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MERCERIAN CONDITIONS FOR THE METHOD (F, 4,)

H. B. SKERRY

1. Introduction. This paper sets forth conditions sufficient that the
generalized Lototsky method (F, d,) be regular and Mercerian. If the d,’s are
real and of constant sign, then the conditions are also necessary. Moreover,
it follows that if f is a polynomial, then under the same conditions the method
(f, d,) is equivalent to the Sonnenschein method generated by f. Various
related results are also given.

2. Definitions and preliminaries.

Definition 2.1. Let f be a nonconstant function holomorphic on the closed
unit disk and let {d,}1” be a complex sequence with f(1) 4+ d, # 0. Suppose

@) +di _ k
H SO d = & s nEL
Then the generalized Lototsky method (f,d,) is defined by the matrix
A = (an), where ago = 1, agz = 0, for & > 0, and a,; is as above, for n = 1.
The method (F,d,) is the special case in which f(z) = z. If f(1) = 1 and
d, = 0, the (f, d,) method reduces to the Sonnenschein method Z(f ).

For a discussion of these methods see [3; 4; 10], and the literature cited
therein.

We shall use (1 + d,)! for I1,*(1 4 d,), ¢4 for the convergence field of 4,
s for the space of all complex sequences, and m and ¢ for the subspaces of
bounded and convergent sequences, respectively.

A matrix 4 is called Mercerian if ¢4, = ¢; this does not imply that 4 is
regular, i.e., that 4 is consistent with the identity matrix 1.

Suppose that B = (b,;) is the inverse matrix to the (F, d,) matrix. In [4],
Jakimovski found a formula for b,; in the event that the d,’s are real and dis-
tinct; we derive it without such restrictions. We shall use the notation of [4]
for divided differences. If f is a polynomial, the discussion [7, p. 45] shows
that its divided differences are representable in the form

(2.2) [, - f)] = -2 ™ @),
where, by definition,
(2:3) (G0, oSl = 5 [ P
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(See [7, p. 44, (4)]). It follows that if deg f = n, then m > n implies that

[f(x0), ..., f(xn)] = 0. Now set f(z) = 2", and effect the notational change
x; = d;yy1. Define
Gum = (—1)™[d(", ..., dpi"], m,n = 0.
We claim that if dy, = 0, then
(2.4) bum = L + dn)'qum, m,n = 0.

We have seen that (2.4) is valid whenever m > #, for then ¢,, = 0. It is also
readily verified for » = 0, 1. Thus, assume that for 0 £ 2 < #, we have
by = (1 + d;)!qxy, for j = 0. By [8, (2.11)],

(25) bnyim = bn,m—l(l + dm) - dm+1bmm O=sm=n+1n

1%

0.
Thus, if 0 < m < n + 1, we have

bupim = (L +dp) - (14 dn-1)qum-1 — dna(1 + dn) lgum
= (1 + dn) ! (grn—1 — dns1gun),
so it remains only to show that ¢ut1.m = Gn.m—1 — dmt1gum, i.€., that
(2.6) [, ..., dpe™Y] = [di" ..., A0 F dualdl, ., At
From (2.3), the right side of (2.6) is

2"dz n dmi1 2"dz s
27r¢ c(2—4dn)! " 27 Jo(z— dm+1)! 27rz (z — dpy1)!
= ld1n+11 ceey dm+ln+1]‘

It follows by induction that (2.4) is valid in general.

3. The main results. There are a number of conditions which are sufficient
for a triangle to be Mercerian. For example, if T' is the Banach algebra of
conservative matrices, there are

(1) 4 € T, [l41| < oo,

(2) the principal diagonal condition (see [2]),

@) Ader[4-1I]<1,

(4) A € T, A has a right inverse in T,

(5) A € T, A has the AB condition, |a,,| = ¢ > 0 (see [11]).

However, (2) and (3) require that lim sup|l + d,|! < 2 and sup|l + 4,|! < 2,
respectively, and these conditions turn out to be too strong. (4) is clearly
deficient for computational reasons, and (5) involves showing that A has the
AB condition. In general, showing that a matrix has this condition may be
very difficult. There are two well-known criteria which suffice, Bosanquet’s
and Riesz's (see [11]), but neither is helpful even in the case in which d, = 0,
for each n. Thus, we use (1), which is also a necessary condition for 4 to be
Mercerian.
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In the sequel, let 4 = (a;) be the (F, d,) matrix and let B = (b)) = A7L
We now define

(3.1) S(j, n) = Zdlil. . .djii, il + . e +’I/j = n,
where
1, =0,7>0
dy=0and S(j,n) =<0,z <0
0,7 =£0.

From (2.5), it follows by induction that
(3.2) bum = (L + dp) [ (=1)""S(m + 1, n — m).

We remark here that in the case in which the d,’s are distinct, (3.1) is an
immediate consequence of (2.4) and the formula

(3.3) [di" ..., dnit"] =Sm + 1, n — m),

which appears on [9, p. 8]. Conversely, this formula follows from (2.4) and
(3.2) even when the d,’s are not distinct.
From (3.2), it is clear that, if each d, = 0, then

(3.4) [|B]|| = sup Z=0 |bam| = sup Z=0 A+d)!Sm + 1, n — m).

LEMMA 3.5. Suppose that each d, = 0. Then ||B|| < oo if and only if

L=1limsup > Stm+ 1,7 —m) < 0.
m=0

Proof. If ||B|| < o0, then L < ||B]| < e, by (3.4). If L < o, then

lim sup S(zn, 1) = limsup Y, d;= 2, d; £ L < o,
1 1
so (1 4+ dy,)! = O(Q). Then (3.4) shows that

[|B|| = 0(1) sup Z: Stm + 1,n —m) < 0.

COROLLARY 3.6. Suppose that each d, = 0. Then ||B|| < 0 = 31"d, < 0, and
each d, << 1.

Proof. If dy = 1, then m = N — 1 implies that

Sm+1,n —m) = dy"™ = 1.
Hence,

n

liminf 3 SO +1,n—m) = liminf 5. Stm 4 1,7 — m)
m=0

m=N—1

Zliminf (n — N + 2) = o0,
so L = 0.
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LEmMA 3.7. If each d, Z 0 and s = 31d, < 1, then ||B|| < .

Proof. From its definition, it is clear that S(m + 1,7 — m) < s*™, so

L Zlimsup D, "™ =1/(1 —s).
m=0

LemMmA 3.8. Let each d, = 0. In order that ||B|| < o, it is necessary and
sufficient that each d, < 1 and 3_,"d, < .

Proof. Corollary 3.6 gives the necessity. Now suppose that ¢, = 0, for
n > N, and ¢, = 0, for 1 < n = N; suppose also that > %.1g, < 1. Define
dy, = qu, if w % N, and let dy = py, with 0 = py < 1. Then

(3.9) S(j, n) = z pNiN . gN+1iN+l o . gjij, ,LN '+‘ e + ’L.j = n.

Now define B(j,#) and C(j,n) so that S(j,n) = B(j,n) + C(j,n) and
C(j,n) is composed of all summands in S(j, #) in which py has a positive
exponent, i.e.,

B(j,n) = Z qN+1iN+1 ... gjij, iN+1 + ... + 1.]‘ = n,
and
C(],n) = Z pNiNqN+11N+1 PN jSi, 'l'N + PN "I‘ 1.]- =n, iN #= 0.

We bear in mind that C(j,n) = 0,if j < Norn =0, B(j,n) =0,if =0
orn <0andif 0 <j =< N withz >0, and B(5,0) = 1, if 7 > 0. It is clear
from its definition that

CGim) = 3 pw'Bl,n— k), 2N,

whence follows

(310) Com + 1,n —m) = >, pyBm+1,n —m —k), N—1=m.
=1
From (3.10) we get
n n—1
>, Cm+1,n—m) = >, Cm+1,n —m)
m=0 m=N—1

n—1 n—m

2 2 tWBm L —m—k)

m=N—1 L

It

n—N+1 n—k

= >, b2 Bm+1,n—m—k).

k=1 m=0

It Sm+1,n—m) is Sm + 1,n —m) with d = {d,}," replaced by
g = {¢.}1", then B(m 4+ 1,n —m) = S;(m 4+ 1,n — m), so the proof of
Lemma 3.7 shows that limsup Xm0 B(m + 1,2 —m) =b < . Then
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there is an M with >0 B(m 4+ 1,n — m) < M, for each n. Thus,

(3.11) L <limsup », Bm + 1,n —m) +limsup >, C(m + 1,n — m)
m=0 m=0

n—N+1 n—k

=b+limsup >, pv* >, Bm+1,n —m — k)
k=1

m=0
n~N+1

<b+ Mlimsup Y, py° < oo.
r=1

Now, assuming that N > 1, let §, = ¢, if # # N, and let gy = py. Then
define d, = G, if » ¥ N — 1, and define dy_; = py_1, with Q =< pa1 < L.
ThUS, d = {dn}lm = ((_)) L] 01 PN—]! PN: dN+15 gN+2y -+ ')' I:et S(jv n) l_)e de-
fined as S(j, ) with d substituted for d. We now define B(j, ») and C(j, n)
similarly, so that

S(j, n) = Z PN_liN‘quiN PRSI q]'ij, iN—l + PSP + ij = n,

B(],n) = ZQNZN . .qlij,iN‘I"‘ PR + 7:]' = n,

6(7, n) =2 pya V-GN G iy ot =, 081 #Z 0,
and _ _ ~

S, n) = B(j,n) + C(, n),

with C(4,n) = 0,if j < N—1lorn £0, B(G,n) =0,if j £0or n < 0 and
if0<j=<N-—1withz >0,and B(5,0) = 1, if > 0. As before,

3 n—N+2 n—k
S Cm+1,n—m)= D, pyi" >, Bm+1,n —k —m).
o =1 =0
From (3.9), Bm + 1,n — m) = S(m + 1,7 — m), so it follows by (3.11)
that
L =limsup ), Stm + 1,n — m)
m=0
< limsup ), Bm + 1,n —m) +limsup >, Cim + 1,n — m)
m=0 m=0
n—N+2 n—k _
=L+ limsup D, py_i 2, Blm+ 1, n —k —m)
k=1 m=0
_ n—N+2
S L+ Mlimsup ), pyi"<o0.
k=1

By induction, it is clear that, if d, = p,, 1 =% = N, and d, = ¢,, n > N,
with 0 = p, < 1, and if S(G, ») is given by (3.1), then

L=Ilimsup >, S(m+1,n —m) < 0.
m=0

But any sequence {d,}:” satisfying the hypotheses may be written as
b1y oo oy Py qut1y -+ +), With 2° g, < 1.
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THEOREM 3.12. Let each d, = 0. Then the (F, d,) matrix is regular and Mer-
cerian if and only if each d, < 1 and Y d, < ©.

Proof. Lemma 3.8 above and [10, Lemma 2.2] show the conditions to be
sufficient. Conversely, if 4 is regular and Mercerian, then I D A4, and it follows
that B € T, whence ||B|| < 0. Lemma 3.8 gives the necessity.

We remark here that Lemmas 3.8 and 3.5 together with formula (3.3) prove

LemMa 3.13. If each d, = 0, then lim sup Y meoldi®, . . ., dni1™] < © if and
only if each d, < 1 and ¥ d, < .

LEmMA 3.14. Let each d, £ 0. Then, in order that ||B|| < o, it is necessary
and sufficient that each d, > —1.

Proof. We observe first that if each x; is real and in [a, ], then in (2.2) we
may assume that ¢ € [a, b], in accordance with [7, p. 45]. In particular, if each
x; = 0, then so is £ By (2.4) and (2.2),

bum = (1 + dm)!(—l)"—"l(Z)f”‘"‘, £=0.

It follows that sgn b,, = sgn(1 + d,)!, or else b,, = 0.

To prove the necessity, suppose that d, < —1, for some %, and let NV be the
smallest such #. Define dop = 0. Then by_1 y_1 = (1 + dy—1)! = ¢ > 0. By
(2.5), if p = |dy]|, we have

bN,N—l = bN—l,N—Z(l + dN—l) - dNbN—l,N—l = pe.

It easily follows by induction that byyx y—1 = p**le, whence ||B|| = .
On the other hand, [8, Theorem 2B] shows that, if —1 < d, = 0, then the
identity matrix I 2 4 (with consistency), so B € T and ||B|| < .

TuEOREM 3.15. Let each d, < 0. Then the (F,d,) matrix is regular and
Mercerian if and only if each d, > —1 and Y d, converges.

Proof. [5, Theorem 3.12] and Lemma 3.14 show that the conditions are
sufficient. Conversely, if 4 is regular and Mercerian, then I 2 4, so ||B|| < o
and, thus, d, > —1. Moreover, if 3 d, diverges, thena,, = 1/(1 + d,)! — w0,
so [|4]| = .

The last theorem allows us to generate many matrices which are consistent
with I but have strictly smaller convergence fields.

COROLLARY 3.16. Let —1 < d, = 0, for each n, and let 3 d, diverge. Then
the (F, d,) matrix A is consistent with I on ¢4, and ¢ 4 1s a proper subset of c.

Proof. As in the proof of sufficiency for Lemma 3.14,
—1<d, £ 0= 1D A (with consistency).

The divergence of the series implies that 4 is not regular and Mercerian, by
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Theorem 3.15. Since I and A are consistent, ¢4 = ¢ would imply that 4 is
regular and Mercerian.

We now consider the case in which {d,} is a complex sequence. Let p, = |d,|
and T(m + 1, — m) = [p*, ..., pne1”). By (2.4) and (3.3) we have

[|B|| = sup ZO |bm| =< sup ZO |11 4+ dn|!'Tm + 1,n — m).

If 3 pn < 0, then |1 + d,|! = 0(1), so

I|B|] £ 0(1) sup z: T(m + 1,n — m).

If also p, < 1, for each #, then Lemma 3.13 implies that ||B|| < 0. We have
proved

Lemma 3.17. If |d,| < 1, for each n, and Y |d,| < o, then ||B|| < .

TuaEOREM 3.18. |d,| < 1, for each n, and Y |d,| < o are sufficient conditions
for the (F,d,) matrix to be regular and Mercerian. If each d, = 0, or each
d, = 0, then these conditions are also necessary.

Proof. This follows from [5, Theorem 3.12] and Lemma 3.17.

Now let C be the (f, d,) matrix, 4 the (F, d,) matrix, and Z = Z(f) the
Sonnenschein matrix generated by f (assuming that f(1) = 1). Koch [6] has
observed that C = AZ, and it is easily seen that if d(Z) is the domain of the
linear transformation Z:s — s, then C = 4 o0Z on d(Z), i.e., if x € d(Z),
then Cx = (AZ)x = A(Zx). In particular, if f is a polynomial, whence
d(Z) = s, it follows that C = 4 o Z on s. The above theorem now gives

TureoreEM 3.19. Let |d,| < 1, for each n, and Y |d,| < . Then the (f,d,)
maltrix is equivalent to Z(f ) on d(Z), and, if f is a polynomial, on «ll of s.

This theorem is of interest in part because, while useful, necessary and
sufficient conditions for the regularity of the (f, d,) method are not known,
such conditions are known [3] for Z(f ).

We close with an application of a theorem of Agnew [1, Theorem 7.4].
We reproduce a preliminary definition and the theorem below.

Definition. The sequence x = {x,} lies in an angle less than = if there exist
20, 0o, and ¢ such that 0 < ¢ < 7/2, and for each # we have

X, = 20 + 1, exp{z(8o + 6,)},
with 7, = 0 and [6,] = ¢.

TuEOREM (Agnew). If C and D are positive regular matrices (¢, = 0,
dy = 0), then every sequence which lies in an angle less than = and is summable
to o by either of the methods CD or C o D, is summable to o by the other.
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THEOREM 3.20. Let f have real nommegative Maclaurin coefficients and let
0 =£d, <1, for each n, and 3 d, < ©. Then the methods (f,d,) and Z(f)
are equivalent on the set S/ of all sequences each of which lies in some angle less
than . In particular, they are equivalent on m.

Proof. [10, Lemma 2.2] shows that Z(f ) is regular, and 4 is regular and
Mercerian. Thus, (f,d,) = AZ~AoZ~Zon.
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