis­
tinct; we derive it without such restrictions. We shall use the notation of [4] 
for divided differences. If / is a polynomial, the discussion [7, p. 45] shows 
that its divided differences are representable in the form 

(2.2) [/(*„) /(*»)] = ^ j / < w ) ( £ ) , 

where, by definition, 

(2.3) [f(xo),...,f(xm)]=~-. ( {{z)dz. 
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(See [7, p. 44, (4)]). It follows that if degf = n, then m > n implies that 
[f(x0), . . . ,f(xm)] = 0. Now se t / ( s ) = zn, and effect the notational change 
xt = di+i. Define 

qnm = (-ly-^df, . . . , dm+in]} m,n^0. 

We claim that if d0 = 0, then 

(2.4) bnm = (1 + dm)\qnmi m, n ^ 0. 

We have seen that (2.4) is valid whenever m > n, for then gwm = 0. It is also 
readily verified for n = 0, 1. Thus, assume that for 0 ^ k ^ n, we have 
bkj = (1 + <*,)!<&„ forj ^ 0. By [8, (2.11)], 

(2.5) 6»+i.w = &»,TO-I(1 + O — dm+lbnm, 0 g w ^ » + 1, « ^ 0. 

Thus, i f 0 ^ w ^ w + l , we have 

bn+i,m = (1 + dm) - (1 + dm_i)!gw>m_i — rfm+i(l + dm)\qnm 

= (1 + dm)\(qn,m-i — dm+iqnm), 

so it remains only to show that qn+i,m = Qn,m-i — dm+iqnm, i.e., that 

(2.6) [d^\ . . . , dm+1
n+i] = [df, . . . , dm

n] + d^itdi", . . . , d^+i»]. 

From (2.3), the right side of (2.6) is 

j _ r zndz dm+1 r zndz _ l c zn+1dz 
2-wi Jc (2 — dm)\ 2iri Jc (z — dm+1)\ 2wi Jc (z — dm+i)\ 

= [di , . . . , am+i J. 

It follows by induction that (2.4) is valid in general. 

3. The main results. There are a number of conditions which are sufficient 
for a triangle to be Mercerian. For example, if T is the Banach algebra of 
conservative matrices, there are 

(i) A e r, p-1!! < oo, 
(2) the principal diagonal condition (see [2]), 
(3) A G T, \\A - I\\ < 1, 
(4) A G T, A has a right inverse in T, 
(5) A £ T, A has the AB condition, \ann\ ^ e > 0 (see [11]). 

However, (2) and (3) require that lim sup|l + dn\\ < 2 and sup|l + dn\\ < 2, 
respectively, and these conditions turn out to be too strong. (4) is clearly 
deficient for computational reasons, and (5) involves showing that A has the 
AB condition. In general, showing that a matrix has this condition may be 
very difficult. There are two well-known criteria which suffice, Bosanquet's 
and Riesz's (see [11]), but neither is helpful even in the case in which dn è 0, 
for each n. Thus, we use (1), which is also a necessary condition for A to be 
Mercerian. 
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In the sequel, let A = (ank) be the (F, dn) matrix and let B = (bnk) = A 1. 
We now define 

(3.1) S(j, n) = Z i i ' 1 • • • dj'i, H + • • • + ij = n, 

where 
(l,n = 0 , j > 0 

do = 0 and S(j, n) = <0, w < 0 
(0,i rgO. 

From (2.5), it follows by induction that 

(3.2) bnm = (1 + i ) ! ( - i r 5 ( w + 1, n - m). 

We remark here that in the case in which the dn's are distinct, (3.1) is an 
immediate consequence of (2.4) and the formula 

(3.3) [df, . . . , dm+1
n] = S(m + 1, n - m), 

which appears on [9, p. 8]. Conversely, this formula follows from (2.4) and 
(3.2) even when the dn's are not distinct. 

From (3.2), it is clear that, if each dn ^ 0, then 

n n 

(3.4) | | 5 | | = sup J2 \bnm\ = sup J2 C1 + dm)\S(m + l,n - m). 

LEMMA 3.5. Suppose that each dn ^ 0. Then \\B\\ < oo if and only if 
n 

L = Km sup X^ S(m + 1, n — m) < co. 

Proof. If | |B| | < oo, then L < \\B\\ < oo, by (3.4). If L < oo, then 
n oo 

lim sup S(n, 1) = lim sup ^2 dj = ^ dj ^ L < co, 
l l 

so (1 + dm)\ = 0(1) . Then (3.4) shows that 
n 

\\B\\ ^ 0(1) sup X S{m + l,n - m) < oo. 

COROLLARY 3.6. Suppose that each dn ^ 0. Then \\B\\ < oo =» X)i°°^ < °° , and 
eacA dw < 1. 

Proof, lî dN ^ 1, then m ^ N — I implies that 

S(m + 1, n - m) ^ d^- m ^ 1. 
Hence, 

lim inf ^ Sim + l,n — m) ^ lim inf ^ 5(m + 1, « — m) 
ra=0 m=N—l 

è lim inf (w - iV + 2) = oo , 
so L = oo. 
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LEMMA 3.7. / / each dn ^ 0 and s = E i œ 4 < 1, then \\B\\ < oo. 

Proof. From its definition, it is clear that S(m + 1, n — m) S sn~m, so 

L g l i m sup É sn~m = 1/(1 - s). 
ra=0 

LEMMA 3.8. Let each dn ^ 0. 7w 0 refer that \\B\\ < oo, i/ is necessary and 
sufficient that each dn < 1 awd E i°°̂ » < °° • 

Proof. Corollary 3.6 gives the necessity. Now suppose that qn ^ 0, for 
n > N, and qn = 0, for 1 g n g iV; suppose also that ^SJ+igw < 1. Define 
dn = çn, ii n ?* N, and let dN = ^ j with 0 ^ ^ < 1. Then 

(3.9) 5 ( j , n) = E £ ; A * givr+iz>+i. . . g/>', iN + • • • + *./ = w. 

Now define B(j,n) and C(J,n) so that S(j,n) = B(j,n) + C(j,n) and 
C(J,n) is composed of all summands in 5 0 , w) in which /># has a positive 
exponent, i.e., 

B(j, n) = E g t f+ i^ 1 • • • 2 A %+i + . . . + *; = w, 

and 

CO» «) = E PN^ON+^N+I . . . g// , ^ + . . . + ij = n , iN ^ 0. 

We bear in mind that C(j, n) = 0, if j < N or n rg 0, J5(J, W) = 0, if j S 0 
o r w < 0 and if 0 < j g N with » > 0, and B(j, 0) = 1, if j > 0. It is clear 
from its definition that 

C O » = È pN
kB{j,n-k), j^N, 

whence follows 

(3.10) C(w + 1, n - m) = X) pNkB(m + l,n-m-k), N - l^m. 

From (3.10) we get 

n n—1 

X C(m + l,n — tn) = ^ C(w + 1, n — m) 
ra=0 m=iV—1 

71—1 n—m 

= X E) pNkB(m + l,n - m - k) 
m=N—l k=l 

n—N+1 7i—A; 

= 2 pNk J^ B(m + l}n - m - k). 

If Sff(ra + 1, n — m) is 5(m + 1, w — m) with d = {<4}iœ replaced by 
q = {qn}i°, then B (m + 1, n — m) = Sq(m + 1, n — m), so the proof of 
Lemma 3.7 shows that lim sup Em=o B{m + 1, n — m) = b < oo. Then 
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there is an M with ^ = 0 ^ ( w + 1, n — m) < My for each n. Thus, 

n n 

(3.11) L S lim sup E B(m + l,n — m) + lim sup 23 C(m + 1, n — m) 

n—N+1 n—k 

— b + lim sup 23 £iv* 23 5(m + 1, w — m — é) 

< b + M lim sup 23 />/ < °° • 

Now, assuming that N > 1, let gw = gn, if n ?± N, and let qN = £Ar. Then 
define dn = qnj if n ^ 2V — 1, and define J^-i = £iv-i, with 0 S PN-I < 1-
Thus, J = {4}i°° = (0, . . . , 0, pN-h pN, qN+h qN+2, . . .)• Let S(j, n) be de­
fined as 5( j , w) with d substituted for d. We now define B(j, n) and C(j, n) 
similarly, so that 

5 0 , n) = E pN-iiN-lq_NiN — § A %-i + . . . + i , = », 

-S (.7, ») = E & A • • • 2 A % + . . . + i , = », 

C(j, ») = E PN-I^-^N^ • • • g/y , %-i + . . . + ij = n, iN-i j£ 0, 

and 
5(j,n) = B(j,n) + C(j,n), 

with C(j, n) = 0, if j < N - 1 or n ^ 0, 2*0", ») = 0, if j ^ 0 or » < 0 and 
if 0 < j ^ N - 1 with » > 0, and 5 0 , 0) = 1, if j > 0. As before, 

n n—iV+2 n—A: 

2^ C(m + 1, » — m) = E ^ - i * 23 B{m + 1, » — k — m). 

From (3.9), B(m + 1, n — m) = S(m + 1, n — w), so it follows by (3.11) 
that 

n 

L =• lim sup E ^ ( w + 1» n ~~ m) 
ra=0 

n n 

S lim sup E B{m + 1, » — m) + lim sup E ^ ( w + l,n — m) 
ra=0 m = 0 

rc-TV+2 w—A 

=• L + lim sup E £J\T-I* 23 B(m + 1, » — k — m) 

n—N+2 

S. L + M lim sup E P*-i* < °° • 

By induction, it is clear that, if dn = £n, 1 ^ n ^ iV, and <iM = qn, n > N, 
with 0 ^ ^ < 1, and if S(j,n) is given by (3.1), then 

n 

L = lim sup E «Ŝ m + 1, » — w) < oo. 

But any sequence {^}i°° satisfying the hypotheses may be written as 
(Pu • • • , PN, gN+u • • •), with E ffn < 1. 
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THEOREM 3.12. Let each dn ^ 0. Then the (F, dn) matrix is regular and Mer­
cer ian if and only if each dn < 1 and £ dn < oo . 

Proof. Lemma 3.8 above and [10, Lemma 2.2] show the conditions to be 
sufficient. Conversely, if A is regular and Mercerian, then I 2 A, and it follows 
that B G T, whence | | 5 | | < oo. Lemma 3.8 gives the necessity. 

We remark here that Lemmas 3.8 and 3.5 together with formula (3.3) prove 

LEMMA 3.13. If each dn ^ 0, then lim sup Y,m=o[din> . . . , dm+1
n] < oo if and 

only if each dn < 1 and 2Z dn < oo. 

LEMMA 3.14. Let each dn ^ 0. Then, in order that \\B\\ < oo, it is necessary 
and sufficient that each dn > — 1. 

Proof. We observe first that if each Xj is real and in [a, b], then in (2.2) we 
may assume that £ £ [a, b], in accordance with [7, p. 45]. In particular, if each 
Xj S 0, then so is £. By (2.4) and (2.2), 

bnm = (i + dm)\(-iy-™(n\n-m, ? ^ o. 

It follows that sgn bnm = sgn(l + dm)\, or else bnm = 0. 
To prove the necessity, suppose that dn < — 1, for some n, and let N be the 

smallest such n. Define d0 = 0. Then bN-.itN-i = (1 + dN-i)l = e > 0. By 
(2.5), if p = \dN\, we have 

ON,N-I = &AT-i,ivr-2(l + dN-\) — dNbN-ifN-\ ^ pe. 

It easily follows by induction that bN+ktN-\ ^ p*+1e, whence ||J5|| = oo. 
On the other hand, [8, Theorem 2B] shows that, if — 1 < dn S 0, then the 

identity matrix / Z) A (with consistency), so B Ç T and | |^ | | < oo. 

THEOREM 3.15. Z^/ each dn ^ 0. r/^^^ the (F, dn) matrix is regular and 
Mercerian if and only if each dn > — 1 and ]£ dn converges. 

Proof. [5, Theorem 3.12] and Lemma 3.14 show that the conditions are 
sufficient. Conversely, if A is regular and Mercerian, then I Z> A, so \\B\\ < co 
and, thus, dn > — 1. Moreover, if £ dn diverges, then ann = 1/(1 + dn) ! —> co , 
so ||^41| = oo. 

The last theorem allows us to generate many matrices which are consistent 
with I but have strictly smaller convergence fields. 

COROLLARY 3.16. Let — 1 < dn ^ 0, for each n, and let J2 dn diverge. Then 
the {F, dn) matrix A is consistent with I on cA, and cA is a proper subset of c. 

Proof. As in the proof of sufficiency for Lemma 3.14, 

— 1 <dn^0=>I^A (with consistency). 

The divergence of the series implies that A is not regular and Mercerian, by 
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Theorem 3.15. Since I and A are consistent, cA = c would imply t h a t A is 
regular and Mercerian. 

W e now consider the case in which {dn} is a complex sequence. Le t pn = \dn\ 
and T{m + 1, n - m) = [Pl

n, . . . , Pm+1
n]. By (2.4) and (3.3) we have 

n n 

| | 5 | | = sup XI \bnm\ ^ sup J2 \l + dm\\T(m + 1, n — m). 

H Z P » < oo, then |1 + d j ! = 0 ( 1 ) , so 

11^|I ^ 0 ( 1 ) sup X r ( w + l , » - w ) . 
m=0 

If also pw < 1, for each w, then Lemma 3.13 implies t h a t \\B\\ < oo. We have 
proved 

L E M M A 3.17. If \dn\ < I, for each n, and Y, \dn\ < °° , then \\B\\ < oo . 

T H E O R E M 3.18. \dn\ < 1, /o r m d w, and X] |<4[ < °° are sufficient conditions 
for the (F, dn) matrix to be regular and Mercerian. If each dn ^ 0, or each 
dn ^ 0, then these conditions are also necessary. 

Proof. This follows from [5, Theorem 3.12] and Lemma 3.17. 

Now let C be the (/, dn) matr ix, A the (F, dn) matr ix, and Z = Z(f) the 
Sonnenschein matr ix generated b y / (assuming t h a t / ( l ) = 1). Koch [6] has 
observed t h a t C = AZ, and it is easily seen t h a t if d{Z) is the domain of the 
linear t ransformation Z:s —» s, then C = A o Z on d(Z), i.e., if x G d(Z), 
then Cx = (AZ)x = A(Zx). In part icular , if / is a polynomial, whence 
d(Z) = 5, it follows t ha t C = A o Z on s. T h e above theorem now gives 

T H E O R E M 3.19. Let \dn\ < 1, /or mc& w, and Y, |<4| < °° • Then the (/, dw) 

matrix is equivalent to Z(f ) on d{Z), and, if f is a polynomial, on all of s. 

This theorem is of interest in pa r t because, while useful, necessary and 
sufficient conditions for the regulari ty of the (/, dn) method are not known, 
such conditions are known [3] for Z(f). 

We close with an application of a theorem of Agnew [1, Theorem 7.4]. 
W e reproduce a prel iminary definition and the theorem below. 

Definition. T h e sequence x = {xn} lies in an angle less t han ir if there exist 
ZQ, 60, and <p such t h a t 0 < <p < TT/2, and for each n we have 

xn = So + rn exp{i(0o + 0n)}, 

with rn ^ 0 and \Bn\ ^ <p. 

T H E O R E M (Agnew). If C and D are positive regular matrices (cnk ^ 0, 
dnk ^ 0) , then every sequence which lies in an angle less than T and is summable 
to a by either of the methods CD or C o D, is summable to a by the other. 
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THEOREM 3.20. Let f have real nonnegative Maclaurin coefficients and let 
0 ^ dn < 1, for each n, and £ dn < °° • Then the methods (f, dn) and Z(f) 
are equivalent on the set s/ of all sequences each of which lies in some angle less 
than T. In particular, they are equivalent on m. 

Proof. [10, Lemma 2.2] shows that Z(f) is regular, and A is regular and 
Mercerian. Thus, (f,dn) = AZ ~ A o Z ~ Z oris/. 
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