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ON TWISTING OPERATORS AND
NEWFORMS OF HALF-INTEGRAL WEIGHT
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In memory of my father
Introduction

The theory of newforms is very important and useful for arithmetical study
of modular forms of integral weight. It is natural to try to extend this theory into
the case of modular forms of half-integral weight. Until now, several authors have
attempted to find a theory of newforms of half-integral weight (cf. [She], [N], [K],
[M-R-V], [She-W]). But complete results have not been obtained yet.

The purpose of this paper is to complete Kohnen’s results in [K] and to estab-
lish a theory of newforms for (what is called) Kohnen space of arbitrary level
(cf. §0(d)).

This paper is composed as follows: §0 is general preliminaries. §1 and §2 are
preparations for the main parts of this paper. We shall deal with both the full
space S(k+ 1/2, N, %) and Kohnen space S(k +1/2, N, x)x in these sec-
tions. The main parts of this paper are §3 and §4 and the main results are
Theorems (3.10-11) and Theorem (4.13). In these sections, we shall deal with
only Kohnen space.

Let us explain the contents of this paper, precisely.

Let k, N be positive integers with 4 | N and x an even character modulo N
with xz = 1. Denote the space of cusp forms of weight k + 1/2, level N, and
character x by S(k+ 1/2, N, x) (cf. §0(c)).

In particular, when ord,(N) = 2, W. Kohnen ([K]) defined a canonical sub-
space S(k+1/2, N, x)x of S(k+1/2, N, x) which is called Kohnen space
(cf. §0(d)). He also established the theory of newforms for this subspace when
N /4 is (odd) squarefree.
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Unfortunately, when N/4 is not squarefree, Kohnen's theory does not work. In
fact, there exists a case such that all common eigen subspace of Stk +1/2, N, x)g
for Hecke operators have dimension = 2 and hence a strong “multiplicity one
theorem” does not hold good (cf. [U1, Proposition 3(3)]).

This difficulty can be resolved by decomposing S(k + 1/2, N, ) into
eigen subspaces of twisting operators. For simplicity, we write S = S(k + 1/2,
N, x) or S(k+1/2, N, x)x. We decompose N as follows:

ordy(N) ord,(N)
N=2""7 M1M2+! Ml = II P, M2+ = Il T
DINp#2 IN.p#2
ord,(N)=1 ordy(N) =2

Denote the set of all prime divisors of M,, by II.
In §1, we shall decompose S by twisting operators:

s=( & S")@®Ker (®,;: 9.

xeMap(IT, (1)
Here, S"*={f€ S;fI|R =x(Df for all 1€ II} and R, (resp. R, is the
twisting operator of the character H,eﬂ<7> (resp. (7)) We define an operator B,
by fIB:=/fUd,z2€ 9. Then Ker(Ry;S) =,;S(k+1/2 N/I,
X (L)) | B, or 2y S(k +1/2,N/1, x (—l—>)K | B, (cf. Propositions (1.5) and

(1.10-11)). This means that Ker(R;; S) consists of “oldforms”.

Each S”” is stable under the action of all Hecke operators T(n%) ((n, N) = 1).
Moreover, there exists a case such that $”* = $”* as Hecke modules for distinct
k, K € Map(IT, {* 1}) (cf. [U6]). This is the reason why Kohnen's theory does
not work when N/4 is not squarefree (& M,, #1).

Thus, Kohnen space is not good for establishing a theory of newforms, and in-
deed, the space S is important for that. We shall study the space S as Hecke
module in the rest of §1 and §2. In particular, we shall explicitly compute the
trace relation between the traces of Hecke operators 7(n°) ((n, N) = 1) on S**
and the traces of Hecke operators T(#) on certain subspaces of S°(2k, N’), where
N’ varies any positive divisors of N/2 (cf. Proposition (2.23)). We need some
assumptions about N and x for obtaining the above trace relation.

In §3, We shall consider only Kohnen space and establish a theory of new-
forms on the space S (and so S(k +1/2, N, x)g), which contains Kohnen’s re-
sults in [K], by using the above trace relation formula (2.23).

The main results are as follows:

(1) There exists a canonically defined subspace &"(k+1/2, N, Xy of o
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and a canonical decomposition:

S = @ " (k +1/2, 4dM,,, x) | U,
edlll:ll

(cf. (3.5) and Theorem (3.10)). Here, U(e®) is the operator: %, ,a(n)e(nz) —
3,oale’n)e(nz).

(ii) We can explicitly express the trace tr(T(®) ;& (k+1/2, N, x)p
((n, N) = 1) with the traces tr(T(n) ; Cf) for all primitive forms f € S(2k, N/4)
and the multiplicity of each primitive form in that expression is at most one (cf.
Theorem (3.10)). In particular, we have a strong “multiplicity one theorem” for
&"(k +1/2, N, x) (cf. Theorem (3.11)).

(111) We can define an involution w, for any prime divisor p of M, (cf. (3.6)). This
w, corresponds to the Atkin-Lehner involution of integral weight (cf. Theorems
(3.9-11)).

The author thinks that these results are still incomplete. Because the conduc-
tor of each primitive form of integral weight, which corresponds to &"(k+1/2,
N, x)g (cf. (ii)), is not always N/4 = MM,, and all we can say is that it is of
the form M, M’ for a certain positive divisor M’ of M,, (cf. Theorem (3.11)).

We shall discuss this topic in §4. We denote by RN"* a certain subspace of
8" (k+1/2, N, %) g constructed with the spaces & (k+1/2, N, x)g's and
the operators U(az), R, where £’ is a restriction of ¥ and N’ is a positive
divisor of N with N’ < N (c{. the sentences before Theorem (4.13) for a precise
definition). We also denote by N*" the orthogonal complement of R"* in & (k +
1/2, N, x)x.

Then we have a decomposition:
&k +1/2, N, ), = N"" ORN"*

and we can characterize R"*(resp. |”") as the subspace of & “(k + 1/2, N, x)x
corresponding to only primitive forms of conductor N/4 (resp. of conductor smal-
ler than N/4), under a certain assumption (4.1) on the character x (cf. Theorem
(4.13)).

Moreover, the author believes that the assumption (4.1) is not necessary (cf.
the discussion at the end of 84). If it is true, the space N is the true space of
newforms and S(k + 1/2, N, x)x can be constructed with N (of various «'s
and various levels) and the operators (B,, U(a®), R)).

The author hopes that this is a final form of a theory of newforms of
half-integral weight.
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Finally, we have some comments. It seems likely that the results in §3 and §4
can be generalized to the full space S(k 4+ 1/2, N, yx), because their proofs de-
pend largely on applying the results in §1 and §2 of this paper.

The proofs in §3 is to a large extent analogous to Kohnen's ([K]). We remark
that Kohnen’s results on the operator wjl,v,kﬂ,z’x (K, Proposition 4, Theorem 1])

N/p

contain a mistake. The factor < ) ) falls out. Our operator w, in §3 is a correc-

. f w
tion of Wy ;y1/2.4-

§0. Preliminaries

Throughout this paper, we use the following notations.

(a) General notations

Let A, B be subsets of a set X and {A,;},.; a family of subsets of X. If A U B
is a disjoint union, then we denote A+ B := A U B for simplicity. Similarly, if
U,e/A, is a disjoint union, then we denote 2,4, *=U,_A,.

We denote the set of positive integers by Z, the symbol [ denotes any
square integer. For any # € Z,, we denote by ¢(u) the order of the group
(Z/nZ)".

For any prime p, the symbol | [,, is the p-adic absolute value which is
normalized with | p lp = p‘l and we also denote the additive valuation for any in-
teger m by ord,(m). Then | m |, = p~>*™

For a real number x, [x] means the greatest integer m with & = m and we
denote sgn(x) = 1 or — 1, according asz = 0 or x < 0.

See [M, p.82] for the definition of the Kronecker symbol (%) (a, b integers

with (a,b) # (0,0)).

For a positive integer L and m,, m, € (Z/LZ)”, we denote m, = m, if
m(Z/LZL)** = m,(Z/LZ)** Let N be a positive integer and m an integer # 0.
We write m | N” if every prime factor of m divides N.

Let k denote a non-negative integer. If 2€ C and x € C, we put 2° =
exp(x - log(2)) with log(z) = log(| z|) + v— 1 arg(2), arg(z) being determined
by — m < arg(z) < 7. Also we put e(z) = exp@2my/— 12).

Let  be the complex upper half plane. For a complex-valued function

a b + u v
f@on p,a= (2 ") ecLi®,r=(""
functions J(a, 2), j(7, 2) and fllal,(2) on § by: J(a, 2) =cz+d, j(t, 2) =

_ —-1/2
(i}%) (%) (wz + 2" and f[al (&) = (det @"J(a, 2)7"f (@2).

) € [,(4) and z € §, we define

https://doi.org/10.1017/5002776300000458X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000458X

NEWFORMS OF HALF-INTEGRAL WEIGHT 139

For m € Z, we define an operator U(m) on formal power series in e(2) by

2 amem2) | Um) 1= Z almm)e(nz).
nz=0 n=0
Let x be a Dirichlet character modulo N. Then we denote the conductor of x
by f(x) and the p-primary component of x by x, for each prime divisor p of N.
For a primitive character ¢ modulo #, we put the Gauss sum for ¢ : g(¢) =
i oWeG/).
Let V, V' be finite-dimensional vector spaces over C. We denote the trace of
T on V for a linear operator T on V by tr(T ; V) and also the kernel of a linear
map F from Vto V' by Ker(F ; V).

(b) Modular forms of integral weight

Let k and N be positive integers. By S(2k, N), we denote the space of all
holomorphic cusp forms of weight 2k with the trivial character on the group
I' = TI,(N). We also denote the subspace of S(2k, N) spanned by all newforms in
Sk, N) by S°(2k, N).

Let « € GL,(R). If I and a '[a are commensurable, we define a linear
operator [I'all,, on S(2k, N) by: f|[Iall,, = (det )" 2., [y, where @,
runs over a system of representatives for I'\ I'al" For a positive integer # with
(n, N) =1, we put T, y(n) = = [F(a 0

’ ad=n 0 d
over all pairs of integers (@, d) such that @, d > 0, al| d, ad = n.

Let @ be a positive divisor of N such that (@, N/Q) = 1. Take any element

Yo € SL,(Z) which satisfies the conditions:

>F] , where the sum is extended
2k

<(1) _01> (mod Q) ;
Te =

(59) moans@.

Q 0
01

normalizer of I'; [W(@)],, induces a C-linear automorphism of order 2 on

Put W(Q)=TQ< ) The following facts are well-konwn: W(Q) is a

S(2k, N) and this operator is independent of a choice of an element To. For
10
01
for the sake of simplicity, we use the following abbreviated notation: Let A be a
subset of the set of all prime divisors of N. Then W, := W(Hl,eApord”(N)). In par-

Q =1, we can take 7, = W(Q) = ( ) Hence we have [W(1)],, = 1. Moreover
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ticular, we simply write W, = W, if A = {l}.

Moreover, if the subscripts are obvious and any confusion does not occur, we
simply write T(n) = T,, y(#) and W(Q) = [W(@)],,, etc..

For any f(2) = 2,_, a(n)e(nz) € S(2k, N) and x a primitive character
modulo f = f(x), put fl R, (2) := X, x(m)a(n)e(nz). From [Sh 3, Proposition
3.64] we have f| R, € SCk, N, xz), where N’ is the least common multiple of
N and f(x)®. We call this operator R, the twisting operator of x.

If f and g are cusp forms of weight 2k on a subgroup I of finite index in
SL,(Z), we denote their Petersson inner product by:

S0 =\ [ f@DeGy" dudy,
Ao
oI\ §) = j;\@ y ldxdy (x=Re(2), y = Im(2)).

In the following sections, we shall use various properties for the operators
T,n(m), W(Q), and R,. We shall collect them in the appendix 1.

(¢) Modular forms of half-integral weight

Let k denote a non-negative integer, N a positive integer divisible by 4, and
x an even character modulo N such that x> = 1. Put g = ord,(N), M = 27*N
and I'= I'y(N). Then there is a square-free odd positive divisor M, of M such

that x = (‘%) or (%) (the Kronecker symbol).

b
Let 8(k + 1/2) be the group consisting of pairs (&, ¢), where a = (z d)

€ GL,(R) and ¢ is a holomorphic function on § satisfying ¢@(z) =
tdet @) " (@, 2" with t € C and | ¢| = 1. The group law is defined by:
(a, (@) B, ¢@) = (@B, p(B2)¢(2)). For a complex-valued function f on
H and (a, ) € &k +1/2), we define a function f|(a, ¢) on 9 by:
fl(a, ) (@) = @) 7'f(az). Moreover if there will be no confusion, we also write
7=, iG, 2™ for all y € T,4).

By 4=4,N, x) = 4,(N, X) 441, we denote the subgroup of &(k +

1/2) consisting of all pairs (7, @), where ((Cl 3) =7r& and ¢2) = xd)

iy, 2% and also denote 4, = A,(N) := {y*| vy € (N},

We denote by G(k +1/2, N, x) (resp. Sk +1/2, N, %)) the space of in-
tegral (resp. cusp) forms of weight k + 1/2 with the character x on the group I,
namely, the space of all the complex-valued holomorphic functions f on § which
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satisfy f| €= ffor all £ € A and which are holomorphic (resp. are holomorphic
and vanish) at all cusps of I In particular, we write S(k 4+ 1/2, N) = S(k +
1/2, N, y) if x is the trivial character. Moreover we also denote by S(k + 1/2,
4,(N)) the space of cusp forms of weight kK + 1/2 on the group I(N) ie., the
space of all the complex-valued holomorphic functions f on § which satisfy f| &
= f for all £ € 4, and which are holomorphic and vanish at all cusps of
T, (N) ([cf. Sh 1]).

If f and g are cusp forms of weight £k + 1/2 on a subgroup T of finite index
in I',(4), we denote their Petersson inner product by:

o=\ [ S @2y dady,
oI\ p) = fr:\‘. y dxdy (x = Re(2), y = Im(2)).

Now for v = 0 or 1, we denote by 2"(N, %) the set of all pairs (o, 1), where
0 is a primitive character modulo # with o(— 1) = (= 1)" and tis a positive inte-
ger, which satisfy the following two conditions:

(0.1) 4t7* | N.

(0.2) = (g(— 1)t>

0 as a character modulo N.

Then we consider the theta series of the following type:
W2 = 1/2) = om)m’e(m’z), where z € $ and v =0 or 1.

mey,

For the case v = 0, we know that {h"(0; ) | (o, H € Q"(N, x)} is a C-basis
of the space G(1/2, N, x) (cf. [S-S]). For the case v =1, let U(N ; %) be the
subspace of S(3/2, N, x) generated by {(h'(o;t2) | (o, ) € Q' (N, %)} over C.
By V(N ;x), we denote the orthogonal complement of U(N ;x)in S(3/2,
N, %) with respect to the Petersson inner product.

Let £€®(k+1/2). If A and £7'4& are commensurable, we define a
linear operator [4&A4],.,, on G(k+1/2, N, x) and S(k+1/2, N, x) by:
fI1AEAY, 1, = 2, f1 1, where 7 runs over a system of representatives for
AN\ AEA. Similarly, if € and 5“4\15 are commensurable, we define a linear operator
[4,84,] on Sk + 1/2, A, (N)) by: f|[4,E4] = 2oy aen, £ 10

Then for a positive integer # with (%, N) = 1, we put

2

Tosr om0 = """ aden a [A ((Z :;2> , (d/a)“l/z) A}

y
k+1/2
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where the sum is extended over all pairs of integers (a, d) such that a, d > 0,
al|d and ad = n. We simply write T(#’) := THI/Q‘N,X(MZ) if the subscripts are ob-
vious and any confusion does not occur. These operators Tn® ((n, N) = 1) are
hermitian and commutative with each other on S(k + 1/2, N, x) (cf. [Sh 2, Lem-
ma 5], [Sh 3, Proposition (3.32)], [U1, (1.9))).

For k =1, from [Sh 1, Theorem 1.7], it follows that /&' (o ; tz) with (o, ) €
QY (N, x) is an eigen function of the Hecke operators TM,N,X(PZ) for all prime
numbers p £ N. Hence, we see that U(N ; x) and V(N ; x) are invariant under
the action of the Hecke operators T ,,y,(®") for all natural numbers % with
(n, N) = 1 (cf. [Sh 3, Lemma 5]).

U(N ; %) corresponds to the space of the Eisenstein series through the Shi-
mura correspondence and only the elements of V(NN ; x) correspond to the cusp
forms (cf. [St]). Hence, when k£ = 1, we shall be dealing with V(N ; %) in place of
S(3/2, N, x). Moreover, we can see the following: For any m € Z,, UN ; x)
S UNm;x) and VIN ; x) S V(Nm; x). In fact, the first assertion follows
from the definition. Next, we have V(N ; x) € S(3/2, N, x) € S(3/2, Nm, x)
and also V(N ;x) L U(Nm ; x) because U(Nm ; x) corresponds to the space of
Eisenstein series and V(N ; x) corresponds to a space of cusp forms (cf. [C], [St]).

Hence V(N ; x) S V(Nm ; x). O

Let f(2) = 2, ,a(n)enz) € Gk +1/2, N, x) and ¢ a primitive charac-
ter modulo f(¢). Let N’ be the least common multiple of N, f(¢)? and f(¢)f(x).
Then f|R,(2) 1= X,_, ¢(n)a(n)e(nz) belongs to the space G(k +1/2, N’,
x¢?). In particular, if f is a cusp form, so is f| R, [Sh 1, Lemma 3.6].

(d) The Kohnen space
We keep to the notations in the subsection (¢c). Let k be a positive integer.
Suppose that N = 4M and M is an odd natural number. Then y = (M‘l> for some
positive divisor M, of M (cf. §0(c)). Put ¢ = (%) = x,(— 1), where x, is the
0

2-primary component of . We define the Kohnen space S(k+ 1/2, N, x)x as
follows:

1 Sk + %, N, 2 fla =2, anema) ;

S(k+ 3, N, 2) = .
2 K .

an) =0 for e(— 1)'n = 2,3 (mod 4)

In particular, we write S(k + 1/2, N, x)x = Sk + 1/2, N)x if x is the trivial
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character.

Put &=y = ((g i) , e e (2K + 1)/8)) €6k +1/2) and
Qurrang = [AEAL, 1 A = Ay(N, X)y41/2- Then we know the following from
(K, Proposition 1]: @,,1,sy, iS 2 hermitian operator on S(k + 1/2, N, x); and
Stk +1/2, N, x)g is the a-eigen subspace of S(k+ 1/2, N, x) with respect
to the operator @Q,,1/sx, Where @ = (— 1) /29 /2.

For k = 1, from the definitions of S(3/2, N, x)x and U(N ; x), it is easily
shown that S(3/2, N, x)x contains U(N ;%). We denote by V(N ;x)x the
orthogonal complement of U(N ; x) in S(3/2, N, x)x with respect to the Peters-
son inner product. Then we can see for any odd positive integer m, VIN ; x)x S
V(Nm ; %) g (cf. §0(c)).

From [K] §3 and 84, we know that S(k + 1/2, N, x)g (resp. V(N ; x)y) is
invariant under the action of the Hecke operators T, v, (#") (resp. Ty pn, ()
for all positive integers # with (n, N) = 1.

Moreover Kohnen introduced the following operator on S(k +1/2, N, %)«
in [K §3]:

e ® 1= 327 [ (1 0) 2%) ] pr,

where Pr:= % <Qk+1/2,N,x + %) is the orthogonal projection from S(k + 1/2,

N, x) onto S(k+ 1/2, N, x)x (cf. [K, Proposition 1]). We shall use this oper-
ator in §3. We collect various properties of Tk+1/2,N,x (4) in §3.

§1. The spaces S M, V""" and several operators

Let k be a positive integer, N a positive integer divisible by 4, and x an even
character modulo N such that xz = 1. The letter z means an element of . Put
¢ = ord,(N) and v, = ord,(N) for any odd prime p. We decompose N as follows:
N=2'M=2"M,M,,, where M,:= I, y,-1p and M,, := HI,,M,,,PZZP”’. We also
denote the set of all prime divisors of M,, by IT = II(M,,) := {l,,...,l,}. From
now on to the end of this paper, these notations are fixed.

Remark. The case of II = @ (i.e., M is squarefree) was already studied by
Kohnen in [K]. We shall generalize Kohnen’s results in the following sections.
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For any subset I of II, we set the following notations: I, :=II,.; / and ¢, :=
(T) (The Legendre symbol). In particular, we have I, = 1 and ¢, = 1. For any
I

non-empty subset I of II, we can define the twisting operator of ¢, on G(k +
1/2, N, x) and S(k+ 1/2, N, %) (cf. (U2, §1]). We denote it by R, := R, =
I, R(.y. Also we put Ry := 1. Moreover, we write R, = R, if ] = {I}. We de-
note the commutative algebras gererated by R,(I € II) as follows: B := Z[R,; I
S Mland R := CIR,;I S . Then from [U2, Corollary 1.10] all R;'s (I < I
are hermitian with respect to the Petersson inner product. Therefore each element
of R is also a hermitian operator. These notations are also fixed from now on to
the end of this paper.
In the following, for the sake of simplicity, we write

S:=SUk+1/2, N, x) or Sk+1/2, N, ),

(1.1) Vi=VWN;x) or VIN ; x)g.

From [U2 81}, it follows that the spaces S and V are fixed by the operator R,
for any I & II. Hence both # and % act on these spaces.

Now we shall decompose these spaces S and V with the twisting operators.

Forany IS I, put L,:= {a € Z; (a, l;) = I;}. Then we have for any I S II

U Zl) = 2. L, (disjoint union).

tem-1 Je1

(1.2) Z- (

We define the operator R, € & as follows: First Rgi = R,,2 and for any
non-empty subset I of IT we define inductively R, := R,,_,z - X R,. Then from
127

(1.2) and easy induction, we get the following. i

ProposiTION (1.3). For any f= 2,~,a(menz) € Gk +1/2, N, x) and
any I S IT, we have f| R, = 2o<ner, ame(nz) € Gk +1/2, N, x). OJ

From this proposition we have the following relation as operators on G(k +
1/2, N, x): For any subsets I, J S I (I # )),
(1.4) R*=R,RR =RR =0,and = R, =1.
Hence {R,| I S ID} is a family of projection operators on G(k + 1/2, N, x).

Put for any subset I & IT

S'i=S|R,=1{Z,., bmenz) € S;b(m) =0 for n €L}
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and
Vii=VIR ={Z,.,bmemz) €V ;bn) =0 for n €L,}.
Since A is a commutative algebra, the space S" and V'(I S ID are stable under

the action of elements of R.

PrOPOSITION (1.5).  Under the above notations, we have the following.
(1) S" and S are orthogonal with vespect to the Petersson inner product for any I, J &

oa+).
2) S=® S, v=a v
<cn i
(3) Ker(R;; S = @ S, Ker(R,; V)= & V.
g1l g1l

Proof. Any R, € R(I S ID is hermitian. The assertions (1) and (2) follow
from this fact and (1.4).
(3) It is easy to verify that
f@@ = 2 awe(nz) € Ker(R;; Gk +1/2, N, x))
n=0
< a®) = 0 for all u(= 0) such that (», ) =1
© f| R, = 0 by Proposition (1.3).

The assertion (3) is easily deduced from the above. O
We denote the set of all maps from IT to {£ 1} by {£ 1} = Map (7, {£ 1}).
Put for any £ € Map(T, {£ 1}),

§™i={fe Sﬂ;flR,=/c(l)f for all 1 € IT},
Vi={fe V' fIR =k()f forall€ II}.

If we need to specify k, N, and x, we will denote S™ = §(k + 1/2, N, x),
S™(k+1/2, N, x)gand V™" = V**(N, 2), V**(N, %)

Remark (1.6). When II = #, we understand that the meaning of these nota-
tionsis S =8" =85, v =v"'=vV
Since Ry = R;Ry_, for any I € II, we have

Ker(R;; S =2 Ker(R;; S) and Ker(R;; V) 2 Ker(R;; V).

From this fact and Proposition (1.5), it follows that for any I & IT
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S’ L Ker(R,; S) and V' L Ker(R,; V).

Hence S” and V? are decomposed into £ l-eigen subspaces with respect to all
R;s (I € II). The decompositions are as follows:

S'= @ s"™v'= @ v™

xe{+1}7 xe{+1}1
Moreover, for any f € S* or V" we have
(1.7) fIR,=kfforall k€ {£ 1} and I < II.

Here k,:=II,.; k() € {£ 1}. In particular, k; = 1.

Now we consider the Hecke operator T(n°) = Tyy1 o, (#°) for any n € Z,
with (#, N) = 1. From [U2, Proposition (1.7)], 7(#*) commutes with the twisting
operator R; (I & II). Hence it also commutes with any element of R. Therefore
the spaces S" and V' are stable under T(#%) for all subsets I of II. Similarly,
T(n®) acts on the spaces S” and V*.

The main purpose of §1 and §2 is to compute the trace of the Hecke operator
T(#®) on the spaces S and V""" Before computation, we prepare several nota-
tions and propositions.

m 0
01
Then we can easily verify Ay(Nm, XD isre S 0mdo(N, X) 4120 i Where x' =

For any m € Z,, put 8,:= (7 1) and 8= @, m ™) € Gk +1/2)
x(*m*> Hence for any f € Gk +1/2, N, %), f|8,, is stable under any elements

of A,(Nm, %) ;.- Therefore from the standard argument, it follows that the map-
ping f f|6, maps GUk+1/2, N, x) into Gk + 1/2, Nm, x'). We also
have the similar results for the spaces S and V. We need the following proposition
for that proof.

PropoSITION (1.8). Let m be a positive integer and put x = x(-m*) as a

character modulo Nm. We have the following velations for all f € G(k +1/2,
N, x) and n € Z, such that (n, Nm) = 1:

fl Tk+1/2,N.x(”2) = fl Tk+1/Z,Nm,x(n2)’
fl Tk+1/2,1v,x(n2) Sm = fl SmTkH/z,Nm,x’ (nz)
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Proof. We get these relations from straightforward computation. |
Now we can prove the following.

ProPOSITION (1.9).  Under the above notations, we have the following. Let m be a
positive integer and put X' = x(ﬁ) as a character modulo Nm. Then the mapping
fflé, maps the spaces Gk +1/2, N, ), Sk +1/2, N, x), V(N ; x)
into the spaces G(k +1/2, Nm, x'), Stk +1/2, Nm, "), V(Nm ; %) respec-
tively. Moveover, if m is an odd positive integer, the mapping f f | 5,” maps the
spaces Stk + 172, N, x)x and V(N ; ) into S(k +1/2, Nm, x)g and V(Nm ;
X )k respectively.

Proof. We already proved the case of G(k + 1/2, N, x) and the proof for
S(k+1/2, N, x) is exactly similar to those for G(k +1/2, N, x).

Next, we consider the case of V(N ; x). V(N ; x) has a C-basis consisting of
common eigen forms for 7(x#°) ((n, N) = 1). Take any element f of such a basis.
Then the system of eigen values of f corresponds to a certain primitive cusp form
of weight 2 through Shimura correspondence (cf. [C], [St]).

By Proposition (1.8), f| 8,,Tw® = f| Tw*§,, = A(n)f|§,, for any n € Z,
such that (m, Nm) = 1. Here, A(n) is the eigen value of f with respect to 7(x%).
Hence f|8, € SB/2, Nm, x') is a common eigen form of 7" ((n, Nm) = 1)
and those system of eigen values also corresponds to a primitive cusp form.

Therefore |8, is orthogonal to the space of theta series UNm ; x), ie.,
fl6, € VINm; x) (cf. [C], [St]).

For the case of S(k + 1/2, N, x)g, it is sufficiently to check the condition
of vanishing of Fourier coefficients. That is an easy computation.

Finally, since V(N ; x)g = V(N ; x) N S(3/2, N, x), the assertion for
V(N ; %) follows from the results for V(N ; x) and S(3/2, N, X)g. O

PropOSITION (1.10). The notations are the same as above. Let m be an odd posi-
tive divisor of N. Suppose that a C-valued function f on § satisfies the following two
conditions : (i) f(z+ 1) = f(2) for all zE€ ; (i) fmz) € Gk +1/2, N, x)
(resp. Sk +1/2, N, x)).

Then we get the following.

(1) Ifmf(x)|N, f€ Gk +1/2, N/m, x') (resp. S(k +1/2, N/m, x)).
(2) If mf(x) A N, f=0.
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Here, ' = x<m> and §(x") is the conductor of X'.
Proof. See [S-S, p.45, Lemma 7]. O
This assertion also holds good for the Kohnen space and V(N ; x).

CoroLLARY (1.11). The wnotations (m, x’, efc.,) ave the same as in Proposition
(1.10). Suppose that a C-valued function f on O satisfies the following two conditions :
() f+1)=f@ for all z€ 9H; (i) fmz) € S(k+1/2, N, x)x (resp.
VN ; %), VAN ;%)g). Then we get the following.

(1) If mi(x)IN,fe Sk+1/2, N/m, x)x (resp. VIN/m;yx), VIN/m;
X
(2) Ifmf(x) ¥ N, f=0.

Proof. Since S(k+1/2, N, x)y S Sk+1/2,N, x) and V(N ;x)x S
V(N ;x) € S(3/2, N, x), the above assertion (2) follows from the assertion (2)
of the Proposition (1.10).

Now we shall consider the case of mf(x”) | N.

First assume f(mz) € S(k + 1/2, N, x)x Then from Proposition (1.10) we
know f€ Sk+1/2, N/m, x). Put f=2,.,am)emz). Since f(mz) €
Stk +1/2, N, x)x we have that if a(n) # 0, x,(— 1)(— 1)*am = 0,1 (mod 4).
Moreover, we also have x;(— 1) (— 1)*zn = x,(— 1) (— 1)*nm (mod 4).

Hence a(n) # 0= x,(— 1)(— 1)*» = 0,1(mod 4). Therefore from the de-
finition of the Kohnen space, f € S(k + 1/2, N/m, x)x.

Next assume f(mz) € V(N ; x)(S S(3/2, N, x)). By Proposition (1.10),
we know that f € S(3/2, N/m, x"). It is sufficient to show that f is orthogonal
to UN/m ; x').

UN/m ;%) has a C-basis {h'(p;t2); (o, ) € Q'(N/m, x")}. Then we
can easily verify that A'(o; tmz) = m ™" *h'(o;42) |5, € UW ; x). Hence,
for any (o, t) € Q'(N/m, X)),

f, W oty = <f, w0 (o tm2) | 6,7
= m""*Vf] B, h'(0; tm2))  (cf. [U2, Lemma (1.9)])
= m""*f(mz), W (o ; tmz)> = 0.

Therefore we get f L UWN/m ; x) ie, f€ VIN/m; ).
Finally, the assertion for V(N ; x)x is an easy consequence of the above
results, because V(N ; x)x = S@/2, N, x) N VN ; x). O
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Let I be any subset of II. Put xm P= x(-lL> This xm is considered as a
Dirichlet character modulo N/I,. We also set

iz {S(k +1/2,N/1, x"), itS=Sk+1/2, N, ) ;
Sk+1/2, N/, x)g it S=SUk+1/2, N, Ox;
and
. {V(N/l,;xm), itV =VW;0;
VIN/L; x g it V=VIN; 04

Let A be a C-vector space consisting of C-valued functions on §. Define for
any positive integer #1:

A" = A5, = {amz) | a(z) € A}.

Then we get the following relations (1.12)—(1.14).
(1.12) For any subset [ of I,

s"=@® s, v"= o V.

cjen 1cjcn

Proof. Take any f= 2,5, a(m)enz) € S, Then a(n) = 0 if I, ¥ n. Since
2, = Zicrenly f= Zicien ZlgneL,a(”)e(”z) = Zlgjgll(fl Rj) = EBIQJQHS]'
Next, take any J such that J € J € II and any f = Zlgneha(n)e(nz) e s’
Put g(2) : = f(2/1)(z € §). g satisfies the two conditions in Proposition (1.10)
and Corollary (1.11). We also have f(x”) | (N/1,). Hence g € S, and f € S,(l’). Il
(1.13) Forany I, J S II with I N J # @, we have

S’|R, = {0}, V'| R, = {0}.
Proof. This assertion follows from Proposition (1.3). |

(1.14) Let I and J be any subset of Il with I N J = @. We have the following
equation as the mapping from S, (resp. V) into S (resp. V):

(ﬁ—j) RS, = 5,R,.

Proof. Since I} | (N/1,), we can define the twisting operator R, on S; and V.
Then the equation follows from easy calculation. OJ
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Now we can compute the trace of 7(#°) on the spaces S** and V"*. Since the
computation for Vo is exactly the same as those for SM, we shall consider only
the space S”*.

Let I and J be subsets of IT such that 1 N J= @ and #n a positive integer
with (#, N) = 1. Then the mapping f ~ f| 5,} is an isomorphism from S; onto
S, Hence by using (1.8) and (1.12-14),

] ) .
(ﬁ) tr(R, T(n") ; Sy = tr(R,T(nz) , SI(IJ))

=uw(RT0D; ® ) =u(RTu; & 5.

JEKCT JEKSO-1

Therefore, we have the following by summing them up with respect to J:

s Yu(RI6); © s

Inj=8 JSKSH-I

s (- 1)”(%) tr(R,T0D) ; S)) =

Inj=g@

= X DYuRRTw);s"
Inj=8 JCK<I-1I
= = (T ") u®I6D ;"

Kon-1 JCK

I

tr (R, TG ; SY =tr<R,T(n2); @ s) = % w®TE) ; ™

ne{£1}H7 xe{x1}7

= X ktr(T&H ;™).
xe{£1H7
Here, 20,0/ is the sum extended over all subsets J of IT with INJ= @ .
Moreover, for any k, £, € { = 137 we have
{2#", if k=ky;
0, otherwise.

2 Koy = IEH 1+ kD, (D) =

cn

Thus we obtain

PROPOSITION (1.15). Let # be a positive integer such that (n, N) = 1 and & any
element of {£ 137, We have
T 2 B,% —#IT #J l] o2 2
w8 =22 k| £ - DY) e®T6Y; S)),
I I

e nj=6

tr(Tw® ; V) =27 X &, [ > (- 1)”(%) tr(R, T ; Vj)},

ico Inj=0
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where 2.pn;_g is the sum extended over all subsets | of IT with IN J = @. ]

Now we introduce new operators W(Q), Y, and study their properties.
Let @ be an odd positive divisor of N such that (@, N/@) = 1. Take any
element 7o € SL,(Z) satisfying the conditions:

()} mode;
" ((1) (1)) (mod N/ Q).

Then 79 € I,(N/Q) < I')(4). Put n’; = (10, (1o, 27" and W(Q) 1= 7':59 €
&k +1/2).

Remark (1.16). For any f € G(k+ 1/2, N, %), f| W(Q) is independent of
a choice of an element 7, because a gap of two elements is at most an element of
I'(N). So we can choose a convenient element for calculations.

The following facts are easily verified by straightforward calculations:

a b

. d) € I,(V),

(1.17) For all y = (

QW™ = W@rw@™*(1, (%)).

Hence W(QA4,(N, x) W™ = AO(N, x(-Q» and W(Q) is a normalizer of

4,(N).
From these facts, we can see that the mapping fr f|W(Q) gives an

isomorphism from S(k +1/2, N, x) onto S (k +1/2, N, X(Q» Moreover we

have the following properties for W(Q).

PropPOSITION (1.18) Let @ and Q' be odd positive divisors of N such that
(Q,N/Q =WQ,N/Q)=(Q,Q)=1. Thenforanyf € Sk +1/2, N, ),

B _ — 1\ ke
ATQ@QWQ = () el Drne(@F,
FIWQWQ) = 10 (@ f WQQ).

Heve, Yo, Xnse and X o are the Q, N/Q, and Q'-primary components of X respectively.
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Proof. We get these relations from similar straightforward computation to

the case of integral weight. ]

Next we investigate the relations between W(Q) and the other operators
U@p), T(n*), and R, For simplicity, we write I'=T,(N), Iy =T,(\), 4 =
A,(N, x),and 4, = 4,(N).

We remark that for each odd prime divisor p of N, the mapping

f flU@®) gives a linear map from S(k+1/2, N, x) to S<k+1/2, N,

x(ﬂ)), and we also have the following identity: for any f € S(k + 1/2, 4,)),

(1.19) FlUQ) = p= £ [Al <<(1) 2) ’ pk/2+1/4)A1]
= phrmyA iezz/:pzfl (((1) 2) , pk/2+1/4> (t 11>*

(cf. [Sh 1, Proposition 1.5]).
ProposiTioN (1.20). Let p, I be any odd prime divisors of N with p + | and put
; Q= p""" Then for any f € S(k + 1/2, N, %), we have the following :
1) FlUOW@Q = %, fI WQUW.
(2) Suppose | € IT (< ord,(N) = 2). Then

fIRU® = ()1 UpR, 7IRI@ = ($) 71 WQR,

(3) If n is a positive integer prime to N, then
FLUD T2y @ = £l Ty @ UG,
fl W@ Tk+1/2,N,x(Q) (") =/l Tk+1/2,N,x(n2) w(Q.

Proof. (1) From (1.17) and the fact 4,(N) D> 4,, we have the identity:
AEAW(Q = " W(Q4£4,,

10

. l),l"”*‘/“),r: (‘Z 3) & I' such that d = 1(mod N/Q) and

where £ = ((

d = [ (mod Q). The relation (1) is verified by this fact.
(2) The first relation of (2) is easily verified by checking the coincidence of
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the Fourier coefficients of the both sides.
Next, from [U2, Proposition (1.5)], for any f € S(k + 1/2, N, %), we have

1R =o((7)) = (%) rltacoman,

where H = (Z/12)" / (Z/17)** and E(m) = (((’) "))

We also have the following identity from (1.17):

AEm) AW (Q) = W(QAE(m) 4,

where 4" = A0<N, x(g)) and m’ € H such that @w’ = m (mod [). The second

relation of (2) is verified by this fact.
(3) From the definition of T(#%) (cf. §0(c), it is sufficient to study the
relations between W(Q), U(p) and [Ar(n)A]l. Here, for simplicity, we write

10
(n) = ((0 o ), nkH/Z). It is easily shown that for any f € S(k +1/2, N, x),

fllAz(m) A1 = f[lA,r(m) A1 (cf. [Sh 1, p. 450)).

For each A,-double coset 4,g4,, we put deg(4,g4,) = the degree of 4,g4,:=
the number of left A4,~cosets contained in 4,g4,. Then we have

deg(4,7(m) A, deg(4,E4,) = deg(4,Et(n)4,)

and &t(n) = (n) & Hence we have the identities of elements in the abstract Hecke
algebra:

At A AEA = At EA, = AEA- At 4,.

The first relation of (3) is shown by these identities.
Finally, we can show the second relation of (3) in a similar method to (1) and
(2). O
From [U3], we know that the operators W(Q) and U(p) map V(N ; x) to
V(N ; ¢) for some character ¢, if k = 1.

ordy(N)

ProprosITION (1.21). Let p be an odd prime divisor of N and put Q = p
Then for any f € V(N ; x), we have f| Up) € V(N ; x(ﬁ» and f| W(Q) €
WN ; x(Q» In particular, W(Q) gives an isomorphism from V(N ; x) onto
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v ()
Proof. Put &= ((

(%))

10

0 p) , p‘m). For any v € V(N ; x) and any ' € U(N;

WlU@), wy =p"" S <v| E(1 j)*, u'>

i€Z/PZ 01

_ 1 —i\* 3/2
=p" = o, 7 ) =" v, W' (p2)),
i€Z/PZ < (O 1 )
where z € § (cf. [U2, Lemma (1.9))).
Obviously, we have u' (pz) € U(Np; x). Observing V(N ; x) & V(Np;

x) (cf. §0(c)), we get the first assertion. See [U3] for the proof of the second asser-
tion. O

When ord,(N) = 2, these operators W(Q) and U(p) also fix the Kohnen
space.

ProposiTioN (1.22).  Suppose that N = 4 M with an odd positive integer M. Let p
be an odd prime divisor of N and @ = p>*™ . Then

Stk+1/2, N, 0l Up) < S(k +1/2, N, X(‘tl))

K

and the operator W(Q) gives an isomorphism from S(k+ 1/2, N, x)x onto
Q

S(k+1/2, N, «( ))K

Proof. We can easily check the condition (cf. §0(d)) for Fourier coefficients.
So the first assertion is obvious.

Next, S(k +1/2, N, x)x is an eigen subspace of S(k + 1/2, N, x) with
respect to the operator [A4&,. /5,14l (cf. §0(d) and [K, Proposition 1]). Hence it
is sufficient for the proof of the second assertion to study the relation between

W(Q) and A§k+1/2,xz(—l)A'
Observing (1.16), we can take 74 as follows:
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((1) _01) (mod @),
sL@ 3 7r.=1(, 9) (mod M/ Q),
<4(1 1_ 0 (1)) (mod 16).

Put A" = A0<N, x<Q>> and

&= ((g i)» 1) = Epr1/2y-1 1, x,(— D %e(— 2k + 1) /8)).

Then we can show the following identity:
- -1 k+1/2y
WQaes = 484(1, @) ) W@ (et (1.17)

From this identity and Proposition (1.18), the second assertion is easily verified.

O

COROLLARY (1.23). Under the same notation and assumption as in (1.22), we
have V(N ; )| Up) < V(N ; x(ﬁ» and W(Q) gives an isomorphism from
K

VN ; ) onto V(N 5 2(2))

Proof These assertions easily follow from (1.21), (1.22), and V(N ; ) g =
VN ; 2) N SG/2, N, 1) 0

For any odd prime divisor p of N with ord,(N) = 1(&p | M), we define the
operator Y, on S(k +1/2, N, x) by the following:

Y, =p " lupywp), (feSk+1/2, N, ).
From the above Proposition (1.20), we have the following.
PropoSITION (1.24). Let p and q be any distinct two odd prime divisors of N such
that ord,(N) = ord,(N) = 1. Then for any f € S(k+1/2, N, x), we have the
Sollowing

& 1Y, = FI%Y, FI LU = 1,@ (4) £ V@Y,
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(2) Supposel € II. Then

fIY,R=fIRY,.
(3) If m is a positive integer prime to N, then

f| YPTI:H/Z.N,x(nz) =f1 7“k-e-l/z,l\l,x(”lz) Yp D

Let us find the relation that is satisfied by this operator Y.
Let p be any odd prime divisor of N with Ord,,(N) = 1. Take an element
7, € SL,(Z) satisfying the condition:

o2

Then by using (1.19), for each f€ S(k+1/2, N, %),

fr,= = (5 1) 9 ) 7,

ieZ/pZ 0 p

(0 —1

1 0) (mod p) ;

i

(é 2) (mod N/p).

- 5 fl<(p(a+ic) b+ id

2

iCZ/PT bc pd

For ¢ = 0, we have the following identity from straightforward computation and
Proposition (1.18):

) i, pz)2k+1>.

10

o 0). 2 ) e = (SN w01 s,

A1((
(1.25)

= (G uC 0 e Ts,

Here, Xy, is the N/p-primary component of x.
If i# 0 (modp), a+ ic and pc are relatively prime and so there exist

) € I,(N) and

u v
—pc a+ic

@+io b+id . :
(e ot (57 7 g0 Dams™) = ((55)- ()
where £ = u(b + id) + vdp.
Since £ = — u (mod p), ui = 1 (mod p), and x° = 1, we have

u, v € Z such that u(a + ic) + vpc = 1. Hence (
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£l ((P(ap—z}-c ic) b Zdid> G, pz)zk+1) = x(a + ic) f| ((g —pu>’ (}%))

= (3)71((5 ). 1).

From these results, we have the following identity:
(1.26) Let p be any odd prime divisor of N with ord,(N) = 1. For each f =
Z.s1amenz) € S(k+1/2, N, x),

1% = (G uE0 Ao s+ = g (5) (0 7))

us(Z/pZ)* p 0 »
-1 e 1
= (T) X(= D fIWE) 9,
=1\ 12 n . _
N (T) P 2 a(n) (E)e(nz), ifx, =1,
— s amenz) +p 2, alpn)e(pnz), if Xp = <E)

—k/2+3/4

Let us apply p U(p) to the both sides of the identity in (1.26).
Put g := f| W) "' = Z,., bw)e(#nz). Then

g8, UP) =p T bmelpnz) | UQ) = pg.

n=1

Therefore we get

p—k/2+3/4f] Y,U(p) = ("71_> x,(— Dpf | W)™

0, ifx, =1,

+ —k/2+3/4 . _
7 — 1) £ UG, 1fx,—<;>.

Thus, we obtain the following.

ProPOSITION (1.27).  Let p be any odd prime divisor of N with ord,(N) = 1. For
each f € S(k+1/2, N, ),

<__1>—1> b, if X, = 1,

flYi=
¢ =D FIY, +2f, iz, = (5):
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Hence Y, is a semi-simple opevator on S(k+ 1/2, N, x). Moreover the adjoint

_—1> x,(— DY,

operator of Y, on S(k +1/2, N, %) is given by Y, = < b

Proof. From the identity (1.26) and [U2, Lemma (1.9)], the adjoint operator
Y;on S(k+1/2, N, x) is given by:

g1 = (GHuEvagwe + = (%) el ((2Y).1)

ue(Z/pZ)* 0 p

(g€ Sk+1/2, N, ).

Observing g | 5;1 =g| <((1) 2) , p"’“”“) and (1.25),
gl vi=gl W95+ = (T xwel((G}))
= (5w el 7. -

From this proposition, we can see that Yp is a linear automorphism
of S(k+1/2, N, x). Since W(p) gives an isomorphism from S<k+ 1/2,
N,x<2)> onto S(k+1/2, N, x), U@p) is also a linear isomorphism from
S(k+1/2, N, x) onto S(k +1/2, N, x(ﬂ)). We can also see that S and V

are stable under Y, for each prime divisor p of M, by using (1.21-23). Here, the
letters S and V are the same meaning as in (1.1).

Finally, we can know the behavior of the spaces S%* and V** under the oper-
ators W(p), U(p), and Y, from Propositions (1.20) and (1.24). Thus we get the
following.

ProposITION (1.28).  Let p be any odd prime divisor of N with ord,(N) = 1. Put

x = x(z). Then we have

(1) The mapping f~ f| Y, gives the automorphisms of SUk+ 1/2, N, x),
Stk +1/2, N, X)x VIN ; x), and VIN ; x).

(2) The mapping fr f| U®) gives the isomorphism from Sk +1/2,
N, x) (resp. SC(k+1/2, N, x)x, VN ; x), VIN ; x)g) onto Stk +1/2, N, x)
(resp. Stk +1/2, N, Xy, VIN ; x), VIN ; 1D 8.
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(3) Let k € Map(UT, {£ 1}) and put ¥’ : = x'(ﬂ) € MapUTI, {£ 1}). Then

the operator Y, gives automorphisms of S* and V**. Hence the both operators
W) and U) give isomorphisms from S**(k +1/2, N, x), S" (k +1/2, N,
O VIN, ), and VPN, x)x onto S™ (e +1/2, N, ), S" (k +1/2,
N, g VXN, %), and VP (N, %) g respectively. O

_ 172
Ifx,=1,Z,:= (T1> p‘”sz is a hermitian involution on S(k + 1/2,

N, x) (cf. Proposition (1.27)).
Let us characterize the eigen subspace for this operator Z, in terms of
Fourier coefficients.

ProposiTION (1.29). Let p be any odd prime divisor of N with ord,(N) = 1.
1\ 1/2
Suppose that x, = 1. Then Z,:= (—p—1> p_mY,, is a hevmitian involution on
Stk+1/2, N, x) and for each 2 € {* 1}, the A-eigen subspace of Sk + 1/2,
N, x) on Z, coincides with the following subspace :

S,:= [f= 2 amenz) € Sk+1/2, N, ) ;aln) =0 if(%) = — 2}.
n=x1

Proof. Take any g= 2,.,bn)enz) €S, N S_,. Then bm) =0 if
b, m=1Puh=glUp e s(k+1/2 N, 1(2))
Since h(pz) = g(2) and pf(x (ﬂ» X N, we have h =0 from (1.10). Hence

g = 0. Therefore S, N S_, = {0).
For the proof of the assertion, it is sufficient to show that S‘z contains the
A-eigen subspace of S(k +1/2, N, x) on Z, for each 2 € {£ 1}.
Let A € {x 1} and take any f = 2,., a(w)e(nz) € S(k +1/2, N, %) such
that f| Z, = Af Then from (1.26),
—1

112, = (T>1/zp_1/zf, y, = <_T]_>-1/2p_1/2f] W), + ngla(n) (%) e(nz).

N1z ~
Moreover, since Af = (Tl> PV LI UG WD), we have

FlWe)™ =2 (:f)l/zj)—kﬂ““fl Uo).
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Hence

=1z, = A f| Up)o, + = alw) (%) e(n2)
n=>1

=7V a(pm)e(n2) | 6, + = aln) (%) e(nz)

n=>1 n=>1

= A2 apne(pnz) + 2 aln) (ﬂ) (nz).

n=1 n=1 p

Comparing the n-th Fourier coefficient of the both sides, we have

Aa(n), if pln,
datn) =\ (n . _
<p>a(n), it (o, m = 1.
Therefore, if <-p7£) = — 2, a(n) = 0. Thus the proof is completed. ]

§2. Computations of the traces

We keep to the notations in §1.

In this section, we shall compute traces by using the trace relations ([U1,
Theorem], [U2, Theorem (4.1)]. Some assumption is necessary to use these trace
relations. Hence, from now on, we assume the following additional conditions for
the level N and the character x:

AssumpTioN (2.1). 2 < g = ord,(N) <4 and also f(x,) = 8if p = 4.

Moreover we use the following notations:

__{ﬂ~1, if S=Sk+1/2, N, ) orif V=V ; %),
“*7 o, £ S=SWk+1/2, N, Y)gorift V= VN ; x)x

For any odd prime p and any subset A of II, put

1, ifpeA,;

Ap) 1= ord,(l,) = {0, if p ZA.

In this section, we shall compute the trace in the statement of Proposition

(1.15), ie, tr(TG? ; S**) and tr(T(m® ; V®) with four steps. See Proposition
(2.23) for the final results of this section.
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(I) Before the computation, we prepare several notations.

Let I be any subset of II. Put N = 2“LIL. L(> 0) is the I,-primary part of
N, and M = LLL). N, = II,_, 1'%+,

For an odd prime p and integers @, b, &, B (@, =0 and 0 < g < §/2), put

1, ifa=0;

1+(=28), 1<a<1-1/20;
Ap,ba) = ( p ® ’

<—_p—b>a, B is even and @ = B/2.

From [Ul, Theorem], [U2, Theorem (4.1)], and Assumption (2.1), we can ex-
press the trace of R,T(nz) by the trace of Hecke operators on the spaces of the
cusp forms of weight 2k. The precise assertions are as follows.

Let I and J S II such that I N J= @ and # a positive integer such that
(n, N) = 1. We have the following formula.

2.2) [tr(R,T(nZ) ;S) itk = 2}
tr(R, T ; V) ifk=1

()Y a1 e

lel

X S I A2 (m; ord, (N /2) tr([WINND 1, T(n) ; Sk, 2°NN,N),

Ny plM/1p
where the notations are as follows: For any odd prime p, U, = ord,(N/I) = v,
@
— J(®) and x(])p = (;) (@, =0,1). Here XU)D is the p-primary component of

x?. Put = le/l,. Then N, runs over all square divisors of L and N,:=
L,y | L,

Let us simplify the formula (2.2). First, we have I:; =M cp, "% Since
ord,(Ny) is even and ord,(N;) <1 for a prime divisor p of M, we have
ord,(N,) = 0. Hence, N; = II,.,;_,I*" where ¢, (I € IT — D) runs over all integers
such that 0 < 2¢, < vy, — J(I). Moreover we have
{L if e, >0,

N,=M, 1I PO ¢, = 0.

len-I

] TP ap
NEXt, we have x(])p = Xp<l> = Xp <~1;> for any odd Drime P Put Xp = (5) ’
4
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@, = 0,1. Hence @, = a, + J(p) (mod2). From p| M p| (M/1), Um, LH=1,
and the above, we have li{)(p, Iim;ord,(Ny) /2) = 2221’,((',’,))(1), Im; ord,(N)/2)
for any odd prime p.

Thus we obtain the following.

Let I be any subset of II and # a positive integer such that (#, N) = 1. For

L 1\k

simplicity, we put C, = (—ll‘) Mo, 2,y 500 x,(— 1) and for [€ T—1,
I

J & II — I and a non-negative integer a,

* ifa>0,
n{,a = {l,,,-j(n, fa=o0.

Then we have

23 = (- 1)’”(%){

Inj=g¢

tr(R, 7% ; S) itk = 2}
tr(R,T(n") ; V) ifk=1
=G X DY X T AR n;e)

nj=9 (e)ien-s !
0<2¢, Sy, —J()

x tr( Wl TOD 5 S (26, 2°NM, T 3, @)

— #] v=J ) .
=C X 2 =D I A 50U In;e)
(€D en-1 nj=g len-1
0<2¢ <y, 0<J(D<y,—2¢
(efn—-n

< tr([Wido TOD 5 S (26, 2°NM, T 3,0, @),

where 2J;,,-4 is the sum extended over all subsets J of II with I N J= @ and
Wy = WN,ILey 1% (cf. §0(b)).

For a while, we fix [ and constants ¢, €E T — D). Put II—D':={l€ll
— I| e, = 0}. By using this, we decompose any subset J of IT — I as follows:

J=I I =I0 =0, =]

Then we have ¢, = 0 and v, = ord,(N) = 2 for any [ € J’. Since J'() =0 or 1,
the condition 0 < J'() < vy, — 2¢, is always satisfied for any [ € (I — D).
Hence we have the following bijection:

{(JSIO—1;0<5]J() <y —2¢foralll€l—1
c{JcWT-DYX{J"cUI—D";0<]"() <y,—2¢forall € (II - D"}

Moreover we have for any J,, J, € II — I,

https://doi.org/10.1017/5002776300000458X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000458X

NEWFORMS OF HALF-INTEGRAL WEIGHT 163

I nU,e)= I n,e) o] =]
lell-I lell-1
Hence the value of trace in the right hand side of the formula (2.3) does not de-
pend on J”. Therefore
7 ~J(n
L2 DY I a0, e e

0<J(D<y,—2¢
(el—-n

(2.4)
< tr([Walae T00 5 S(26, 2N, T 0,7, )

- 5 (—-1)*”tr([uq+quy42kzxn); S(zk,zwAQAJI mog(, @>))
lell-1

rew-n
#77 y=J" W0
X ; C% » (=D , (1511)' /u,ﬂ"(n(l, Im;e).
e cdi-D"
0<J" () <v,—2¢,
(e @-n

We can easily compute the sum for /”. The result is as follows:

S 0”0 R0 e

Jsur-n” le(I-n"
0<J"(D<y,—2¢
(led1r—n"
min(1,v;,~2e,;)
= II ( (=1’ la+,(l In; e,))
ler-n” i=0

- {X,(— Im), ife =1[y,/2];
= I ‘
rea-p~ |0, otherwise.

Hence, if there is | € IT — I such that ¢, # 0, [v,/2], then the value of the formula
(2.4) is equal to zero. Therefore we may assume that ¢, = 0, [v,/2] for all [€ IT — I

Replacing the notations: (Il — I)’ by J and J’ by K, for any subset I of IT and
positive integer # with (#, N) = 1, we have the following.

4 tr(R,T(n) ; S) ikaZ]
25 2 (= D<)hmmm V) itk=1

=C, = Z(—l)“‘ﬂx,( In)

Jen-1 K<y

X tr([WH—]]zk T ; S(Zk, 2wNoM1 no lvl_K(D)) !

led~I1-J leJ

. — 1\
where C,:= C I,cp_x,(— Im). Then C,= <T) I, () Ty o X, (= 1)

by using xz = 1.
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(I1) Since [Wy_;1,, and T(n) fix the space of newforms, we can decompose
the right hand side of (2.5) into a linear combination of traces on spaces of new-
forms.

Now, we introduce some notations. Let I, J, K be subsets of IT such that J &
II— 1 and K< J. The letters s,{ €D, t,d€T—1—]),u,(I€)]), B and
wp(p | M,) mean integers satisfying the following conditions:

0<s <[(y,—1/2], foralll€;

0=t <1[y/2], forallle I —1—];
0<u <y — KO, foralll € J;
0<B=fw;

0<w,<1, for all p | M,.

Moreover for a positive integer k, we put
trk((S,) (tl) (u) B (wp)) trk((S)IEH (tl)lell I-J ’ (ul le]s ‘B (wp)P‘Ml)
tr<[WH 1 T ;S <2k 2 1I P 11 [P 21=5)+1

pIM, ler

R O Lty lu,)) -

lel-1-] leJ
Applying Proposition (A.1) to the right hand side of (2.5), we have

4 tr(R,T(n") ; S)) ikaZ}
In%ﬂ( D < )[tr(RT(n) Vp) ifk=1

=C, X Nxy(—ImZ —D¥* T X

Jen-1iej KT pier tiem—1-;
x 2 O —K»UO—u + I)Z((u—ﬁ-l-l) 2 I @2—-w,)
(up,ey &7 (W) piagy #1My

X tr,((s), () ; (w), B, (w,))
=C, 2 DNy imZ2XZZ(w—+1 2 I 2—w,)

Jjcn-Iief (sp (tp B (wp) pIM,
x L X (= n* I, = KD =, + 1 tr,((s), (&) ; w), B, (w,).
Ky )

We compute the above sum extended over K and (u,). The value of tr,((s), (¢) ;
(u), B, (w,)), is determined by I, J, (s,), (¢), (u,), B, and (w,). In particular, it
does not depend on K. Hence we have

2 Z (_' 1)#1{ ,II! (’)l - K(l) — U, + 1) trk((sl)y (tl) 5 (ul)y .B, (wp))

K<y ),
0<u,Sv,—K()
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= 3 tr,((s), &); @), B8 W) X (DO —KD—u+1)

)e; K<) leJ
0<u,<y, 0<SK(D) <y —u,
uep

= 2 tr((s), @&); W), B, (w,)).
02‘;),2,1),
Combining these results and Proposition (1.15), we can express the trace of

T(#n® on ™ and V"* (k € {£ 1}") as follows:
[ tr(Tw® ; S"™) itk > 2}
tr(TW ; VP itk =1
26 =2""3% gC, X I y(— l,n);‘_i w-8+1 T I @—w,)

co jeo-r'e/ Wp) pipgy #1My

X 2 X 2 trs), @); ), B, (w)),

($P1er tjen—1-7 WD)

where (s,), (¢), (#,), and (w,) run over integers such that

0<s<[(y,—17/2], foralll €1;

0=t < [y/2], foralllell—1—];
0<u, <y, foralll € J;
0<w, <1, for all p | M,.

We consider the level of the space in the trace tr,((s), () ; (w), B, (w,)). If
s; 1 € D) runs over the set (x € Z|0 <z < [(v, —1)/2]}, then 2([(v, — 1) /2]
— ) +1 runs over all odd integers x such that 0 < x <y, Similarly, if
t,(1 € IT— 11— ]) runs over the set {x € Z|0 < x < [y,/2]}, then 2([y,/2] —
t) runs over all even integers x such that 0 < x < v,

For simplicity, we put K := I — I — J. Moreover for a given system of inte-
gers (0),em 0 < o, < v, (I € ID), we set the following notations:
() =€ I|p,is 0dd}, I(0)eyen:= (I € IT|p, is even).
Then we have
Z Z Z trk((sl)y (tl) 5 (ul)’ By (wp))
SPrer U)jex WPy
= X tr ([W,+K]2kT(n) ; S°<2k, 2 W p» l"’))
©)1en0S0,Sy, p‘Ml lenl

ppodd(I€D
opeven(I€ K)

and we also have
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— ’
Z Z - Z ZII=1+]+K'
O=1tJ+K  (0)iem0<0, Sy, 0D e
p0ddUED 0<p, <y,
preven(l€K)

Here, 2.p_;+7+x is the sum extended over all partitions IT=1+ J+ K and
2 =147+ is the sum extended over all partitions [T =1+ J+ K such that I &
H(p)odd and K & H(p)evem

From these results, we obtain the following.

te(T(?) 3 8™ itk > 2
(2.7) R T P
tr(TW) ; V™) ifk=1
=27 ) Z(w—B+1D = I Q2—w)
lenr 8=0 (Wp) par, P1My
wy=0,1
’ —1 k
X 2 Zhererex K1 (T) I x,(= 1) Iy, (= 1m)
0 1en 17 plam, les
0<P;<y;
X tr ([W,+K]2kT(n) ; S°<2k, 2° pg{ P :IeIn lp’)) .

Here, # is a positive integer such that (#, N) = 1 and & is any element of {% 1}".
2 7-147+x is the same meaning as in the above.

(I11) In the following, we shall introduce subspaces S™(2k, N) (0 < N’|N)
and continue the calculation of traces of 7(#°) on S and V" (see the appendix
for the definition of S™(2k, N’)).

In this part (III), we fix the following letters in the formula (2.7): 8, (wp),,wl,
(0D em I, and K. Then we decompose any subset P of IT with respect to (0,),cp
as follows:

P =P, + P,+ P, + P, where for any non-negative integer i,

P(o),=P,:={l€P|p, =i and P(p);, = P, = {l€ P|p, = 1}.
Moreover for a partition II, = A + B + C, we denote

N=N() :=2° 11 p* 11 I” and

piM, lenl
NB,C)=N@:;B,C):=2°Tp> 1 "“Ormni.
piM, lenn-1, €A leB

From Proposition (A.8), the following orthogonal direct sum decomposition
holds.

(2.8) S°Ck, )= @® S*@k, NB, O)| Ry,

Hy=A+B+C
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Here, @HZ=A+B+C is the orthogonal direct sum extended over all partitions I, = A
+ B + C. From Propositions (A.2), (A.3), and (A.6), it follows that each subspace
S*@2k, N(B, O))| Ry,c in the formula (2.8) is stable under the action of 7(x)
(n € Z, prime to N) and W, (I € II).

We shall decompose S*(2k, N(B, ©)) into smaller subspaces by the oper-
ators W, and R,.

We discuss in a little general. Let 6, (! € II) be a non-negative integer. We
put N(p) :=2° I, 2" Mycp I and I1(0),,:={l € 1|6, >2}). Then from
Propositions (A.2), (A.6), and (A.7), we know that S™(2k, N(6)) is stable under
the operators W, = W(lo’) (1 ID R, =R, (le1(,,), and T(n) n € Z,
prime to N(6)) and also that S™(2k, N(6)) has a basis consisting of primitive
forms of conductor N(6). Take a primitive form f in such a basis.

By Proposition (A.2), T(n) commutes with W, (I € II) and R,W\R, (Il €
I1(6),,) as operators on S*(2k, N(6)) for all » € Z, prime to N(6). Hence
fIW, (€D and f|RW,R, (1€ II1(6),,) are constant multiples of f by [M,
Lemma 4.6.12]. Since W, (I € Il) and R, (I € I1(),,) induce C-linear auto-
morphisms of S*(2k, N(6)) of order 2 (Propositions (A.2) and (A.7)), it is easily
seen that f| W, = % f for all I € IT and f|R,W,R, = £ f for all | € II1(6),,.
Hence the following subspace is well-defined: For each = € Map(II, {+ 1}), 0 €
Map(Z1(6),,, {* 1}), we define

fe S*@2k, N©O)) ;
S*e ok, N@) := {fIW, =) f forall | € II,
FIRW,= o)) f| R, for all I € I1(6),,

We remark that if 11(6),, = @, the last condition on I7(f),, has no meaning and
so this subspace depends only on 7.
Then from the above argument, we get the following orthogonal direct sum de-
composition:
(2.9) S*(2k, N(§)) = ® S*7 2k, N()).
7€Map(T,{+1})
o€ Map(I1(8),,,{£1})

We also get that the subspace S™"”(2k, N(6)) has a basis consisting of primi-

tive forms of conductor N(6) for any ¢ € Map(II, {£ 1}) and ¢ € Map(I1(6),,,
{£1}).

Next we study the behavior of the subspaces S*“”(2k, N(6)) under the
twisting operator R, (¢ € II(6),,).

Take any ¢ € I(6),, and f€ S*” @2k, N(0)) for € Map(l, {£ 1})
and ¢ € Map(I1(0),,, {+ 1}). We put g=f| R, Then g€ S*(2k, N(6)) by
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Proposition (A.7). From Proposition (A.2), it follows that for any [/ € II,

N\g,
() (q) if I # q,
o(q)g, if 1 =gq.

gl W, =fIRW, =

Similarly, by using Propositions (A.2) and (A.7), we have for any [ € II(6),,,

1\ _
gIRW,=fIRRW, = <q) alDg, if | # gq,
fIW, =@ f=t(@glR, ifl=q.

Now we put

(l)”’ (), ifl € Il and I#

z_l(l) t= q b q!
a(D), if 1 =gq.
(50w, it 1e m®),, a1

aW:=1\a) 7 o «
(D), if | =gq.

Then the twisting operator R, induces a map S* 2k, N(@)) D fr fIR, €
S*(T"a‘)(Zk, N(6)). Since R, is a C-linear automorphism of S*(Zk, N@)) of
order 2 (by Proposition (A.7)), this map gives an isomorphism from S* 2k,

N@®) to S* ™ 2k, N(6)).

We return to the previous situation. From Proposition (A.5) and (2.9), we

have for a partition I, = A + B + C,

(2.10)
S*(2k, N(B, C)) | Ry,c = T (S*™(2k, N(B, C)) | Ry.0).

r€Map(7,{£1})
g€Map(lT,, +A,{£1))

Moreover, it follows that each subspace S*™ 2k, N(B, C)) | Ry.c in the
formula (2.10) is fixed by all the operators T(#) (n € Z, prime to N) and
W, (I € II) from Propositions (A.2), (A.3), and the remark after the formula (2.9).

Now, by using the above formulas, we shall modify the right hand side of the

formula (2.7). Then we have the following: For all # € Z, prime to N,

I, () I X, (mtr (W, T(w) ; S°(2k, N))
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=0 g, X tr(W, T ;S*@k, NB, C) | Rp,c) (by (2.8)

leI+K M,=A+B+C
= X > I x,
I,=A+B+C r€Map(ll,{£1})) lel+K
ocE€Map(l,,+A,{£1))
X tr(Wy, Tm) ; S**7(2k, N(B, O)) | Rg,c) (by (2.10))
! —1
= II D I (— II I II —
112=/§B+C g ler {T( ) qE€EB+C (Q) ] leK—-(B+C) T( ) leKn(B+C) ( l )
x I %, tr(Tw) ; S** 2k, N(B, O)) | R;.c) (by Propositions (A.2—3))
lel+K
) -1
= II D II (= II ) II —
IIZ=/§B+C T,Zo‘ lel {T( ) geB+C <q> } leK—(B+C) T( ) l1eKn(B+C) ( l )
x I x,m 1 (%) tr(T(w) ; S*“”(2k, N(B, C))) (by Propositions (A.2, A.5)).
leB+C

lel+K

Here, we use the conditions: I S IT(0) ,4q and K S II(0) oyen at the third equélity.
We introduce the following notation: Put IT'= {l € IT| x; # 1} and we
decompose any supset P of II into two pieces as follows.

(2.11) P=P'+P°, P'=pPnm', P'=Pn Jdl—Im.

By using this notation, we can express for a partition II, = A + B + C,

n n n n
=)= 1 () I (7)= 1O (7).
IEII£K Xl(n) lell;I+C( l) ler'+k! <l> leB+C< l> leX+Y ( l>
Here, X :=1I,, + K,, + (K, N A and Y =1, + K, + (I, — (AU K;)).
Since (II,, + A) 2 X, we have for any (7, 0),

S*(T,D’) (2’6, N(B, C)) | RX = S*(z”al)(Zk, N(B, C)),

AN
T(l)anXE y lflEH_X,
T/(l) = 4 l 4 .
(2.12) o(D) I, ey 7 ifle X,
) I\
o e (2), it1e 4, + ) - x,
o) = 4
o) Ty e (é) L iflEX,

where ¢, = 0,, 1, or 0 accordingas I € I — (B+ C), B, or C.
Therefore
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(2.13)

I x,) tr(W,,Tn) ; S"(2k, N))

lel+K

= = S oo I (M u@m ;s @k NB, 0)
II;=A+B+C  t€Map(l,{£1}) leX+Y

o€Map(IT,,+A,{£1})

= X ZC,itr(Tw) ; S* @2k, NB, C)) | Ry,,) (by Proposition (A.5))

I,=A+B+C 1,0
= X ZCtr(Tw) ; S* @2k, N(B, O) | Ry,

I,=A+B+C 7,0
where C; = I, {T(D Hyepec (é)} Mick-ror T Miegnmeo (_T1> and (¢/, 0’)
is determined by the formula (2.12) for any (z, 0).

It is easily shown that if (r, 0) runs over the set Map(lI, {£ 1}) X
Map (I1,, + A, {£ 1}), then also (7, ¢”) runs over the same set. Hence we can
express (r, 0) by (¢/, ¢"). In fact, we easily get the following.

(D T,y (5) fler +1,
, AN
) =] 7D Moaer (), 1€ I,
(), itle Ky, + (K, N A + K,
o), ifle K, + (&, nA.

By applying this results to the formula (2.13) and also replacing the notation
(7/, 6") by (z, 06), we obtain the following formula.
(2.14) For all n € Z_ prime to N,
J X, tr (W, T(w) ; S°(2k, N))
€+
> > (I o) uw@om ;s ek NB, O) | Ry,
lel+K

my=A+B+C  t€Map(l,{x1})
gE€Map(ll,,+A,{£1})

where X=1,, + K, + (K, N A, Y=1I'+ K, + (I, — (AU K;)), and

o0 Mpeypee (2), 1€ I 41,
N
(D) 1L 4 gexsnrc (E) , ifle 131+,
&= 0, if1e K, + (K°N A +K,
OR ifle K, + (K nA,
(), 1€ KN B+ 0.
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(IV) In this part, we fix the letters 8 and (w,,),,!Ml as the part (III) and we con-
sider that the letters (0,),cp, I, and K vary satisfying the conditions in the formu-
la (2.7).

Let (@)),cp be a system of integers satisfying the conditions 0 < @, <y, for
all 1€ 1II. We put N(a) = ZﬁH,,lMlp’”’ II,.,/* and for a non-negative integer
i, I@;:={l€eO|la, =4 and H@),,:={{E I|a =i} Let ¥ be a subset
of I{e), + (), and (%, 6) € Map(T, {£ 1}) X Map(II(a),,, {£ 1}).

Remark. The letter o, was already used at Part I in a different meaning. We
hope that there will be no confusion.

It is easy to see that all the subspaces in the right hand side of the formula
(2.14) are of the form S¥@ED 2k, N(@)) | R, for suitable (), ¥, and (%, 6).

We take any (@) ,c;, ¥, and (%, 6) and fix them for a while. Then we shall
find all (0,),ep, I, K, a partition II, = A+ B+ C, and (r, ) € Map(T, {£ 1})
X Map(IT,, + A, {£ 1}) which satisfy the condition:

S*“(2k, N(B, ) | Ry = S** @k, N(e)) | Ry.

Here, Y :=1I + K, + (I, — (A U K;)).
Obviously, this condition is equivalent to the following three conditions.

o, ifl€ II—1I) + A,

(1) a, =11, ifl € B,

0, ifle C.
(11) r=yY.
(ii1) (z, 0) = (%, 6).

We shall simplify these conditions. First we have

o, =1,,, I, =A,

(2.15) the condition (i) & [H(a)1 =1II,+B, II(la),=1I,+ C.

Hence II,, and A are determined by (a;), and B (resp. C) is a subset of II(a),
(resp. (@) ). Moreover

a, ifl€ a),,,
|2, ifiem,+ B+ C,
%711, itle M, - B,
0, ifle a),— C.
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Next, under the condition (i), we shall discuss conditions for B, C, I, and K
coming from the condition (ii).
Since ¥ S (), + II(a), and (2.15),

r=0'+@NB'+T+W@NO'+¥ +@NB'+¥ +@N 0O
On the other hand, we have
Y=I'+K, + B — (K,nNB"Y+ (C'—(&,nO"Y+ B+ C".

From these facts, we have
(2.16)

the condition (ii)

o {111 — w.ll, Kol — woly B+ C° = wo’
K,NB'=B'—@&NnNB, KnNO'=C'"—@noO.

From this, we have B’ = ¥° N II(a), and C° = ¥’ N II(a), and hence B’
and C° are determined by (@,) and ¥.

Moreover, we know from (2.15), ¥ = (¥nN (), — B)'=w'n
(I} — BY and ¥, = ¥' N (I(@); — C"). Moreover, since K, =K N I, =
KN (I@),+B+C),K,NB=KNB and K,N C=KN C. Hence if B
and C' are given, then I, K,, (KN B)', and (KN C)' are determined by
(o) and V.

Finally, we remark that under the condition (i), the definition domain of & is
equal to those of 0.

Now combining the above results, all (0),ep, I, K, a partition I, = A + B
+ C, and (7, 0) satisfying the condition:

S*(r,m(zk’ N(B, o) IRY — S*(E&)(zk’ N(a)) I RW’

are described in the following form.
(2.17)

a, ifl€ a),,,

2, ifl€a),+ @ + Q) +(Q, + Q,

1, ifl€ @), — (@ + Q,

0, ifl€ ), (Q + Q).
I[:=D,, + D+ D,.

K:=E, +E +E,+E+E,+P +P +P, +P,.
A:=1(a), B:=Q +q°, C:= Q'+ Q..

0=
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T:=7,0:=4.
Here, the meaning of each letter is as follows.

218) Q :=V0'N M), @ := ¥’ N a),.
Q, (resp. Q,) runs over all subsets of IT(@)} (resp. II(@)}).
P} (resp. P;) runs over all subsets of Q; (resp. Q).
Pli=Q — (' NQD, Pi=Q — (TN Q.
Dy ="' N U@y — Q), Eg:=¥' N (@), — Q).
D,,, D}, E,., E;, E;, and E, run over all subsets of (@) 4, a0 ()] —
Q;, (@), even IT(@)3, (@), (@) — Q respectively, where we denote
(), 0= UE M|, 23, @ is odd} and IT() 5 epen = U E T | @, 2 3,
a, is even}.

Now we shall calculate the following.

(2.19) 1\
—#1 ’ -
2 ll‘;I”XI(") (PI)Z!en ZII=I+]+K "71( I, )
0o, <y
X m121M x,(— 1) ,H,X’(_ Im) tr(W,  Tm) ; S°2k, N))

=25y > we (5 0o
= O=I+]+K Kr I, [1 Xp( 1)

(op I,=A+B+C 1,0 pl2M,

X 11 x,(— 1,)( 1 c,) te(T) ; S*° 2k, N(B, O) | Ry).
leJ

lel+K

Here, #, £, 2257, ,.x are the same as in (2.7), {, and Y are the same as in (2.14),
and (7, 0) runs over Map([T, {£ 1}) X Map(TL,, + A, {* 1}).

From the above results, we can express the fromula (2.19) in terms of (a,),
T and (r, 0) as follows.

(2.20) X2 > > E(a), ¥, (z, 0)

(@)ier TSMa)+T(@, _FEMapUl{x1)
0<a,<y, oeMap(T(a)y4,{£1})

X tr(T(n) ; S*“” @2k, N@) | Ry).
Here, £ = E((a), ¥, (z, 0)) is defined by the following:
EESREDIDISIDIDIDISID IS IPH

Qb @ P PO Dsi DY Esv EY EL EY

-1 k
X Ky (T) I x,(=1Ip My (=1p I
I leJ lel+K

pl2n,
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and Q, Q, P!, P}, D,,, D}, E,,, E;, E,, and E, run over the same subsets as

in (2.18) respectively. Moreover I, K, A, B, and C are defined by (2.17), J :=1II

— (I + K),and for such I, K, A, B, and C, {; I € I + K) is defined by (2.14).
Next, we must calculate the value of Z. First, we have

0o~ DIg(-D=x1D I x-1= T ().

plaMy lert+x!

because x is an even character modulo N. Also II,¢;x,(I) = Hcp <—IIL> and

J'= 1@}, o — D3) + TIQ)3, oven — Esy) + UI@); — Ey) + (@)} — Q) —
D)+ (I — Q) —E) + (@' n Q)+ @ n Q.

For simplicity, we put X,y = IL,y, X, and divide the variables Dy, and E,,
as follows: D;, = Dy, + Di,, E,, = E5, + E,,.

Then we have

(2.21) 5=2"*”ZZZZK,(_111>k o x,0) I (h)

Q! @} Da+ DY plaM, gea® M4

ol m @)l Q). G

(eD},+D%+D} ‘qeD}, leD}, “1#qeD}, 1D}, +DI+E}

X 0 <) I o) xC,
1eDy, +D+DI+E} ieD},
where

AV 1= (1)}, 00 — Di) + (@)} — Q) — D;) + (UI@)y — Q) — Ey)
+ (@ — @ NN+ (Q — (T N+ + q,.

B 5 qen(a),Hm—E,‘ (%) qerEI_;“ {<—_QL> (@) <!41L> }

<z (5 1 (=) e (1)

E} qell(@}-E} qeE}
XS TS TSN (F) 1 ().

ES, i1eE}, EY 1€E) E} 1eE} Py 1epd P} 1eP§

We can easily calculate the value of C, as follows:

C4 N C5 8 ‘H + (), (%> )

9EI(@)3; even

C,:= i a+«m 1m (1+(5Y)
1€ ()3, eyent D3+ (T~ Q) 1€Q9+9)
x 1 (1+ (5 ).
1€ ()}, eveat T(Q);

https://doi.org/10.1017/5002776300000458X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000458X

NEWFORMS OF HALF-INTEGRAL WEIGHT 175

Splitting the summand of (2.21) into the factors depending on prime numbers
in the variables @, Q;, D;+, D:+, and Df, we have

[

=20, 22 1 (k0 () xa®e0 1 (D) 1 {(51) 0

ol & 1enl qeQ IeE}
_ k-1

: Dzé»' lerl}§+ {K(l) <—ll_) XZM!(I)O(I) I:#I;Iew (é)}

<z 1 {e0 (51) 020 1 (1)

D3, 1eD,

x 2 11 {x0 () 070 1 (D],

DY 1eDf qe0

where @ := (II' — ¥TY) + U°.
We can easily calculate the each term of the above formula.
Thus we obtain the following.

(2.22) E=Fa), 7, (7, 0) =DH (), T, (z, 0),

el
where

2 X E,(a), T, (z, 0)

1+ T(p), ifp e H(a)g+,even
+ I(e); + (@) — Qy),
1+ (*_;)—1> 0'(1)), ifpe H(a):ls+,even + H(a);’
1Nk
L+ e (51) 2@ r@e (B), it € M@,
+ (I} — @),
_ k-1
_ 1450 (5 1 @00 Ty oe (2), 100 € @3
4 1\ k-1
1460 (51) 1 @7 e (2),  i1p e m@1 0 T,
1+ (%)r(p), ifp€ M)y, N T,
2, if p € (I@); + N} — V",
”(_Tl)’ itpe Q + Q,

and @=UI' = TH + ¥°, Q' =¥’ N M), Q= ¥° N Ia),
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From (2.7), (2.19), (2,20), and (2.22), we obtain the following final result.

ProrosiTioN (2.23).  We assume that 2 < y = ord,(N) £ 4 and also f(x,) = 8
if w=4. Let m be a positive integer prime to N and kK an element of
{+ 13", Then we have

W {tr(T(nZ) :S™Y ik = 2}
tr (7@ ; V™) ifk=1

)
=2 (w—p+D 2 0O C—w,) Z > >
B=0 (wy) biM €Map (T, {x1})
w:-—:’;)l:‘ll 1 0(;!1;:21; v (o), +I(a), oegllap(ll;(a)z,,,(:tm

x 8@, ¥, (v, o) te(Tt) ; S*° (2k, 2° T p™ 1 1) | Ry),

M, el
where @ is the same as i (2.7), @), ={l€l|a,=}(i=0,1), I(a),,
={lell|a 22}). E(a), ¥, (t, 0)) are the constants explicitly determined by
the formula (2.22).
(2) E((ap, ¥, (z, 0)) does not depend on B and (w,).
(3) The value of E((ex), ¥, (z, 0)) is either O or 1. By using the formula (2.22), we
can explicitly find (o), ¥, and (z, 0) such that E((a), T, (7, 0)) = 1. O

We have some comments on this proposition. The subspaces in the right-hand
side of (2.23) (1), S*™”(2k, 2'911,,”‘,1 P ey I°) | Ry's, are orthogonal with each
other (cf. Proposition (A.8)) and these subspaces are spanned by primitive forms.
Moreover, the multiplicities for these subspaces in the right-hand side of the for-
mula of (2.23) are at most 1 if we consider only Kohnen spaces S™k+1/2, N,
%) and VPN, x)g and if M, = 1.

Hence in such a case, from the above proposition and the theory of newforms
of integral weight, we can deduce that S”*(k + 1/2, N, x)x and V**(N, %)k
have an orthogonal C-basis consisting of common eigenforms for all operators
T(n® ((n, N) = 1) which are uniquely determined up to multiplication with
non-zero scalars.

Actually, we also have similar and more exact results for Kohnen spaces in
general cases. See Theorems (3.10—11) for precise statements of results. In next
83, we shall consider only Kohnen spaces and investigate in detail.

§3. The space of newforms and the strong multiplicity one theorem

We keep to the notations in §1 and §2. In this and next sections, we shall
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consider only Kohnen spaces S”*(k +1/2, N, x)x and V**(N, )4
In this case, we can write N =4M and x = (MQ> with an odd positive

integer M and a squarefree positive divisor M, of M (cf. §0(d)). Then we decom-
pose

(3.1) M, =mm,, and x = x'x**, 0 <m,| M, 0 <m,, | M,,, x* = (L”l)
= <L”Ji>

The characters xl, x2+ are defined with modulo 4M,, 4M,, respectively.

Under the above notation, for a positive divisor d of M, and any k£ € {£ 17
we put

(3.2)
Sk +1/2, 4dM,,, x) = S" (k + 1/2, 4dM,,, x"") | Um), if k = 2,

VP @4aM,,, 1= V" 4dM,,, x*x| Um), it k=1,

where " =k - (ﬁk) We can easily check the well-definedness of this definition

by using Proposition (1.28).
For any £ € {+ 1}”, we define the space of “oldforms” by:
& (k+1/2, N, )«

S AS" k+ 1/2, N/p, X)x + S™ (k+ 1/2, N/p, 05| UGH} it k = 2,

p1M,

S AVPIN/D, 0+ VI*WN/D, 0k | UGHY, iftk=1,

1M,

where Zli is the sum extended over all prime divisors p of M,.

Then we denote by &"*(k+ 1/2, N, X)gx the orthogonal complement of
& "™(k+1/2, N, x)x in the space S™ (k+1/2, N, x)x (f k=2) resp.
VPN, 0)g Gf k= 1).

We have the following:

(3.3) For any & € {% 1}”, the mapping f = f| Ulm,) gives an isomorphism

from & (k + 1/2, N, x* ) onto & (k +1/2, N, %), where £’ = /c(Ln'L>

Proof. From the definitions, we can see
Sk +1/2, N, ) ="k +1/2, N, X" | Ulm,).

By using this fact and Proposition (1.28), it is sufficient to prove the inclusion:
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& (k+1/2, N, x| Um) S &k +1/2, N, x)x.

Take any f€ & (k+1/2, N, XV and g € &"™ Wk +1/2, N, 1) e
Then by using Lemma (3.4) (see below), 0 = {f, g = (m) " "*(f| Ulm)),
g| UGm)>. The proof is completed. O

LEmma (3.4). Let p be a prime divisor of My such that x, = 1. For any F,, F,
e Sk+1/2, N, ),

FLU®), F| U@ =p""" <F, Fp.

Proof. By using Proposition (1.18), [U2, Lemma (1.9)], and Proposition (1.27)
in order,

CFLUQ), F,| U@ = <F, | Up) WR)?, F,| Up) Wp)*>
=R IUQWE), F,I UpW®) = p* *(F | Y, F,| Y,)

= p"VNE, F,| YY) = p"VF, Fp.
O

From (3.3), we can extend the definition as follows: For a positive divisor d
of M, and any & € {* 1}", we put

(35) & (k+1/2, 4dM,,, x):=&"" (k +1/2, 4dM,,, x| Ulm,),

where k' = k * (ﬂl>
Now we shall define a hermitian involution w, on S(k + 1/2, N, ).
Let p be an odd prime divisor of N with ord,(N) = 1(&p| M,). From
o\ k+l/2
Proposition (1.29), X, := p”l/z <-p—1~> (%) Y, is a hermitian involution on
Stk+1/2, N, x*.
Then we define an operator on Sk +1/2, N, x) =Sk +1/2, N,

| Umy) by:

. -1 12 — 1 k+1/2 -1
(36) w,:=Ulm) ' X,Um) =p~" (T) (L”;i) Ulm,) " Y, U(m,).

From Lemma (3.4), it is easily shown that this operator W, is a hermitian involu-
tion on S(k+1/2, N, x).
Moreover if (p, m,) = 1, we can simplify w, as follows:

https://doi.org/10.1017/5002776300000458X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000458X

NEWFORMS OF HALF-INTEGRAL WEIGHT 179

_ e (= 1N mm,,
G0 flw,=p (G (M) fly, feSk+1/2,N, ),

by using Proposition (1.20) (1).
We shall also use the operator Ty,1/sn,4) on S(k+1/2, N, ) (cf. §0(d)
and [K]). This operator has the following properties:

ProposiTioN (3.8). Let N = 4M with an odd positive integer M and X an even
character modulo N such that x° = 1. Then Tyi1ony@) is a hermitian operator on
Sk +1/2, N, %) Moreover for any f= 2.,-,a(n)e(nz) € S(k +1/2, N, x)g,

we have the following.

(1) f| Tk+1/2,N,x(4)

k
= 5 fatn + 1@ (SR 2 + 2% a0 ena),

e(=1)*n=0,1(4)
n=>1

where € = x,(— 1) and x,, is the M-primary component of X.
(2) If n is a positive integer prime to N,

Fl oo @ Tovrowa @ = f| Torryonea @ Tisr a8
(3) Ifp is an odd prime divisor of N,
FLUD Ty 1onn(2) @ = 1 Tosro i O U ).
(4) Suppose | € II. Then
FIRT o1jonx@ = fl Ty @R,
(5) Let m be an odd positive integer.
Fl Tosrone@ = Fl Tosryome @)
(6) For any £ € (£ 137, T\, 0nx(4) fizes the subspaces UN ; %), VN ; X)x,
S™ Wk +1/2, N, ) and V"*(N, %) x.

Proof. See [K, §3] for proofs of the hermitian property and the assertion (1).
The assertion (2) follows from straightforward computation in the abstract Hecke
algebra. The assertions (3), (4), and (5) are easily verified by checking the coinci-
dence of the Fourier coefficients of the both sides (cf. (1)). From (1), we have for
any (o, € Q'WN, ), h'(0; 1) | Ty 1o @ = 300 (0 ; 12).

Hence Tyy1/0n, (@) fixes UWN ; x). Since Ty 1/5n,(4) is hermitian, V(N ; x)g
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is also fixed. The rest of the assertion (6) follows from the assertion (4). |
Now we can state the main results of this paper.

THEOREM (3.9). Let p be a prime divisor p of N with ord, (N) =1 and k €
{£ 1. The operators UG, w,, and T ,,1on, @ fix &k +1/2, N, x)y.
Moreover we have U@p?) = — p"‘lw,, m &k +1/2, N, 2. U

THEOREM (3.10). Let the notations be the same as above and let £ € {+ 137
Then, in particular, we suppose that ord,(N) = 2.
(1) We have the following divect sum decomposition :

[S””‘(k +1/2,N, 0)x ifk=> 2}

, = @ &k +1/2, 4dM,,, x| U,
VPN, 0 ifk =1

0<e,d
ed|M;

where Dy, 4 is the sum extended over all pairs (e, d) of positive divisors of M, such
ed|M,

that ed | M,.
(2) Let n be a posisive integer prime to N. Then T,y (07 fixes the space
&k +1/2, N, X) g and the trace is given by the following :

tr(Tysron, ) ; &k +1/2, N, x)p)

= X Elap, ¥, (r, 0)) tr(T(n) ; S*(M)(Zk, M 1 la’> | Rq,> ,
(a),¥,(r,0)) €P lenl
where the notations are as follows : Z«a,),w,(r,o))e p 1S the sum extended over all elements

of the following set :

(a), U, (7, 0)) ; () = (@), is a system of integers
P:= 1 suchthat0 < o, L v, = ord,(N) forany l € II,
Uc lllw,+ Ia),, t € Map(I, {£ 1}), 0 € Map(1(@),,, {£ 1})

o), ={leldlag=0G=01, 0@, =lcd|la=22}, E(a), ¥, (z, 0)
arve the constants explicitly determined by the formula (2.22) which arve either O or 1
(¢f. Proposition (2.23)). ]

THEOREM (3.11) Let the notations be the same as in Theovem (3.10).
(1) The space @ (k+ 1/2, N, x)x has an orthogonal C-basis consisting of
common eigenforms for all opevators Typron, @2 @ : prime, p ¥ M) and U@p®) (¢ :

prime, p | M), which are uniquely determined up to multiplication with non-zevo complex
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numbers. If f is such an eigenform and A, the eigenvalue of f with respect to
T,,H/Z,N,x(pz) (¥ M) resp. UGD (p| M), then there exist a positive divisor M’ of
M,, and a primitive form (of conductor M\M'") F € S°k, M, M"), which is uniquely
determined and satisfies the following : For a prime p,

FIT@P) = ,Fif(p, M) =1, and F|UP) = A,Fifp| M,.

Moreover 2, = £ 27" for any prime divisor p of M.

(2) (The strong multiplicity one theovem.) Let f, g be non-zevo elements of & (k
+1/2, N, X)x. If f and g ave common eigenforms of Tk+1/2,N,x(p2) with the same
eigenvalue for all prime numbers p prime to some integer A, then Cf = Cg. O

Remark. We have 4, = 0 for all primes p dividing M,,. On the other hand,
there exists a case that F | U(p) # 0 for a certain prime p | M,,. Therefore we
cannot claim that F| U(p) = A,F for any prime p | M,, in general cases. We shall
discuss this topic in the next section.

Proof of Theorem (3.9). Observing (3.3), the definition (3.6), and Proposition
(3.8) (3), we see that it is enough to check these statements for the case of m; = 1.

From (3.8) ((3), (5), and (6)), T(4) = Ty,1/2x,(4) fixes the space of old forms
& =&"(k+1/2, N, x)g Since T(4) is hermitian, 8" = &"*(k + 1/2, N,
X)g is also fixed by T(4).

Now we shall check the statement for U(p) and w, only for the case of
k = 2, since the proof for the case of K = 1 is completely similar to that.

For w,, it is also enough to show that w, fixes &"" Hence it is sufficient to
prove that for any prime divisor ¢ of M;, ¥, maps S™(k+1/2, N/q, x)x and
S™(k+1/2,N/q, )| U@ to &*

If ¢g#p,Y, is an automorphism of S™k+1/2, N/q, x)g (from (1.28)
(3)). Moreover from (1.20) (1), f| U(g) ¥, = f| Y,U(g") for any f € S(k +1/2,
N, x). Hence we get the assertion for g # p.

Next suppose ¢ = p. Take any f= 2, ,a(me(nz) € S**(k+1/2, N/p,
x)g (€ S(k+1/2, N, x)). From (1.25-26), we have

1 >—k—1/2

18, = (S8 s, + (55 2 at (2) etna.

‘D nx=1

Here, we note that x (p) is meaningful because x, = 1.
Since f € S(k+1/2, N/p, %), f| Wp) = f| 6, and then
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(3.12)

A RS z (S22) 4 ratn + p'atnsp") etna

—1 “ke1z —k+3/2 ~ 2 9
:< w ) » XD ) Torromn @) — FL U@}

(cf. [Sh 1, Theorem (1.7)). This shows f| ¥, € &,

Next applying Y, on both sides of (3.12) and observing Y;,Z = <:_£1“) p, we
get

2 = 2 1\ ki
(313)  FIUGYY, = f| Tuuanna @Y, = (52) 072001,

This shows f| U(?) Y, &

We must show the relation between U(p®) and w,. We use the trace operator
Tr,f,’,p :Sk+1/2, N, x)— Sk +1/2, N/p, x) (adjoint to the inclusion map).
See Appendix 2 for its definition and properties.

Try,, maps S**(k+1/2, N, x)x to S™(k + 1/2, N/p, x) (cf. Proposi-
tion (A.10)). Let f € &"* Since f is orthogonal to S™*(k+1/2, N/p, %)
fITry, = 0.

A system of representatives for A,(N, x) \4,(N/p, 3) is formed by the
elements ((1) (1))* and r;k ((1) Zl>*(z € Z/pZ), where we choose an element 7,

such that

o 1) modN/p),
SL,(Z) 7, = 0_1> o
1 0 mod p).

Hence, 0 = f| TrAA,],p =+ 1)-1<f+ Diez/pz 7l r;k ( %) 11)*>

On the other hand, we have from (1.19),
= L k/2-3/4 w(1 1\* . k/2—3/4
FIW® U@ =p = fln =—p /-
i€Z/Z 01

We already proved that ¥, is an augomorphism of &, By replacing f with f]| Y,,
— V1 Y, = PR UG W) U(p). The last assertion is easily shown
from this and Proposition (1.18). ]
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Proof of Theovem (3.10). From (1.20) (3) and (1.8), we can see that g™ =
&™(k +1/2, N, x)x is fixed by the operators T(n") = Tkﬂ,w,x(nz)((n, N =1).
Since these operators are hermitian, we have ™ =& (k + 1/2, N, x)g is
also fixed by the operators Ty, oy, (#°) for all # € Z, with (#, N) = 1.

Now we assume m,; = 1 for a while and we shall give a proof for this case,
first. The general cases are dealt with after that.

We shall prove the statements (1) and (2) by using induction with respect to
the number of prime divisors of M, (= @).

Suppose @ = 0. Since then 8" = {0}, (1) is trivial and (2) is just the Prop-
osition (2.23).

Next we suppose that @ > 0 and that the assertions (1) and (2) hold good if
the number of prime divisors of M; < a — 1 (the assumption of induction).

For any positive divisor d of M, with d < M,, @"*(k + 1/2, 4dM,., x)«
has a C-basis $B, consisting of common eigenforms for all operators
Tk+1/2,4dM2+,x(n2) (n € Z, prime to 4dM,,). From the assumption of induction, the
system of eigenvalues for each element in B, corresponds to a primitive form of
weight 2k, trivial character, and conductor of the form dM’ (0 < M’ | M,,). By
using the strong multiplicity one theorem of weight 2k (cf. [M, Theorem 4.6.19]),
we have B, L B,, for any distinct divisors d, and d,.

Moreover for any d(0 < d|M,, d+# M,) and f € B, any element of the
space A4 (f) = 2oy Cf| U(e”) has the same eigenvalues as those of f for
all operators THI/Z_N'x(nz) ((n, N) = 1) (cf. (1.20) (3)). Hence the spaces & (f)
(f € B,) are orthogonal to each other, from the strong multiplicity one theorem of
weight 2k (cf. [M, Theorem 4.6.19]) and the later half of the assertion of induction.

From these results and the assumption of induction, we get

&= T @+ 1/2,4dMy, 0| U
0<f1<M:

= @ | = @U+1/24dM,,, 04 U]
0<d|M; “0<el(My/d)
d+M;

= o (e = cruedl
0<d|My \peg 0<elUMy/D
d#=M,
Therefore it is sufficient to prove that the elements f| Ue®) (0 < e| (M, /d)) are
linearly independent for each f € &,
Let d be a positive divisor of M, with d ¥ M, and f an element of $,. Then
we can take a prime p such that d | (M,/p). Applying the assumption of induction
to (M,/p), we can see that the elements f| U(e”®), 0 < ¢’ | (M, /pd) are linearly
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independent.
We need to decompose the space {f| U(e)?*;0 < ¢| M,/ @d)> with re-
spect to prime divisors of M,/ (pd). If M,/ (pd) = 1, the decomposition is trivial.
Suppose M,/ (pd) # 1. Denote the set of all prime divisors of M,/ (pd) by
P =1{q,...,q). Forany s(1 < s < 1), put

A=l UE?50< ¢ ] (g a) e

From (3.12-13), we have the following:
(3.14) Let ¢ € # and h any element of S$™*(k +1/2, N/q, x)4 (resp. V"*(N/
q, X)g) if k=2 (resp. k = 1). Then

hl )711 = cl] {hl Tk+1/2,N/q,x(q2) - h’l U(qz)},
hl U(qz) I,ll = hl Tk+1/2,N/q,x(q2) Yq - cqqZk_zhy

_ <— 1>_k_1/2 —k+3/2

where ¢, = (—— q
q

Since f is an eigenform of THUZ’N/M(qz) for any ¢ € %, Y, preserves the

space {f, f| U(q2)>C from the above. By using (1.20) (1), we also see that all

operators qu(l <7 < s) fix the space &%,

x(@.

Since these Y, (¢ € %) commute with each other, we have the decomposition
into common eigen subspaces.
(3.15) Let s be an integer such that 1 < s < f. We have
A= D (o),

oseMap({qy,....q5h,{£1})

, , -1 1/2
Aoy = [x ed;z|Y, = oq) {<T) q] x for all ¢ € {g,,.. .,qs}]-
Then we claim: dimae5(0,) =1 for all s=1,...,t and p, € Map(q,, . ..,q,
{£ 1)),
We inductively prove this claim.
Let s be an integer with 1 < s <t Assume that the above claims for all

So (5o < s — 1) hold good. Then o, =6 , {d\_ (o,) B A\ (o,_) | Ulg)?.

Ps-1
Here, p,_, runs over Map({q,, ..., ¢,_;}, {£ 1}). We can take an element g such
that &;_;(o,_;) = Cg by the assumption of induction. In particular, if s = 1, we
take g = f.

Since Ulgy)” commutes with all ¥,’s(g € {q,,...,q;_}) (cf. Proposition(1.20)
_ 172
(1), hlY,= ps_l(q){<7l) q] h for any q€ {q,...,q,_,} and any A€

A (o,_) DA, (o,_,) | Ulg,)?. Moreover we can see that f and g have the same
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eigenvalue A on Tkﬂ,z‘N/qs,x(qsz) from Proposition (1.8) and Proposition (1.20) (3).
Now applying (3.14) to ¢, € ¥ and g,

2 2k—2
] Y, gl U@)'Y,) = (g gl U@)" ( @l = ’).
= ¢, - cqsl

Since the characteristic polynomial of this matrix is X° — (q—l) q,, there are two
S

distinct eigen subspaces of o (o,_)) D ,_,(0,_) | Ug,)? with respect to Y,
and both of them are one-dimensional. Thus, the proof of the claim is completed.[]

In either case, we get from (1.24) (1) and the above,

d:=flUE;0<el (My/d)>c =B (o) + 4(0) | UpH?},

where o (in the direct sum) runs over Map(®?, {£ 1}), # = the set of all prime
divisors of M,/ (pd) and for any p € Map(®?, {£ 1}),

Ap) = {xed;ﬂ Y'q:p(q){(:q—l) q}mx for any q € ﬁ’}.

Since dimg# (0) = 1, we can take a basis g, = 22,5 ,a,(n)e(nz) of (o) for
eachp € {+ 1)7.

Suppose that g, and g,,| U(pz) are linearly dependent. Then we may put that
g, l U(pz) =ag, with 0 # a € C. g, and f have the same eigenvalue A, on
Tk+1/z,N/p,x(P2)' Then
(3.16)

(1,, —a—x@ <(~—1)k”-) p"“l) a,(n) = p*a,(n/p?) for all n € Z

p 0 o +

(cf. [Sh 1, (1.7)]).

We have the following lemma.

LemMa (3.17).  Let d be a positive divisor of My such that X, = 1 for any prime
p dividing d. Then for each non-zero element f = 2., ,a(n)e(nz) € Stk + 1/2,
N, %), there exists n € Z, such that (n, d) = 1 and a(n) + 0.

Proof. We use an induction on the number # of prime divisors of d. If d = 1,

the assertion is trivial.
Suppose 7 > 0. We choose and fix a prime divisor p of d. We consider f| R(j)2
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€ S(k+1/2, pN, x). Let us suppose f| R(_ﬁ)z =0san) =0foralln € Z,
prime to p. Then since pz |p‘f(x (ﬁ)> X N, we have f = 0 (cf. Proposition (1.10))
which is a contradiction. Hence f| R(;) 20 Applying the assumption of the
induction to d/p and f| R(F)Z, there exists # € Z, such that (%, d/p) = 1 and
a(n) (%)2 # 0. Such # is also prime to p and @(#) # 0. Then proof of Lemma is
completed. |

From the above, we can take #’ € Z_ such that (@', M,) =1 and a,() # 0.
Since g, is a common eigenform of Y, (g € #), we get (%/) = p(g) (“_‘qi) for all
q € P (ci. Proposition (1.29)). Then

—_— kot
(3.18) A=a+ x @) (L%) .

Substituting this into (3.16),

/

(3.19) x(®) (—_51)" ((ﬂp—) - (%)) a,(n) = p*a,(n/p?) for all n € Z,.

Set n = p’w’. By using aa,(n) = a,(p’n’) and a,(n’) # 0, we have

- (=D
(3.20) a= 1) () o
From (3.18) and this,
(3.21) | ,{p[ = p" +pk‘1 > Zj)k—l/z,

We note that A, is an eigenvalue of f and so 4, is an eigenvalue of a primitive
form of weight 2k, trivial character, and conductor dM’ (0 < M’ | M,,) from the
assumption of induction. Hence (3.21) contradicts Deligne's theorem. Thus we see
that g, and g, | U(®) are linearly independent and the elements f| U(e%), 0 < e
| (M,/d), are also linearly independent. This prove the assertion (1).

Next we prove the assertion (2). All positive divisors d of M, are uniquely

expressed as d = Hlipw", w, = 0,1. Then from Proposition (1.20) (3), (1.28),
and the assertion (1), we have for all # € Z, prime to N,
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{tr(T(nz) i S™Ue+1/2, N, 0)p, ifk> 2]

tr (TG ; VPN, 20, ifk=1
= 2 0 @2- w,,)tr(T(nZ) ; @ﬂ”‘(k +1/2,410,,, p* M,,, x) )
(W) piagy PIM, K
w,=0,1

From the assumption of induction, we can express the trace tr (T(n®) ;
"™ (k+1/2,4 I, 1, " M, x)) with the formula in the assertion (2) for any
I, p** < M,. Then it is easily seen that the range P of the sums in that ex-
pression formula does not depend on (w,),,,. Moreover we can check that the
coefficients Z((a,)), ¥, (z, 0)) in that expression formula also do not depend on
(wP)MMr In fact, observing the definition (2.22) of the values of Z((a), ¥,
(7, 0)), it is possible that only the value of x;,(p) may depend on (), where
d =1L, p".

But its value does not depend on (wp)li, either. Because we have X,, = X,
= Xau, from the assumption m; = 1.

Thus we can take tr(7(%) ; &™*(k+ 1/2, N, x),) out of the formula of
Proposition (2.23) (1) by using these above facts. That is the assertion (2).

Now we shall deal with the general cases.

By using Proposition (1.28) (3) and the definition (3.5), the assertion (1) for
the general cases is easily deduced from those for the case of m, = 1.

Next we consider the assertion (2). It follows from (1.20) (3) and (3.3) that for
each n € Z, prime to N,

tr(T?) ;8™ (k+1/2, N, ) = tr(TG™ : & (k+1/2, N, ¥ ),
where k' =k * (ﬂL)

We already proved that the latter trace is expressed with the formula in the
assertion (2). In that expression, the range P of the sums does not depend on k'
and X2+- Therefore, for the proof, it is enough to show that all coefficients Z((e,),
¥, (r, 0)), determined by the formula (2.22), for £" and X2+ coincide with those
for £ and yx.

We easily check it in case by case, by observing the fact: For any p € I,

K ® = €70 ® = 2O G, @ = (51) G, ®-

Thus we completed the proof of Theorem (3.10). 1
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Proof of Theorem (3.11). For any p € II and any f= 2,.a(n)e(nz) €
&k +1/2, N, x)x we see that f| Rj = f and hence a(n) = 0 if p | n. There-
fore f| U(p*) = 0 for any prime p dividing M,,. Thus the operators T¢% =
Tk+1/2,N,x(p2) (p: prime, p ¥ M) and U(D®) (p : prime, p| M) fix the space & =
& (k+1/2, N, %)x and commute with each other (cf. (3.8-10)). Moreover all
these operators are hermitian on &"*. Form these facts, & has an orthogonal
C-basis consisting of common eigenforms for all operators T7(p%)(» ¥ M) and
U@ @l M.

Then from Theorem (3.10), the strong multiplicity one theorem of integral
weight ([M, Theorem 4.6.19]), and the following fact: The subspace S*(M)(Zk, M,
,.,%) | Ry in the right-hand side of (3.10) (2) are orthogonal with each other
(cf. Proposition (A.8)), the uniqueness property (stated in (1)) of such common
eigenforms and also the assertion (2) follow.

Let f be any element of such a basis consisting of common eigenforms. Set its
eigenvalues as follows: f| T(%) = A,f (p: prime, p & M) resp. f] U@ph = Af (p:
prime, p| M). We know that A, =0 if ‘t)]MzJr and also 4, = ipk_l if j)lM1
(cf. Theorem (3.9)). Moreover the system of eigenvalues UI, ;p X N} corresponds
to a certain primitive form F of weight 2k, character trivial, and conductor
MM’ (0 < M’| M,,). This follows from Theorem (3.10).

Now we shall prove that 4, and 4, (any ﬁl M,) also become the eigenvalues of
F with respect to Hecke operators.

First, we claim the following: There exists a fundamental discriminant D such
that e(—1)*D=1D| >0 and a( D|) # 0. Here we put ¢ = %,(— 1) for sim-
plicity.

This claim follows from [Sh 1, Theorem 1.7}, Proposition (3.8) (1), and the de-
finition of Kohnen space.

We take such a fundamental discriminant D. Then a formal computation as
like [Sh 1, p.452] shows that

(3.22) = a(D|nHn°

n=1

= (DD I (1 =, ()61 (1= 267 + 2w

where x° <Q> is considered as a character modulo MD.

Put
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fim {e(— 1D, if D=1 (mod4) ;
e(—1)*D/4, it D=0 (mod4).

Then tis a squarefree positive integer.
We also define a cusp form S,(f) := 20, ,4,(n)e(nz) by:

(3.23) S AN = X a(tnz)n_s-L(s —k +1, X(hﬁ))

n=1 n=>1

(— 't

where x ( > is considered as a character modulo 4M¢.

Then S,(f) € S(@2k, 2M) (cf. [C, Theorem 4.3] if kK = 2 and [C, Corollary
4.10] if k = 1). Now we divide into two cases.

Case 1. We suppose that D = 1(mod 4). Then

(3.24)
ZAmn =al) 1 (1 — A0+ <L>2p2k_l_zs)_l (1= ¢, (2277
= ) 4 M kx ’

where ¢, ,(2) = x,,(2) (g)

Hence S,(f) € Sk, 2M) is a common eigenform of all operators T(p) (p:
prime, p X 2M) and U(p) (p: prime, p| M) and its eigenvalue is 4, for each odd
prime p.

The primitive form F € S°(2k, M;M’) has the same eigenvalues A, with
respect to all operators T(p) (p ¥ 2M). From this and the standard theory of new-
forms of integral weight, we have the following expression:

(3.25) S,(f) =% a,F(e2), a, € C.
Here, 2./ is the sum extended over all positive divisors e of 2M,, /M’.

For simplicity, we put F(z) = 22, ,c(n)e(nz) and for each prime p, g, is the
eigenvalue of F with respect to T(p) (p & M,M") resp. Up) (p | M,M").

From (3.25), we have A,(n) = 2 a,c(n/e) for all n € Z,. Hence from (3.24),

2 -1 .
(3.26) a® 1l (1 -0+ (JJI’?) p“‘“““) (1 — ¢, @27
?
— (Z/aee-s) ma— ﬂpp_s + 1M1M’(p)p2k_l_2s)_l'
¢ »

Here 1, 4 is the trivial character modulo M, M".
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We can easily deduce from this identity that A, =y, and 4, = p, for any
prime divisor p of M,.

Case 2. We suppose that D = 0 (mod 4). Then A,(n) = 0 for each odd inte-
ger n € Z, because of the definition of Kohnen space. On the other hand, we get

for each n€Z, that A,Q2n) = Zo,,a( D|n’/d°) xyu(d) <%)dk_l, because
_ k
X" <(—~1~)—t> =Xy (2) as characters modulo MD.

Therefore

2 -1
a( DD I (1= 47 + (L) %) = £ A@wn™ =2 A,n™.
? nx1 n>1
By the same method as in the case 1, we can deduce from this identity that A, and
A, (any p | M,) also become the eigenvalues of F with respect to Hecke operators
in this case.
Thus we completed the proof of Theorem (3.11). O

§4. A more elaborate decomposition

We keep to the notations in §1-83. We shall also consider only Kohnen
spaces in this section.

As we proved in Theorems (3.10) and (3.11), &"*(k + 1/2, N, x), may
have an eigenform corresponding to a primitive form F € S°(2k, M,M")
(M’ | M,, and M’ < M,,). Then, under a certain assumption (cf. (4.1)), we shall
define a subspace of &k +1/2,N, %) which corresponds to only primitive
forms of conductor M = M;M,,, and give a more elaborate decomposition of
Kohnen spaces. The author believes that there exists a similar decomposition with-
out any assumptions. But we cannot prove it yet. We shall discuss this topic at the
end of this section.

Now we assume the following in this section.

AssuMpTION (4.1). The conductor of x divides 4M,, ie, x = x' = (Zn‘L>

(cf. (3.1) for the notations).

We prepare some notations. For any &£ € {# 1}7 and any [ € II, we define
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operators by ¢ 1= % (R} + k(DR) € R and e := I, )"

Let (,),c; be a system of integers such that 0 < o, < v, = ord,(N) for all
I € II. For simplicity, put M,> :=1,.; I*, N(@ =4MM,”, D = [I(a),, E =
II(@),, and F = II(@),, (cf. §2(IV) for the definitions of [T(e); and II(a),, (0 < ¢
€ 7)). We note that every positive divisor of M,, is of the form M,> for some
(@) 1en-

We choose and fix £ € {+ 1} until the end of this section. Then &**" =
"™ (k +1/2, N, X)x is well-defined. Here £ |, € {% 1}7 is the restriction
of k to F. Put

(4-2) B — B(a) f= @ @ﬂ,ﬂF(k + 1/2, N(a)’ X)K[ U(dz),

0<allp

where I, :=1II,.p I (cf. the beginning of §1).
From Theorem (3.10), we know

S"™ ke +1/2, N@) -1, ) if k=2,

(4.3) BC { o
VPPN 1, 0k k=1,

and also have that &' has a C-basis B consisting of common eigenforms for all
operators T(n) = T k+1/z'ﬁ(a)'x(7’l2) neZ, @ Na)=1) and Up") (P € E)
(cf. (3.11)). Hence we can write as follows:

(4.4) B=® B, B,:= & Cf|lUG.

fe® o<ally

We shall consider the hermitian involution w, on S(k + 1/2, N 1,
x) for each p € D+ E (cf. (3.6)). Then we can claim the following: For each

f € B, the space B, can be decomposed into common eigen subspaces with respect
tow,p € D+ E);

(45) B,= @ B,(0), B,(p) :={g € B,; glw,=pp)gforalp € D+ E},
0
where o runs over {% 1”*F in the direct sum.
D+E

Moreover we have dimg B,(0) <1 for each f € B and p € {£ 1}, and
also have an equivalence relation:

(4.6) dime B,(0) =1 flw, = pp) f for all p € E.
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Proof of the claim. We can prove the following fact in the same way as the
proof of Theorem (3.10):

B,= @ B0, Bio):=1{g€B,;glw, =0 ()g for all p € D}

o’ e{x1?

(cf. the claim after (3.15)).

Next we consider any prime p in E. Since f is a common eigenform of U(pz)
(p € E), we get f| w, = £ f from Theorem (3.9).

Each operator U(g®) (g € D) commutes with any Y, (p € E) on the space
Stk +1/2, N(@) « 1, x) (cf. (1.24) (1)). Hence we have for any p € E and
a (0 < a[ ID),

-1

£ U@ w, =™ ( -

k+1/2 m 5 2
) (5 1 U@y, = £lw, U@
(cf. (3.7)). Therefore any element of B, is a common eigenform for w, (p € E)
with the same eigenvalues as f The claim follows from these results. O

From (4.3), we know that B is contained in Stk +1/2, N, x)x Gf kK = 2)
resp. VAN ; x) (if k =1). Applying the operator e; to the both sides, we see
that

Stk+1/2, N, x)xler=8""(k +1/2, N, x)y, ifk=>2,

B[e,",g{ :
VIN; gleg=V"*\N, X)g ifk=1.

Each generator f| U(aYes(f € B, 0 < al|l,) of B] ¢} is a common eigenform for
7% ((n, N) = 1) with the same eigenvalues as f The system of eigenvalues of f
corresponds to a primitive form in S°@k, MM (0O < M| Mz(f)) (cf. Theorem
(3.10)). Then it follows that B| e}y € & (k + 1/2, N, x), from Theorem (3.10)
and the strong multiplicity one theorem of weight 2k (cf. [M, Theorem 4.6.19]).

We shall closely study B|ey. We fix f€ B and o € {+ 1}”** for a while.
Take any g = 2., b(n)e(nz) € B,(p). Then from Proposition (1.29), we can see

that
_ k
4.7 b(n) = 0 if <ﬁ> = - <~(—-Il~%> o(q) for some g € D + E.
q q
. . (— Dm
Suppose that there exists ¢ € D + E such that k(¢) = — ‘**—“-Lq o0(q).

Then for such a prime ¢, we get that b(n) = 0 if (%) = k(g). Hence
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gl I =273 pm) T [(g—)z + k(g (g)] e(nz) = 0.

qeED+E n>1 qeD+E

Since  U(% (I € D) commutes with R, (g € F) (cf. (1.20)), each operator
e, (q € F) trivially acts on B and so g| ey = 0.
Thus we proved that

- _ ((=D'm;
B,(0) | e = {0} unless k = ( )-p on D+ E.

Moreover B,(0) | ey is contained in a common eigen subspace for 7w (n, N) = 1)
with the same eigenvalues as f.

_ k
Put £ := the restriction of K(M> to D+ E (€ {£+ 1)) and (%)
is the following condition for any element & € %:
(%) hlw,=g@p)h foralp€EE,

where w, (p € E) is the hermitian involution on S(k + 1/2, N(®), x).

Remark. For p € E, w,on S(k+1/2, N(a), x) becomes the restriction of
those on S(k + 1/2, N(@) -1p, x) (see the definition of w,).

Then from the above, we have a decomposition

Bley= & B,®|e,.
fERB.f: (k)

Here f in the direct sum runs over all elements of B satisfying the condition ().

The operator ey is injective on B,(£). In fact, let us assume g| ey = 0 for
&= 2>, b(me(nz) € B,(£). Then b(n) =0 for all » € Z, prime to I ,cp.zq
(cf. (4.7)). From this and Lemma (3.17), we have g = 0.

Now we define a subspace of S by:

vt =Ghy (k4 1/2, N@), 1)«
={ge & k+1/2, N@, Yg;glw,=i&@p)g forall p € E}.

This space is generated by the set {f € B ; f satisfies the condition (%)},
Hence we have:
(4.8) For any n € Z_ prime to N,

tr(T(n*) ;Blep) = X (T ;B,®) = = tr(TWw’);CY

fEB,.f: (k) feB.f: ()

= tr(T(") ; So" (k + 172, N(@), x)0-
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We gave the expression of tr(7(d®) ; ") ((n, N(@) = 1) in terms of
primitive forms of weight 2k (cf. Theorem (3.10)). Let us find primitive forms of
weight 2k which correspond to the subspace 62',2“?.

Take any f € B satisfying (*). From Theorem (3.9), f| U(p) = — p*'k(p) f
for all p € E. Let g be the primitive form of weight 2k which corresponds to f (cf.
(3.10-11)). So gl U®p) = — p*'k(p)g (p € E). By using [M, Corollary 4.6.18],
we have g | W(p) = £(p) g for all p € E. Hence @2;2” corresponds to all such g's.

From the expression of tr(7(? ; &"*"*
deduce the following expression:

(4.9) For any n € Z_ prime to N(w),

) and Proposition (A.2) (3), we can

tr(T(®) ; 82" (k + 1/2, N(@), x)x)
= > 0 5B, ¥, (¢, 6))

(B, W, (r",0"))eP’ qeF

x (T ; S*77 2k, Ml LI | Ry,
leF

where the notations are as follows: 24,y .(v.oep 1S the sum extended over all
elements of the following set:

B, ¥, (z/, 3)) ; (B) = (B),cr is a system of integers
P'i=1 such that 0 £ 3, < a0, for any [ € F, .
U S FB),+ FP),, ' € Map(F, {£1}), 0’ € Map(F(B),,, {£1})

F@B,={leF|B, =1 for i=0,1 and FR),, =l EF|B,=22}. 1, =11, 1
Each E,((B), ¥, (¢/, 6")) is the constant determined by (2.22). ¥ € {£ 17 s
the following extension of 7":7'(]) = v'(D), £() I oy (é) or 1 according to

I € F, E, or D. Finally,

f e s*(2k, My 1M
S*(?’,y) (2k ML 1 lB'> - IeF
PUUE er ’ fIW, =) fforalll € II,
FIRW, =o' (Df| R, for all | € F(B),,

We extend each 8, (I € F) to IT as follows: 8, = 8,, 1, or 0 according to [ €
F, E, or D. Then we have II(),, = F(B),,. Finally replacing %/, ¢’ with 7, 0,
and combining (4.8) with (4.9), we can obtain an expression of tr(7(s% : B
| ;) ((n, N) = 1) in terms of primitive forms of weight 2.
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(4.10) For n € Z, prime to N,
tr(T(n®) ; Blep)

_ 5 1 % 1+ (@) qu%@ + (@i lgﬂ <%>>

B, ¥ ,(r,0))eP” q&D

X I 5,(B), ¥, (¢lp, oNtr(T() ; S* 2k, MM, | Ry,
qeF

where Z((B,),W’,(r,m)eP” is the sum extended over all elements of the following set:

(B, ¥, (z, 0)); (B) = (B),cr Is a system of integers
suchthat 0 < 3, < ¢, forany [E F, T S FB), + F(B,,
t€MapUI, (£ 1)), 6 € MapUI(B),,, (£ 1})

= Map(F(®),,, {+1})

7|p is the restriction of 7 to F, Z,((8), ¥, (zlp, 0) (g € F) are the same as in
(4.9) and S*9 2k, Mle(f)) are the same as in §2(III) (or Proposition (2.23)).

We claim that the coefficient of tr(T(n) ; S**” 2k, M\M,?) | R,) in (4.10)
equals to those in Theorem (3.10) (2) for any (8), ¥, (z, 0), ie.,

1 1 = q = ,
@iy I3+ Ly (1+ i@ 1 (7)) 15, ¥, ¢l o)

qeD

= 5B e, T, (z, 0)).

Here, the right-hand side is the constant with respect to " (k + 1/2, N, x)x
determined by (2.22).
This claim is easily verified in case by case from the facts: X = X,u,,
I'=9,and II’°= 1.
Observing IT(B), = D + F(B), and II(B), = E + F(B),, we can see the fol-
lowing from (4.11).
(4.12) The expression (4.10) of tr (T(#®) ; B| ef) ((n, N) = 1) is a part of the ex-
pression (3.11) (2) of tr(T(% ; 8" (k + 1/2, N, ).
Now we can state a more elaborate decomposition.
Put
R* =Rk +1/2,N, )= > B9|é.
(ap) # (v
Here, () in the sum runs over all systems of integers such that 0 < o, <y, (I € II)
and (@) ,cp # V) ,eg. We denote by ™ = R**(k + 1/2, N, x)g the orthogon-
al complement of ¥k + 1/2, N, x)gin & “(k +1/2, N, x)y.
Obviously, ®*™ and ”” are stable under the action of 7% ((n, N) = 1).
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THEOREM (4.13). Let the notations be the same as above and let k € {£ 17
Then, n particular, we suppose that ord,(N) = 2. Under the assumption (4.1), we
have the following.

(1) For any n € Z_. prime to N,

tr(Tyyrom (n) s R (k+1/2, N, 2)p)
= X b3 B, D), I+, (t,0)

I+J+K=IW), reMap(l,{£1})
ceMap (I~ (I+])),{x1})

x tr(Ton ; S*7(2k, M, L1 T 1) |Ry,,),

le] led-U+))

where (), = {1 € IT| v, = 2}, 2, k-, i the sum extended over all partitions
Hw,=1+J+K,vl,D,=0,1, or v, (= ord,(N)) according to L € I, ], or
n— U+, 58U, Dy, I+ ], (t, 0) are the constants determined by (2.22).
(2) Let B be the orthogonal basis of &k +1/2, N, x)x which is stated in
Theorem (3.11) (1). Let B, (resp. B,) be the set of all f € B which corvespond to primi-
tive forms € S°(k, M) (resp. & S° 2k, M)) in the sense of Theorem (3.11) (1).
Then B, (resp. B,) genevates the space Nk +1/2, N, X g (resp. Rk +1/2,
N, 0.

(3) Let f be any element of B, and A, the eigenvalue of f with respect to
Tirisons %) b: prime, p ¥ M) resp. UP®) (b: prime, p | M). Then the primitive form
F, which corvesponds to f in the sense of Theovem (3.11) (1), satisfies F| T(p) = A,F
resp. F'| UP) = A,F for all primes p with p ¥ M resp. p | M.

Proof. Let B be the same C-basis of &"(k+1/2, N, X)g as in the above
statement (2) and P the same set of parameters as in Theorem (3.10) (2). For any
(@) ,ep, B | €} is stable under the action of all operators 7(%) ((, N) = 1),
It follows from Theorem (3.11) (2) that B | e} is genarated by the set B N
(B“ | e)). Similarly, we can see that N"* RN"* are generated by B N N**, B N
RO respectively.

Let us find U ) 40,18 N BY e}

For any ((o), ¥, (z, 0)) € P, we denote by B,y the subset of B
which corresponds to the space S*“7(2k, M I,.; ) | Ry in the sense of
Theorem (3.11).

Then from (4.12), there exist only two possible cases: B v,w0on & B“| e,
or Bppwcon N (B | e}) = @ ; and whether the former case occurs or not de-
pends only on the parameter ((o,), ¥, (z, 0)).

We define the subset of P* of P by:
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(oD, ¥, (r, 0)) € P; ((p), ¥, (z, 0)) does not satisfy
(at least) one of the following three conditions:

(i) o, = v, on II(0),, ; (i) = (), + II(0),;

(iii) v, = 2 on I(p), + I (0),

P*i=

Take a system (@) ,ey # (V) ,cp and a parameter ((o), ¥, (z, 0)) € P such
that By, r.con S B | ) for this ().

Then ((o), ¥, (r, 0)) € P*. In fact, suppose that ((o), ¥, (7, o))
satisfies the above conditions (i) and (ii). We get from (4.10) that o, < «, for all
1€ Il and ¥ < II(@),,. Hence by using the condition (i), (0, =) a, = v, for all
1 € I(0),, and so I1(p),, S II(a),,. From the condition (ii), II(a),, = ¥= II —
II(0),, 2 II — [I(@),,. This means II = II(a),,.

Since (@) # (v)), there exists [ € IT — II(p),, (S II(a),,) such that 2 < @,
< y,. Hence the condition (iii) is not satisfied.

The contrary is also true. Take any ((0), ¥, (z, 0)) € P*. Put a, = p,,
2,1, or 0 according to | € II(0),,, ¥, (o), — ¥, or II(0), — ¥. Then (&) #
(v). Put B, = p,, 1, or 0 according to [ € I1(0),,, ¥ N II(p),, or ¥ N I(p),.

Let P” be the same set of parameters as in (4.10) and we define (8,),c; by
the above (8,) in the same manner as in (4.10). Then ((8)cpw,., ¥, (¢, 0)) € P”
and (8)) = (o). Hence B o con S B | en.

Thus we get that R°* is generated by U (opwz.oner* Biop o Hence N is
generated by U () 5.0 ep-p* %((p,).l”,(z‘,o))' The assertion (1) is easily deduced from
this.

Next we have for any ((o), ¥, (z, 0)) € P,

§*°(2k, M, L ") | R, < S°(2k, M, T 1 TLE°).

lell lell-v le¥
Since

(o), ¥, (r,0)) EP*e I 1”1 I+ M,,
lel-v¥ leV¥
we have the assertion (2).

The assertion (3) can be proved by the same method as in Theorem (3.11) (1).
OJ

We shall discuss on an extension of this theorem to general cases. The key
point of this proof is the expression formulae (4.10-12) and they come from Prop-
osition (1.29). We needed the assumption (4.1) in order to use this proposition.

Now we give an example for a speculation of general cases.
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ExaMmpLE (4.14). Let p be an odd prime and £ € {% 1}. Then we have an
isomorphism of restricted Hecke algebras (cf. Theorem (3.11) (1) and [U1 §3]):

@”"‘(k +1/2, 4p%, (fl)) ~ A2k, pV) ® S°Ck, p) D Sk, 1),
K
where A2k, p°) is a certain Hecke-submodule of S*(2k, p%). U

The following question for this example is very natural: Can the part of
S°(2k, p) @ S(2k, 1) be constructed with S(k +1/2, 4p, (E» and twisting
K

operators as the space like B ey ?
We can affirmatively answer this question by using the following proposition.

PROPOSITION (4.15). Let p be an odd prime. If a non-zero element f = 20,- ,

a(n)e(nz) € S(k +1/2, 4p, <E>) is orthogonal to the space {g(pz) ; g € S(k +
K

1/2, 4),}, there exists n, (resp. n_) € Z, such that (%) =1 and aln,) #0

(vesp. (-n:i) = — 1 and a(n_) # 0). O

We shall prove this proposition and more general results in the forthcoming
paper [U5]. The method of the proofs is completely different from those of Prop-
osition (1.29).

From the above example (4.14) and some numerical examples (cf. [U4]), it
seems that, in every case, there exists an elaborate decomposition of & (k +
1/2, N, x)g like Theorem (4.13).

We hope to get such an elaborate decomposition by proving the generalization
of Proposition (4.15).

Appendix 1

In this appendix, we collect several properties and notations on cusp forms of
integral weight, which are used in the previous sections. We state almost results
with no proof, because we can prove them by straightforward calculations and the
standard theory of newforms of integral weight.

In this appendix, we keep to the notations of §0 (a) and (b) and we fix the fol-
lowing notations: k, N € Z,. Moreover, we simply write T(n) = T,, y(n) and
W(Q) = [W(Q)],,, etc., if the subcripts are obvious and any confusion does not
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occur.

ProposITION (A.1). Let A, B be finite sets consisting of prime numbers such that
ANB= 0 and also let a, (p € A), b, (¢ € B) be any non-negative integers. Then
for a positive integer n prime toIl, ., % e qb", we have the following identity.

tr([WA]ZkT(n) ;s(2k, I p* II 4"“))

ped qeB
= X 2 DG, —u+1
) pea () ges g€B

0<t,<la,/2]  0<u,<s,

% (W1, TG0 ; S° (2K, 1 ¢)). .

ProposiTioN (A.2) ([Sa], [Atkin-Li]). Let x be a primitive chavacter modulo
F(x) such that x> = 1 and M a positive divisor of N such that (M, N/M) = 1. For
any f € S22k, N), we have the following.

(1) If n is a positive integer prime to Nf(x),

fITWR, = xm) fI R,T).
(2) If m is a positive integer prime to N,
SITW M) = fI WD T(#).
(3) Suppose (M, §(x)) = 1. Then
FIRWM) = x (M) f| WIDR,.

(4) Let M’ be a positive divisor of N such that (M', N/M’) =1 and (M, M") = 1.
Then

Flwonwm) = fl WM, flwnwM) = f.
O

PROPOSITION (A.3). Let p be an odd prime and M a positive integer prime to p.
For any f € SQk, pM), we have

FIR ) € S@h, p'M) and £ Ry WD = (1) £1 R,
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PrOPOSITION (A.4). Let M be a positive divisor of N such that (M, N/M) = 1,
n a positive integer prime to N, and ) a primitive chavacter modulo ¥ such that v is
odd, ¥ | N, and ¢* = 1. Forany f, g € Sk, N), we have the following.

(1) FIWDD, g = <f, gl WD)>.
(2) I T, g = <f, gl Tn)).
3) (fIRy, @ =<f, gl Rp.

O

PROPOSITION (A.5). Let x be a primitive character modulo 7. If f | R,=0fnfe
S%2k, N), then f = 0. In other words, a twisting operator R, induces a C-linear iso-
morphism from S°(2k, N) onto S°Qk, N) | R,.

Proof. By [M, Theorem 4.6.8]. O

Let £ be a finite set consisting of odd prime numbers and Q=1{2} U Qand
also let «, e ) be non-negative integers. Then we shall define a subspace
S*(2k, T,e5p™) of S’ 2k, M,.5p™).

We put 2,:= {p € 2| a, = 2}. We simply write R, = HpeAR(T) for any
subset A of £,. In particular, Ry = 1. For a partition £, = A + B + C, we de-
note

Ni=Mp"and NB,CO):= 0 pPNp’Hp= 1 p™ 1 p.

pref beR-Q, peA pes peR—(B+C) peB
Then we know for any partition 2, =A + B+ C, S°2k, N(B, C)) | Ry, S
S°@k, N) (see [Atkin-Li, p.228, Theorem 4.1, and Corollary 4.1]). We take the
sum of these subspaces S°(2k, N(B, 0) | Ry, over all partitions £2,= A+ B
+ C such that £2, ¥ A, and put
S’@k, N):= X S°Qk, NB, O) | Ry.e.
2,=A+B+C
Q%4

Then we define S™(2k, N) by the orthogonal complement of the subspace S*(2k,
N in SO(2k, N) with respect to the Petersson inner product.

ProproSITION (A.6). The notations being as above, the following assertions hold.

(1) S’2k, N) = X S*Qk, NB, O) | Ry,
2,=A+B+C
2,#4
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(2) S*2k, N) is fixed by the operator T(m) for all positive integer m such that
(n, N) = 1. In particular, S* @2k, N) is spanned by primitive forms of conductor N.
(3) S*(2k, N) is also fixed by the operator W™ forallp € Q.

Proof (sketch). (1) We use an induction with respect to #£,. (2), (3) Since
T(n) and W(p®) are self-adjoint operators, it is sufficient to show that S*(2k,
N) is fixed by those operators. We use Proposition (A.2) for T(#) and W(p™)
(p €B+ C), and (A.3) for W) (p € B+ O). O

PROPOSITION (A.7).  The notations are the same as above. Put 2,, '= {p € Q| a,
=2} and R, = Ry foranyp € Q,,. Then each R, (p € Q,,) induces a C-linear
automorphism of S™(2k, N) of order 2.

Proof. 1t is sufficient to show the following two facts:

(1) S*©2k, N) | R, < S* @2k, N) for all p € 2,,.

2) fIR,R, = f for all f € S*(2k, N) and all p € 0,,.

We prove these facts.

(1) We denote the subspace of old forms in S(2k, N) by S*(2k, N). Then
S*(2k, N) is the orthogonal complement of S'(2k, N) @ S*(2k, N) in S2k, N).
Since R, (p € Q,,) is a self-adjoint operator, it is sufficient for the proof to show
that S'(2k, N) D S*(2k, N) is stable under R,.

(1) First we discuss the space of old forms Sl(2k, N). Take systems of inte-
gers (B,),eg and (s,),cq such that 0 < B, < o, (g € D), (B,)e5 # (@) 4e. and
0<s,<q,—B, (@€ D.

m 0

01 > It is easy to show that for any

For a positive integer m, put 0 (m) = (
fe S 2k, M54,

quﬁ<%) FIR, 1 6(M,e5q™, if (b, Mepq™ = 1,

s otherwise.

716(1Lq*) R, =

Hence it is sufficient to consider only the case of (p, qu!quq) = 1. In this case,
the level of f| R, is at most pmaX(Z'B’) Hp¢qe§q3“. Therefore if this number is less
than N, f| R, is an old form and so is f] 5(quﬁq$“) R,

Next we see

N — pmax(Z,Bp) I

p#qeQ

qﬁqg{aqzﬁqifq;tp)
ap = 27 ‘Bp = 0’1’

because (&,),eg F (B,),eq and @, = 2. Moreover in this case, we have s, = 0 for
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all ¢ € Q and then f|6(,c5¢")R, = fI R, € S*(2k, N).

Combining these results, we have S'©2k, N) | R, < S'@k, N) @ S*Ck, N).

(ii) We consider S*(2k, N). We use an induction with respect to #8, If
#0,=0, S’(2k, N) = {0}. In this case, the assertion is trivial. Next we discuss
the case of #£,= a > 0. We put the following assumption of the induction: If
#0,<a—1, S*2k, N)|R, S S'Ck, N) ® S*(2k, N) for all p € Q,,.

Then combining this assumption and the previous part (i) of this proof, we get
the following: If #2, <a—1, S*(2k, V) |R, € S*2k, N) for all p € £2,,.

By (1) of Proposition (A.6), it is sufficient to show that S*(2k, N(B,
0) | Ry, R, < S'2k, N) @ S*(2k, N) for any p € £,, and any partition of
2,=A+ B+ Cwith 2, # A

Suppose either p € A or a, 2 3. In this case, we can use the assumption of
the induction because of #A < #2, = a. Hence S*(2k, N(B, C)) | Ry,cR, =
S*@2k, N(B, O) | R,Ry,c S S*©2k, N(B, O)) | Ry, S Sk, N).

Next suppose p € B+ C. Then @, = 2 and S*@2k, N(B, O)) | Ry | R, =
S*@2k, N(B, O) | Rgyc)—in | R,R,. Take any f=X,. anelnz) € S*(2k,
NB, O) | Rgscroip S SCk, p° 11, ,c5¢™), where =1 or 0 according as p € B
or C. Hence f &€ S'2k, N). We put g(2) = Z,.,alpn)e(nz). Then g(pz) =
f @ — f|IR,R,(2) € S2k, N). From [M, Theorem 4.6.4], g € S(2k, N/p) and
g(p2) € S'©2k, N). Hence f| R,R,(2) = f(2) — g(p2) € S'(2k, N). Therefore
S*@k, N(B, O)) | Ry, | R, = S'Ck, N).

Combining these results, we have S°(2k, N) | R, < S'(2k, N) @ S*(2k,
N) for any p € 2,,.

(2) Take any p € 2,, and any f = X, ,aw)emnz) € S*(2k, N) . We put
g = 2,..apn)e(nz). Then f|R,R,(2) = f(2) — g(pz). Since g(p2) =
f(@ —fIR,R,(2) € S(2k, N), we have g & S(2k, N/p) from [M, Theorem
4.6.4]. Hence g(pz) belongs to the space of old forms of level N. On the other
hand, g(pz) = f(2) — fI R,R,(2) € S*2k, N) € S°(2k, N) as we showed in
the previous part of this proof. Therefore f — f| R,R, = 0. ]

PrROPOSITION (A.8). The notations being as above, the following orthogonal direct
sum decomposition holds.

S°@k, Ny = @ S*@k, NB, O)| Ry,

2,=A+B+C

Here, GBQZ: A+pec 1S the orthogonal divect sum extended over all partitions 2, = A+ B
+ C.
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Proof. By the strong multiplicity one theorem [M, Theorem 4.6.19]. ]

Appendix 2
In this appendix, we give the definition and properties of the trace operator.
Let k, N, m € Z_ with 4 | N and x an even character modulo N with XZ =1
We define the trace operator Trjvvm :Stk+1/2, Nm, x)— Sk +1/2,
N, x) by:
I Trd" = | T(N) : Ty(Nm) |~ )y fl&, fe Sk+1/2, Nm, ).
e€Ag(Nm, )\ Ao(N, 1)

Then we have the following properties.

PrOPOSITION (A.9).  The notations are the same as above,
(1) Foranyf € Stk +1/2, Nm, %) and g € S(k +1/2, N, x), we get

S @ =1T" 9,
i. e., the adjoint opevator of Trgm is the inclusion map: Sk +1/2, N, x) — Sk +
1/2, Nm, x).
(2) VINm ;%) | Try” € VN ; x).
(3) Suppose that ord,(N) = 2 and m is odd.
S+ 1/2, Nm, )| Try™ € Sk +1/2, N, 2)x

Proof. (1) follows from straightforward computation.

(2) We easily see UN ; x) € U(Nm ; x) from the definition. Hence from (1),
0= <, uy = (vl Trgm, u) foranyv € VINm ; x) andu € U (N ; x).

4 1
@ pu §= ((§ 4 ), %= D@k +1)/8)), 4= 4,0V, 1), and &
= A,(Nm, x). Then S(k+ 1/2, Nm, x)x (resp. S(k+1/2, N, x)g) is the
a-eigen subspace with respect to the hermitian operator Qy,, = [4’€4"] (resp. Qy
= [424]), a = (— D"“""?2y2 y,(— 1) (cf. §0(d)). Moreover, we can choose the
set {SC;k : v € Z/47) as a common system of representatives for 4 \ 464 and
7’ 7 ’ pa— 1 0

A\ NEN, where C, (va 1).

For any f € S(k+1/2, Nm, y)xand g€ S(k+1/2, N, x),

<f| T"]\A/,mQNy g> = <f‘ T”;/vm; gl QN> = <fy gl QN> = <f; g| QNm>
= (f| Qy & = alf, & = alf| Try", .
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Hence (f| Tr,f,vm) Qy = al(f| Trjf’”) and so f| Trlf,vm eSk+1/2,N, D O

Let us prove the claim which are used in §3. For the letter N, we define the
letters M;, M,,, and II in the same manner as in §1.

ProposITION (A.10).  Notations are the same as above. Suppose that ord,(N) = 2.
Let £ € {£ 1" and p a prime divisor of M, with x, = 1. Then x can be defined
with modulo N/p and we have the following :

S™U +1/2, N, x| Try,, Sk +1/2, N/p, X
VN, x| Tra,, S VEX(N/D, 1)

Proof. For any [€I,fe Sk+1/2,N,y), and g€ Sk+1/2,
N/p, 1.

{fl TrauR, 8 =<f| Try,y gl RY =<f, gl RY = {fIR, & = {fIRTry, &,

(cf. [U2, Proposition (1.10)]).
Hence f| Trg/,, R, =f]R,Tr,f,v/,,. The assertions are deduced from this fact
and Proposition (A.9). O
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