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How much does the cross-section of a toroidal magnetic field configuration tell us about its
magnetohydrodynamic (MHD) stability? It is generally believed that positive triangularity
(typically leading to bean-shaped cross-sections with their indentation on the inboard side
in stellarators) contributes positively to MHD stability. In this paper, we explore the basis
of this statement within a near-axis description for axisymmetric and quasisymmetric
magnetic configurations. In agreement with the existing literature, we show that positive
triangularity stabilises vertically elongated tokamaks. In quasisymmetric stellarators,
the toroidal asymmetry of flux surfaces modifies this relation. The behaviour of
stellarator-symmetric, quasisymmetric stellarators can still be described in terms of the
shape of one of their up–down symmetric cross-sections. However, we show that for a
sample of quasisymmetric configurations, the positive-bean-shaped cross-sections do not
contribute positively to stability. Unlike in the axisymmetric case, we also learn that finite
β can improve stability even without magnetic shear.

Key words: fusion plasma

1. Introduction

The quest for controlled thermonuclear fusion has seen renewed interest over the last
decade. This has led to a revival of concepts other than the tokamak. The latter relies
on toroidal magnetic fields with a spatial toroidal symmetry to confine a hot plasma
within (Mukhovatov & Shafranov 1971; Wesson 2011). It is useful to consider devices
in which this symmetry requirement is relaxed, i.e. stellarators (Spitzer 1958; Boozer
1998; Helander 2014). The three-dimensional nature of stellarators provides them with a
freedom necessary to avoid many limiting features of axisymmetric magnetic fields. Most
importantly, large currents are no longer needed to hold the plasma, thus minimising the
possibility of violent disruptions (Schuller 1995).

Finding attractive forms of stellarators that serve as magnetic confinement devices
requires a dedicated effort. At the most basic level, the fields must be capable of
confining collisionless charged particles for long enough (Mynick 2006). This requirement
significantly restricts the space of stellarators, singling out a particular class of fields
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2 E. Rodríguez

labelled omnigeneous (Hall & McNamara 1975; Bernardin, Moses & Tataronis 1986;
Cary & Shasharina 1997; Landreman & Catto 2012; Helander 2014). In this paper, we
consider a particular group of omnigeneous stellarators, a most immediate generalisation
of axisymmetry, known as quasisymmetric stellarators (Boozer 1983; Nührenberg & Zille
1988b; Burby, Kallinikos & MacKay 2020; Rodríguez, Helander & Bhattacharjee 2020).
The defining property of this class is a particular form of hidden symmetry, which makes
the magnitude of the magnetic field, |B|, symmetric, but not necessarily B. By Noether’s
theorem, such partial symmetry is sufficient to prevent rapid loss of particles in the
small-gyroradius limit.

Confinement of single particles is not the only property desired of the stellarator: plasma
stability, coil complexity, turbulent transport, etc., are also aspects of importance. This list
of properties, alongside advances in computation, have naturally led to optimisation as the
primary approach to the design of stellarators. This approach has proven to yield practical
results (Beidler et al. 1990; Anderson et al. 1995; Zarnstorff et al. 2001; Garabedian
2008; Najmabadi et al. 2008). However, it is not entirely satisfactory. The complexity
of optimisation is prohibitive when attempting to comprehend the origin of the obtained
designs (Rodríguez, Paul & Bhattacharjee 2022a). This is partly a result of the space
of optimisation having many local minima (Bader et al. 2019; Henneberg, Helander &
Drevlak 2021). Some fundamental insight is necessary to interpret results and guide
optimisation in such a space.

Understanding the relation between the properties imposed on stellarators is crucial.
If two properties require similar or opposite magnetic field features, we should know
it and perform optimisation accordingly. Intuition on these property trade-offs has
developed over years of optimisation efforts. It is, for instance, believed that bean shapes
(i.e. sizeable positive triangularity) favour magnetohydrodynamic (MHD) stability. This
general wisdom accrued over years of stellarator optimisation (Nührenberg 2010) which
regularly found these features, as well as more dedicated works (Lortz & Nührenberg
1976; Nührenberg & Zille 1986). We put this observation to the test in this paper for
axisymmetric and quasisymmetric stellarators.

To explore the question, we use two main ingredients. First, as a measure of MHD
stability, we employ the Mercier criterion. We present the basics of this measure in § 2,
together with the main theoretical framework for the paper: the near-axis expansion in
inverse coordinates. The latter provides a simplifying description of the geometry and
governing equations asymptotically in the distance from the centre of the stellarator.
This framework becomes an ideal basis for analysing the problem. Section 3 considers
the case of axisymmetry, which is often taken as reference to develop intuition on
property trade-offs. We show that there is indeed a positive link between positive
triangularity and stability in this scenario, reproducing the results of existing literature.
That enables us to treat the case of quasisymmetric stellarators in § 4 analogously.
Conventional shaping-stability intuition generally fails there, with negative triangularity
being stabilising in practical examples. We close with some concluding remarks.

2. Mercier criterion and near-axis framework

For the purpose of this paper we consider static equilibria with isotropic pressure
(Wesson 2011; Freidberg 2014), in which magnetic field lines live on nested toroidal
magnetic flux surfaces (Grad 1967; Helander 2014), labelled by the variable ψ (1/2π
the toroidal magnetic flux). Given such an equilibrium, we are interested in knowing
whether it is MHD-unstable or not. Although stellarators have proven certain nonlinear
resilience to instability, an unstable configuration still represents a physically unattainable
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MHD stability and shaping 3

configuration. Knowing this is important at least to understand if the stellarator properties
carefully designed will reliably hold or not.

There is not a single way to study MHD stability. In this paper we turn to two
scalar criteria for instability: the magnetic well, V ′′ > 0 (Greene 1997), and the Mercier
criterion, DMerc < 0 (Greene & Johnson 1962; Mercier 1962, 1974; Bauer, Betancourt &
Garabedian 2012; Freidberg 2014). The latter is a sufficient condition for the occurrence
of an interchange instability, namely an instability that displaces the plasma without
significantly bending field lines. A configuration is necessarily unstable if DMerc < 0 (but
DMerc > 0 does not guarantee stability, as it does not negate ballooning instability; Connor,
Hastie & Taylor 1978; Correa-Restrepo 1978; Dewar & Glasser 1983; Nührenberg & Zille
1988a; Freidberg 2014). The scalar DMerc involves multiple integrals over the fields and
geometry of the configuration and can be found in the literature (Greene & Johnson 1962;
Correa-Restrepo 1978; Nührenberg & Zille 1988a; Bauer et al. 2012; Zocco, Aleynikova
& Xanthopoulos 2018) (we include it in Appendix A for completeness). The magnetic
well criterion (Greene 1997) is nothing but the small-plasma-β, zero-magnetic-shear limit
of the Mercier criterion. The complexity of both expressions in these stability criteria
naturally requires a simplified framework in which to understand their underlying structure
and relation to field properties.

We adopt for that purpose the so-called near-axis framework, pioneered by Mercier
(1962) and Solov’ev & Shafranov (1970), in which the stellarator is considered
asymptotically near its magnetic axis, where the stellarator is particularly simple. This
way of approaching the problem has seen a recent revival for theoretical and practical
stellarator design (Garren & Boozer 1991b; Landreman & Sengupta 2019; Jorge, Sengupta
& Landreman 2020; Landreman 2022; Rodríguez, Sengupta & Bhattacharjee 2022b). In
its original form, often referred to as the direct-coordinate approach, one expands all the
equations governing the magnetic field in the distance from the axis involving the shape of
flux surfaces directly. That way, shaping and stability were related, through the Mercier
criterion, by the works of Solov’ev & Shafranov (1970), Lortz & Nührenberg (1976),
Mikhailovskii & Aburdzhaniya (1979), Shafranov (1983) and Freidberg (2014), and most
recently of Jorge & Landreman (2020) and Kim, Jorge & Dorland (2021). The emphasis on
the geometry of the stellarator in this asymptotic description does not, however, lend itself
straightforwardly to describing stability and guiding centre dynamics. The latter naturally
involves |B|, which is a quantity not readily accessible in this framework. In particular, this
complication makes the description of optimised stellarators, such as omnigeneous (Hall
& McNamara 1975; Bernardin et al. 1986; Cary & Shasharina 1997; Landreman & Catto
2012) or quasisymmetric (Boozer 1983; Nührenberg & Zille 1988b; Rodríguez et al. 2020)
ones, challenging.

To bypass these limitations and describe axisymmetric and quasisymmetric stellarators
in this paper, we adopt the inverse-coordinate near-axis expansion (Garren & Boozer
1991b; Landreman & Sengupta 2018, 2019). Its main difference from the direct-coordinate
approach is that it involves |B| explicitly in the problem, rather than the geometry of
flux surfaces. It does so by treating Boozer coordinates (Boozer 1981) {ψ, θ, φ} as an
independent set, enabling the use of ε =

√
2ψ/B̄0 (a pseudo-radial coordinate) as an

expansion parameter. Here B̄0 is the average magnetic field magnitude along the magnetic
axis and ψ = 0 on it. In terms of this ε, in the near-axis expansion all fields are expanded
in power series of the form

f (ψ, θ, φ) =
∞∑

n=0

εn
n∑
m

′[ f c
nm(φ) cos mθ + f s

nm(φ) sin mθ ], (2.1)

https://doi.org/10.1017/S0022377823000211 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000211


4 E. Rodríguez

where the sum
∑′ is over even or odd positive numbers (including 0) up to n depending

on the parity of n (Garren & Boozer 1991b). As the paper focuses on axisymmetric and
quasisymmetric configurations, the magnetic field magnitude has expansion parameters
independent of the toroidal angle:

|B| = B0(1 + εη cosχ)+ ε2(B20 + BC
22 cos 2χ + BS

22 sin 2χ)+ · · · . (2.2)

Here the helical angle χ = θ − Nφ takes the place of θ , where N ∈ N is the self-linking
number of the magnetic axis (Rodríguez et al. 2022b). This form allows us to include
quasihelical configurations in the formalism (quasisymmetric stellarators in which the
contours of |B| close helically for N �= 0).

Using the inverse-coordinate approach relegates the shaping of magnetic flux surfaces
to a secondary role. Flux surfaces are nevertheless described around the magnetic axis,
using the Frenet–Serret vectors of the axis (see Landreman & Sengupta 2019) as a basis,
as

x − r0 = X(ψ, χ, φ)κ̂ + Y(ψ, χ, φ)τ̂ + Z(ψ, χ, φ)b̂, (2.3)

for all χ and φ (at constantψ), where r0 represents the magnetic axis, κ̂ is the normal to the
curve, τ̂ the binormal and b̂ its tangent. In any plane normal to the axis (and disregarding
the function Z), X and Y describe the shape of the cross-sections. Our task in this paper is
then to interpret the shaping through X, Y and Z, and relate it to the Mercier criterion.

Details of the near-axis expansion in the so-called inverse-coordinate approach may
be found in the original paper by Garren & Boozer (1991b), or later applications and
extensions (Landreman & Sengupta 2018, 2019; Rodríguez & Bhattacharjee 2021a). Here
we do not rederive these results but rather apply them; the reader may refer to these if
necessary. The magnetic well on axis (Landreman & Jorge 2020) is

V ′′ = 8π2G0

B3
0

[
3η2

2
− 2B20

B0
− p2

B2
0

]
, (2.4)

where the pressure gradient (to leading order) is given by p2 (from p = p0 + ε2p2 + · · · ,
which includes for simplicity a factor of μ0) and G0 is the poloidal current linked to the
torus. As we have hinted, the expression is simple and involves |B| quite directly. Here the
parameter B20 may be interpreted as a measure of the depth of the magnetic well (Freidberg
2014).

The pressure gradient in (2.4) is somewhat deceptive. We remind ourselves that using
V ′′ as a criterion is sensible only in the vacuum limit of the Mercier criterion. Thus, for
a finite-β equilibrium, the Mercier criterion reads, following Landreman & Jorge (2020)
and taking B0 = 1 for simplicity,

DMerc = G2
0p2

π2ε2

{
3η2

2
− 2B20 − 2p2

(
1 + 2G2

0η
2

ῑ20
I
[η
κ
, σ
])}

, (2.5)

where

I
[
η̄ = η

κ
, σ
]

= 1
2π

∫ 2π

0

η̄4 + η̄2 + σ 2

η̄4 + 2η̄2 + (1 + σ 2)
dφ, (2.6)

κ is the curvature of the magnetic axis (a function of the toroidal angle φ), σ = Yc
11/Y

s
11

(see the notation of (2.1)) is related to the shaping of flux surfaces and ῑ0 is the rotational
transform on axis (in the quasihelical, case ι0 − N). The structure of the leading-order
Mercier criterion is, up to the dependence on the pressure gradient, of the same form as
the magnetic well, depending critically on B20.
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3. Case of axisymmetry

In the previous section we presented the Mercier criterion in its near-axis form following
Landreman & Jorge (2020). Our goal now is to interpret (2.5) meaningfully in terms of the
shaping of cross-sections. To do so, we must consider two essential points. First, we must
know which choice of parameters within the near-axis description serves as a minimal,
consistent parametrisation of our near-axis equilibrium. In this section, we focus on these
choices for axisymmetry, leaving quasisymmetry for the next section. Second, given such
a set, we need to connect them within the near-axis expansion to the most common notions
of cross-section shapes such as triangularity. Once this has been achieved, we will be in a
position to discuss MHD stability and its relation to the shape of the plasma cross-sections.

3.1. Parametrisation of configurations
Let us describe axisymmetric configurations uniquely within the near-axis framework. We
present the most conventional choice of parameters, which we must, however, point out is
not unique.

The shape of the magnetic axis is the primary ingredient in the expansion, but in the
case of axisymmetry it must be a circle. We normalise its radius to R0 = 1, as we do with
the magnetic field on axis, B0 = 1, leading by Ampère’s law to a poloidal current G0 = 1.
At first order, the parameters η (leading-order |B| mirror ratio; see (2.2)) and σ (measure
of the up–down asymmetry) describe rather explicitly elliptical flux surfaces (as we will
later see). The choice of the toroidal current density on axis, I2, then provides a finite
rotational transform on axis.

Finally, at second order, four parameters are necessary: the pressure gradient, p2, and
the second-order harmonics of |B|, B20, BC

22 and BS
22. Not all choices of these natural

parameters constitute valid equilibria, though. The force balance condition imposes a
linear constraint, (E6), making only three of them truly independent. Different choices
of independent parameters are suitable for studying different equilibrium properties. In
our case, we must find the combination of natural parameters p2 and |B| harmonics
that directly relates to the shaping of cross-sections, so that we may use them as the
independent set. That is the next task. One may ask why the direct-coordinate near-axis
approach was chosen if the geometry was wanted explicitly. The answer is that we want
to have the capacity to constrain |B| directly and simply, and, within these constraints, see
how the geometry arises.

3.2. Shapes within the inverse-coordinate near-axis framework
We must thus construct geometric notions for the cross-sections within the near-axis
framework. These include concepts such as ellipticity, triangularity and up–down
symmetry breaking. Although the description in this section is concerned with
axisymmetry, the description of shaping presented generalises straightforwardly to the
quasisymmetric case.

3.2.1. First-order shaping: ellipticity
As is well known, near the magnetic axis, flux surfaces have elliptic cross-sections. In

the near-axis expansion these are described at first order in the expansion in terms of the
parameters η and σ . The shapes in the plane normal to the axis (in our tokamak, slices at
constant cylindrical angle) are described as

x = −εη cosχ R̂ + ε

η
(sinχ + σ cosχ)ẑ, (3.1)
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FIGURE 1. Elliptical shapes and angles. Diagram showing an ellipse framed in the normal
Frenet–Serret frame where the ellipse rotation angle ϑ and elongation angle e are defined. These
two angles uniquely characterise ellipses (up to a scale).

where R̂ is the unit vector in the major radius direction, ẑ is the unit vector in the vertical
cylindrical direction, Xc

11 = η and Ys
11 = 1/η (Landreman & Sengupta 2019). In terms of

the elongation (defined as the ratio of the major to the minor radius of the ellipse, E) and
the rotation angle ϑ with respect to κ̂ , and defining the angle E = tan e (see figure 1),

sin 2e = 2η2

1 + σ 2 + η4
, (3.2a)

tan 2ϑ = 2ση2

η4 − 1 − σ 2
. (3.2b)

For the details of how one arrives at (3.2), see Appendix B. From the above, it is clear that
σ rotates the ellipse with respect to the (κ̂, τ̂ )Frenet–Serret frame, in the small-σ limit
linearly, and thus is a measure of up–down asymmetry. However, it also affects elongation
through the denominator in (3.2a). Only in the limit of σ = 0, for which ϑ = 0,π/2,
E = η2, 1/η2 respectively, and elongation just depends on η. This limit allows us to
interpret η as a measure (approximate) of elongation, rigorously true in the up–down
symmetric limit.

In an up–down asymmetric scenario, the distortion of η as a measure of elongation
makes ϑ and e become the natural shaping parameters. Expressing the near-axis
expansion in terms of these parameters yields, however, highly complicated and nonlinear
expressions that necessarily require numerical tools to handle. Thus, we use η and σ as
our parameters, capitalising on their approximate geometric meaning for interpretation.

3.2.2. Second-order shaping: triangularity
In increasing order of complexity, the next family of shapes after ellipses is triangularity.

Figure 2 shows cross-sections with non-zero triangularity, formally arising at second order
in the near-axis expansion through X2 = X20 + XC

22 cos 2χ + XS
22 sin 2χ , and equivalently
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FIGURE 2. Examples of triangular cross-sections. The diagram shows two examples of
triangular cross-sections (in black), constructed with second-order shaping with XC

22 < 0 (left)
and YS

22 > 0 (right), for the same underlying elliptical shape. The stellarator literature refers to
these shapes as bean and D shapes (often clearer for less elongated cross-sections), respectively.
The grey contour shows how excessive shaping can lead to a pathological cross-section in which
the surface self-intersects.

for Y2. Before constructing a quantitative measure of triangularity, let us first familiarise
ourselves with each of these shaping coefficients at second order considering a
frame-aligned ellipse at first order.

Take first the XC
22 cos 2χ term (see the leftmost cross-section in figure 2). The magnitude

of XC
22 gives the ‘bean shape’ of the cross-section, becoming ever ‘more triangular’ as

its magnitude is increased, eventually developing a characteristic dimple or indentation.
Geometrically, the indentation of the bean shape appears (see figure 2) upon crossing the
threshold εXC

22/X
C
11 ≥ 1/4.1 The strength of the shaping is thus measured by εXC

22/X
C
11, and

increases away from the axis.
The meaning of YS

22 is not dissimilar and is also related to what is commonly perceived
as triangularity. However, it manifests as a more D-looking shape (see the rightmost plot
in figure 2). As εYS

22 becomes larger, the shape becomes more and more triangular until it
reaches a critical value beyond which the cross-section self intersects (see figure 2). The
critical point, i.e. the first instance in which the cross-section crosses the Y = 0 line thrice,
corresponds to εYS

22 = YS
11/2. The strength of the shaping is then εYS

22/Y
S
11, which limits

the near-axis description to ε < εmax = YS
11/2YS

22. A similar limit exists for Xc
22 to prevent

the indentation of the bean shape from being too large so that nested surfaces touch and
eventually cross each other. Both of these are a geometric interpretation of the measure rc
introduced by Landreman (2021).

Although in different flavours, both of these components bring in triangularity. So
far, we have been vague on what we mean by triangularity, and we must invoke a more
rigorous definition for a quantitative consideration. We define triangularity as the relative
displacement of the vertical tips of the cross-section from the cross-section mid-point
divided by the width of the cross-section. It is a measure of left–right asymmetry of

1This condition follows from assessing the existence of turning points in X, ∂χ (XC
11 cosχ + εXC

22 cos 2χ) != 0, so
that cosχ = −XC

11/4εXC
22 will only have real solutions for εXC

22/X
C
11 ≥ 1/4. Note that the dimple may appear on either

the inboard or outboard side, depending on the sign of Xc
22 and, thus, the sense of the bean shape.
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8 E. Rodríguez

the cross-sections. We choose a positive value to indicate a relative displacement in the
direction of κ̂ (in the tokamak −R̂). Following this definition (calculation details may be
found in Appendix C), the asymptotic form of triangularity, δtok, may be written as

δtok ≈ 2ε
(

YS
22

YS
11

− XC
22

XC
11

)
, (3.3)

which involves the shaping strength fractions previously obtained, with the negative sign
being consistent with the picture in figure 2.

The same way that this notion of triangularity, δtok, measures the degree of left–right
asymmetry, we define another geometric parameter that we call vertical triangularity, δy,
which measures the degree of up–down asymmetry. In this case, in terms of the shaping
parameters Xs

22 and Yc
22,

δy ≈ 2ε
(

YC
22

YS
11

+ XS
22

XC
11

)
. (3.4)

Note the sign difference from (3.3) (in fact, one can see a similar sign in (5.1) and (5.2)
of Rhodes (2017)). We have taken the convention that a positive δy indicates an upwards
bulging (meaning in the direction of the binormal to the axis).

When the underlying elliptic shape is not frame-aligned, the description of the shaping
becomes significantly more complex, as the components of X2 and Y2 mix together.
Appendix C briefly describes how to deal with this situation by defining effective measures
δtok and δy in the rotated frame. We give a numerical example of what this means later.

3.2.3. Second-order shaping: Shafranov shift
So far, we have said little regarding the relative position of flux surfaces, of which

the Shafranov shift (Shafranov 1963; Wesson 2011) is a measure. Classically, this is
defined as the relative shift of the centres of circular cross-sections in the large-aspect-ratio
limit of an axisymmetric configuration. In a more general stellarator, the shift becomes
ambiguous, as the centre of generally shaped cross-sections (other than ellipses and
circles) is non-unique. We opt to define it as

Δx = X20 + XC
22, (3.5a)

Δy = Y20 + YC
22, (3.5b)

where the near-axis expansion parameters have been directly used. In an up–down
symmetric configuration, Δx describes the displacement of the cross-section midpoint
along the up–down symmetry line from one surface to the next. The vertical portion,
Δy, has a similar interpretation along the binormal (Y). Appendix D motivates the form of
this definition of Shafranov shift beyond its simple geometric interpretation, following the
work in Rodríguez, Sengupta & Bhattacharjee (2022c). This form of the Shafranov shift
reduces to the correct tokamak definition (see Landreman 2021). As we are primarily
concerned with the up–down symmetric form of the problem, we refer to Δx as the
Shafranov shift.

3.3. Magnetohydrodynamic stability and cross-section shapes
The geometry parameters in the previous subsection constitute the appropriate
shaping-related parameters in terms of which we ought to express the near-axis expansion.
For simplicity, at lowest order, we choose to use parameters η and σ explicitly. Unless
otherwise stated, we focus on up–down symmetric configurations, and so take σ = 0 and
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δy = 0. Having the magnitude of the pressure gradient, p2, explicitly involved is often
convenient, as it allows us to study the effect of other parameters on a configuration that
needs to support a prescribed ‘pressure profile’. This leaves one of the two geometric
measures, either the Shafranov shift, Δx, or the triangularity, δ = δtok/ε, to complete the
parametrisation of the near-axis configuration. Choosing one explicitly will make the other
adjust self-consistently in a concealed way so that it complies with equilibrium.

To express everything in terms of these parameters, we must relate them to |B|
components through {X2,Y2} coefficients. These relations form part of the near-axis
expansion, and are given explicitly in Appendix E. Although algebraically involved,
computational algebra may handle them straightforwardly. That way, we first present three
equivalent forms of B20 in terms of different relevant second-order parameters, each with
a different physical interpretation:

B20 = −
[

1 + (1 + η4)2

(3 + η4)I2
2

]
p2 + 3η

2
1 − η4

3 + η4
δ + η2

(
4 + η4

3 + η4
− I2

2

1 + η4

)
, (3.6a)

= −
[

1 + (1 + η4)2

4η4I2
2

]
p2 + 3

2
η4 − 1
η4

Δx + η2

(
1 + 4η4

4η4
− I2

2

1 + η4

)
, (3.6b)

= 2Δx

[
1 + (3 + η4)I2

2

(1 + η4)2

]
+ η

2

[
1 + 4η4I2

2

(1 + η4)2

]
δ + η2

(
1 − (2 + η4)I2

2

(1 + η4)2

)
. (3.6c)

Following this, the Mercier criterion, (2.5), can be written as

ε2π2DMerc

|p2|G2
0

= (η2 − 1)2(1 + η4)2

(1 + η2)(3 + η4)I2
2

p2 + 3ηδ
1 − η4

3 + η4
+ η2

2

(
7 + η4

3 + η4
− 4I2

2

1 + η4

)
, (3.7a)

= (η2 − 1)(2η2 + 1)(1 + η4)2

2η4(1 + η2)I2
2

p2 + 3Δx
η4 − 1
η4

+ 1
2η2

(
1 + η4 − 4η4I2

2

1 + η4

)
.

(3.7b)

The effects of shaping are buried in each of the terms of these expressions, especially their
sign. If the factor multiplying a particular parameter in the Mercier criterion is positive,
then the geometric or physical property represented by the parameter can be said to have
a stabilising effect.

Consider first (3.6c), which describes the direct effect of cross-section shaping on B20.
Because the factors multiplying both δ and Δx are positive, this means that positive
triangularity and Shafranov shift contribute positively to B20, and thus we would expect
MHD stability. There is a simple geometric explanation for this behaviour. Picture an
increase of Δx as a bunching of cross-sections on the outboard side of the configuration.
As one goes from the magnetic axis outwards, each cross-section acquires more area on the
inboard side compared to the outboard side. There |B| is larger, therefore B20 grows, and so
does the magnetic well. Similarly, a positive triangularity brings the vertical turning points
of the cross-section towards the inboard side, gathering a larger area on the high-field side.
Following this logic, any shaping that does not break left–right symmetry should not affect
stability.

Although this geometric picture is simple, its link to stability is not as clear-cut
as it may seem. When we deform the cross-sections by changing δ and Δx directly,
the resulting equilibrium generally supports a different pressure gradient; formally,
p2 adjusts self-consistently in the background to satisfy p2/2I2

2 = −(3 + η4)Δx/
(1 + η4)2 − η5δ/(1 + η4)2 + · · · . To discuss stability most straightforwardly we keep
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p2 constant, and thus make it explicit as in (3.6a) and (3.6b). In such a scenario the
expressions for B20, (3.6a) and (3.6b), and those for the Mercier criterion, (3.7a) and
(3.7b), are (up to a factor of 1/2) the same as far as the effects of second-order shaping
are concerned. The clear geometric picture we had for (3.6c) is, however, lost. Positive
triangularity and Shafranov shift no longer lead to an unequivocal increase in the magnetic
well. Only vertically elongated cross-sections preserve the benefit of positive triangularity
(η < 1), while horizontally elongated ones do so for the Shafranov shift. The reason
for this difference is the hidden response of the shaping in each one of these cases. To
keep the pressure constant (see before), if one increases triangularity in a configuration,
then the Shafranov shift should go in the negative direction to hold the same pressure
gradient (in a sense counteracting the triangular shaping). This opposite contribution to
B20 makes (de)stabilising triangularity or Shafranov shift dominate in different situations.
The stabilising effect of triangularity, for η < 1, overcomes any destabilising influence of
the Shafranov shift, which dominates when η > 1. The exact balance results in (3.6a) and
(3.6b).

The form of (3.7a) is consistent with (12.89) of Freidberg (2014). We have learnt,
though, that one must be careful at offering a simple picture to explain the behaviour
of stability. The simple geometric view offered by Freidberg for (3.6c) breaks down.2
As most relevant cross-sections are elongated vertically in practice, positive triangularity
(bean shaping) contributes favourably to stability. This aligns with the common wisdom
of how shaping affects stability.

As is well known, increasing the pressure in a configuration leads to a deepening of
the magnetic well. Here, formally, this is described by the unavoidable increase of B20
with |p2|, (3.6a) and (3.6b). The effect of pressure on stability is, even if B20 increases,
destabilising in the usual scenario in which triangularity is kept constant, (3.7a). This leads
to the well-known (Lortz & Nührenberg 1978; Freidberg 2014) equilibrium β stability
limit.3 The Shafranov shift plays a central role in setting this limit, as can be seen by the
avoidance of the β limit for η < 1 when fixing Δx, (3.7b).

The significance of any of the effects described is only relative to the effect of other
terms in the Mercier criterion. This comparison depends on lower-order parameter choices.
This is especially true for what we call the ‘intrinsic contribution’ to stability, a term that
does not involve any second-order parameters directly. Its stabilising contribution grows
with elongation in the horizontal direction, but it is deteriorated by current (opposite to
the contribution by the pressure gradient). The behaviour with current can be understood
considering the limit of very large I2. In this limit, the tokamak effectively becomes a
Z-pinch, whose instability grows like I2

2 (see chapter 11 in Freidberg 2014), a classic
result that in the circular-cross-section-limit becomes DMerc ∝ 1 − ι20 (Freidberg 2014,
chapter 12).

We pointed that any effect that did not break left–right symmetry at second order,
namely δy, could not affect B20. But we had not touched upon the effect of up–down
symmetry breaking through σ . We spare the reader from the expressions one obtains in
that case, which are not particularly illuminating. The procedure is, however, no different
from the one we have adopted, as long as σ is kept explicitly in the expressions. As

2In Freidberg (2014), the author uses a different notation from that presented here. For reference, q0 = 1/ι0,
κ = 1/η2, εFreid = ηε and βp = κ|p2|/ι20(1 + κ2). The qualitative argument for the stability behaviour is related to
the field lines spending longer on the good curvature region. That may be related to the growth in |B|, as the good
curvature region is the high-field side. However, as we have seen, stability results from balancing the opposing behaviour
of triangularity and Shafranov shift.

3The β limit occurs when increasing the pressure gradient and keeping triangularity fixed. This is a limit that is
independent of the aspect ratio of the configuration.

https://doi.org/10.1017/S0022377823000211 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000211


MHD stability and shaping 11

FIGURE 3. Change in the stabilising triangularity effect with up–down symmetry breaking. The
plots show (left) the influence of regular and up–down triangularity on B20 and (right) the η and
σ parameters as a function of the rotation of the ellipse, θ . The elongation of the ellipse is kept
constant, E = 2, and at θ = 0 is aligned with the vertical.

pointed out in Appendix C, for a straightforward definition of shaping in that scenario,
we redefine δ, δy and Δx in the frame of the rotated ellipse. An example of how the
effect of triangularity on stability changes with the up–down symmetry breaking is shown
in figure 3. As the ellipse rotates, the effect of triangularity δ shrinks, to the point of
vanishing for ϑ = π/2. At that point, δ represents vertical triangularity; and as we have
seen, this has no effect on stability. The behaviour of δy in figure 3 is the reverse of that
of δ. It goes from having no effect to having an effect which in this case surpasses the
effect of δ at ϑ = 0. This difference in magnitude arises because the ϑ = 0,π/2 cases
are geometrically different. The major or minor axes are aligned with X in each case,
respectively.

4. Quasisymmetric stellarators

The discussion of MHD stability and shaping above is a renewed outlook at a
problem that has long been studied (Mercier 1962; Solov’ev & Shafranov 1970; Lortz
& Nührenberg 1976). We confirmed that the behaviour in a tokamak aligns with the
conventional wisdom of positive triangularity (in common elongated shapes) favouring
stability, but the results are otherwise not new. The discussion above is, however, a valuable
stepping stone towards dealing with the quasisymmetric problem. In quasisymmetry, like
in axisymmetry, the Fourier coefficients of |B| in the near-axis expansion are constant,
making most of the analysis the same.

4.1. Constancy of parameters
Let us start by carefully considering the description of quasisymmetric configurations
in the near-axis framework. By definition, the magnitude of the magnetic field in an
equilibrium, quasisymmetric configuration (expressed in Boozer coordinates) is |B| =
B(ψ, χ = θ − Nφ) (Boozer 1983; Helander 2014; Rodríguez, Sengupta & Bhattacharjee
2021). That is, the near-axis expansion of |B| is precisely analogous to that of axisymmetry.
Thus, we expect to find a natural parametrisation of quasisymmetric configurations
analogous to that of tokamaks.

To leading order, the shape of a magnetic axis should be chosen. For a quasisymmetric
stellarator, any regular (i.e. with no vanishing curvature), closed space curve is valid, a
priori, beyond a circle. The choice of axis fixes N, the direction of the symmetry, which
corresponds to the self-linking number of the axis (Rodríguez et al. 2022b). The poloidal
current is then G0 = L/2π, where L is the total length of the axis.

At first order, elliptical shapes are described through η and σ , like for the tokamak.
However, in general σ = σ(φ) is a function of the toroidal angle; it is the solution
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to a periodic first-order Riccati equation (see (A6) in Garren & Boozer (1991a)
or (2.14) in Landreman & Sengupta 2019) with a choice of initial condition σ(0)
(vanishing in stellarator symmetry). Although this makes the shape of cross-sections in
a quasisymmetric stellarator depend on φ, the freedom at first order truly resides on two
parameters, η and σ(0). This underlines the special nature of quasisymmetric stellarators.

At second order in the distance from the magnetic axis we have the four parameters p2,
B20, BC

22 and BS
22, the same number of constant parameters as in a tokamak. This is true in

the ideal quasisymmetryic limit, which we assume for the analysis in this section. However,
in practice, one should not forget the limitations that arise through what has come to
be known as the Garren–Boozer overdetermination problem (Garren & Boozer 1991a).
Not every axis shape and parameter choice can consistently support quasisymmetry and
equilibrium simultaneously through second order. Generally one is forced to relax the strict
quasisymmetric requirement on, following Landreman & Sengupta (2019), B20, which
becomes for consistency a function of the toroidal angle. Only a subset of near-axis
choices (Landreman 2022; Rodríguez et al. 2022c) have approximately constant B20.4
Thus, in practice, we can expect to find deviations between our idealised analysis and
a more consistent one, driven by ‘errors’ in quasisymmetry. For deviations in the range of
ΔB20 ∼ 0.01, one may estimate deviations in ΔV ′′ ∼ 1. When illustrating the findings in
this section with practical examples, we have to check that the idealised theory reproduces
the actual near-axis configuration (see Appendix G).

4.2. Choosing a characteristic cross-section
Although quasisymmetric configurations may be parametrised (for a given axis shape) by
the same amount of parameters as a tokamak, flux surfaces are naturally asymmetric. That
is, the cross-section at each angle φ, described analogously to the axisymmetric case5 , will
be generally different. This makes the notions of ellipticity, triangularity and Shafranov
shift functions of φ. However, following the parametrisation of the axisymmetric scenario,
we must be able to parametrise the whole configuration through the description of a single
cross-section (and the axis shape). Given a cross-section and the axis shape, the remainder
of the configuration then follows from the fulfilment of quasiymmetry and equilibrium.
This simplicity is particular to quasisymmetric stellarators, but other optimised stellarators
will also impose constraints on the shaping of their surfaces.

In principle, one could consider the geometric features of any of the cross-sections as
parameters. In stellarator-symmetric stellarators, though, one cross-section is particularly
simple: the up–down symmetric one. There are two such distinct cross-sections per field
period, by stellarator symmetry occurring at φ = 0,π/N, where N is the number of field
periods. For simplicity we focus on the cross-section at φ = 0. In common quasisymmetric
configurations (see later section), this often corresponds to a characteristic bean-shaped
cross-section, and thus it is reasonable to consider it as representative in our discussion.
For such a cross-section, the normal vector of the Frenet–Serret frame points inwards

4The lack of a unifying theory on the set of choices that conforms to quasisymmetry makes us refer to the axis
shapes and their properties in most generality here. Only through some illustrating examples will the behaviour for the
quasisymmetric subset be explored.

5To draw the analogy, some elements need to be amended, such as η → η/κ . It is important to realise that there is,
however, an additional geometric effect that deforms cross-sections further in this more general case compared with the
axisymmetric one. That deformation comes from the plane normal to a general magnetic axis, where cross-sections are
particularly simple, not matching constant cylindrical angle planes (what may be referred to as the ‘laboratory frame’)
where cross-sections are generally defined. The effect is a deformation of shapes, as described partially in Appendices
B, C and D. The details will appear in a future publication, but they do not affect in any significant way the discussion to
follow.
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along the major radius by construction6 , and the configuration presents a high degree of
symmetry (curvature and torsion are even functions of φ, and σ is odd). The task is then
to connect the features of this cross-section to stability.

4.3. Shaping and MHD stability in a quasisymmetric stellarator
We relate the shaping of the up–down symmetric cross-section to stability in a form similar
(conceptually) to how we approached the problem in the axisymmetric case. That is, we
must first find a relation between X2 and Y2 (in this case at φ = 0) and typical shaping
concepts, relate them to natural parameters of the near-axis framework and finally draw
the connection to the Mercier criterion. We will, for now, ignore the changes in shape of
the cross-section that occur from the projection from the plane normal to the axis to the
cylindrical coordinate system. We spare the reader from the algebra, and write the Mercier
criterion in the following form:

ε2π2DMerc

|p2|G2
0

= T|p||p2| + Tδδ +Λ, (4.1)

where all the interesting information lies in the forms of T andΛ. TermΛ, which includes
the effects of the axis, η and σ , and is important in determining the total stability of the
configuration, is, however, not very illuminating (see Appendix F). Instead, we focus on
the effect of triangularity, and see how the tokamak intuition and common wisdom claim
holds.

Using the appropriate relations, we obtain after significant algebra

Tδ = 3η
(1 − α)+ F̄(1 + α)

(3 + α)− F̄(1 + α)
, (4.2)

where α = η4/κ(0)4 and

F̄ = 2

⎡
⎢⎢⎣ (I2 − τ(0))/κ(0)2∫ 2π

0
dϕ(I2 − τ)/κ2

∫ 2π

0
dϕ(1 + σ 2 + η4/κ4)

1 + η4/κ(0)4
− 1

⎤
⎥⎥⎦ , (4.3)

with τ the torsion of the axis. The expression in (4.3) compares local quantities with
their global average, acting as a measure of asymmetry in the stellarator. Readers familiar
with the near-axis framework will recognise the averages as part of the expression for
the rotational transform on axis, ῑ0 = 2G0η

2
∫

[(I2 − τ)/κ2]/
∫
(1 + σ 2 + η4/κ4). In the

axisymmetric limit, where the average and local quantities are the same, F̄ → 0, and
Tδ in (4.2) reduces to (3.7a), with α generalising η → η/κ(0). Thus, in this limit, the
tokamak intuition holds: for a cross-section that is elongated in the vertical direction
(α < 1), positive triangularity favours MHD stability. In contrast, negative triangularity
contributes positively for α > 1.

The presence of F̄ does not guarantee this behaviour in a general quasisymmetric
stellarator. To understand the implications of this measure of asymmetry, we consider the
representation of Tδ/3η in (α, F̄) space (see figure 4).Parameter F̄ changes the stabilising
implications of triangularity drastically, especially in the F̄ < 0 region. Any value F̄ <
(α − 1)/(1 + α) (of course, F̄ < −1) gives Tδ < 0, and makes negative triangularity have

6Under stellarator symmetry, φ → −φ and z → −z, which requires the axis at the origin φ = 0 to be normal to R̂.
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FIGURE 4. Sign of Tδ/3η and T|p| ῑ20/4κ
2 in (α, F̄) space. The plots show Tδ/3η (left) and

T|p| ῑ20/4κ
2 (right) in (α, F̄) space. The shaded region in the left-hand plot represents the space for

which Tδ < 0, and thus positive triangularity is detrimental to the stability of the configuration.
The shadow region for T|p| also represents a negative sign corresponding to the destabilising
effect of a pressure gradient. The dotted line in the left-hand plot represents the case of the
tokamak explored in the previous section, which shows the possibility of both triangularity signs
being stabilising. The dashed and dotted lines in the right-hand plot correspond to the changing
lower limit of the positively signed region as the magnitude of the geodesic contribution (the
term with the integral I) is changed from maximal (dotted line) to half its magnitude from the
axisymmetric limit (labelled 0.5).

a stabilising effect, contrary to common wisdom. In this region, though, 0 > Td > −1,
and thus the effects of triangularity are moderate. To picture the meaning of negative F̄,
consider the limit of η ∼ 0. In that case, the first fraction in the square brackets of (4.3)
dominates F̄, which for no toroidal current requires τ/κ2 to have a local minimum.

If this had a local maximum, then F̄ > 0 and Td would live in the upper portion of
figure 4. In that case, we see that positive triangularity will benefit stability for moderate
values of F̄. Beyond F̄ > (3 + α)/(α + 1) negative triangularity becomes once again
stabilising, and in this case, strongly so. Triangularity Td shows a divergence at the
boundary, corresponding to an unphysical Shafranov shift, indicating the breakdown of
the parametrisation chosen for the configuration. In the limit |F̄| → ∞, Tδ → −3η.

In summary, the common perspective on the contribution of triangularity (or bean
shaping) to stability does not generally apply to quasisymmetric stellarators. For a
significant asymmetry |F̄| the opposite is actually true. This is not a claim on the full MHD
stability of a configuration, which we cannot make simply based on triangularity. Instead, it
is a statement on the partial contribution of triangularity to the total MHD stability; that is,
how a change in triangularity keeping the pressure, elliptic shaping, up–down symmetry
and axis shape unchanged helps or worsens the stability of a configuration. Within the
near-axis description this thought experiment has a precise formulation, and suggests that
positive-triangularity, bean-shaped cross-sections do not necessarily improve stability.7

What does this imply in practice? Are most of the existing cases aligning or misaligning
with the common wisdom? From the analytic perspective, a definitive answer should
explore the value of F̄ in quasisymmetric configurations, but we content ourselves by
presenting some examples of optimised near-axis quasisymmetric configurations (see

7Note that in practice, one must also keep quasisymmetry, and thus the thought experiment can only be performed
approximately. One may still talk about the contribution of triangularity to stability formally, as one may think of the
limiting effect of a small change in δ (i.e. the derivative).
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FIGURE 5. Effect of triangularity and pressure on MHD stability for some quasisymmetric
stellarators. The plot shows as scatter points the factors regulating the effect of the triangularity
(Tδ) and pressure gradient (T|p|) for several optimised quasisymmetric near-axis stellarators. The
‘precise’ QA and QH are from Landreman & Paul (2022), the new QH corresponds to the new
optimised stellarator example from Rodríguez et al. (2022c), while all others are from a recent
publication (Landreman 2022). We chose those configurations with reduced B20 variation so that
the magnetic well computation, using a constant B20, showed good agreement with the full V ′′.
The cross-sections shown correspond to the φ = 0 cross-sections in each configuration.

figure 5 and table 1).8 For all the cases analysed, remarkably, Tδ < 0, a result that
merits further investigation. As a result of this behaviour, the triangularity of the bean
cross-section (see cross-sections in figure 5) is detrimental to MHD stability in most
scenarios. Shaping contributes favourably only as an exception, of which the ‘new
QH’ (Rodríguez et al. 2022c) and ‘QH N4 Mercier’ (Landreman 2022) configurations
are two examples. The author in Landreman (2022) obtained the latter by optimising
for quasisymmetry and a favourable Mercier criterion. Thus, finding the favourable
contribution of triangular shaping is not surprising. The work here sheds some light on
what appeared as a rarity in that paper. The ‘QH N4 well’ (Landreman 2022) presents
a different scenario. This configuration presents a magnetic well, yet, according to our
theory, it has the ‘wrong’ triangular shaping. This is of course not inconsistent, as the
triangularity contribution can be detrimental, yet the configuration remain stable. What is
more surprising is the fact that the triangularity of this configuration is stronger compared
with a similar configuration that was not optimised for a magnetic well. Optimising for
stability seems to drive, in this case, the wrong shaping from the perspective of our
theory. The disagreement is resolved by realising that on top of triangularity the axis
shape was also modified. The change in the latter is sufficient to overcome the detrimental
contribution of triangularity in this case. This scenario is reminiscent of the behaviour
observed in optimisation of equilibrium boundaries such as in Nührenberg & Zille (1986)
and Nührenberg (2010), examples on which the intuition on stability and shaping was built.

8The configurations are described in the respective work, and we are here considering the cross-sections at φ = 0,
stellarator symmetry points as defined in those. The cross-sections are shown in figure 5.
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PQA PQH NQH 22QA N3V N4LA N4W N4M N7 N3B

F̄ −3.1 −1.4 −1.6 5.6 −1.5 −1.3 −1.7 −1.6 −0.8 −1.6
δ 4.9 4.6 −1.7 −0.3 0.9 1.2 11.8 −9.1 1.3 0.9
Tδ −0.7 −0.5 −1.9 −2.2 −0.8 −0.6 −0.5 −3.9 −1.0 −0.6
V ′′/8π2G0 1.1 1.1 −1.4 −0.2 1.9 2.0 −0.5 −11.9 7.3 −1.7*

TABLE 1. Details of the configurations in figure 5. The table includes the values of F̄, the
triangularity δ, the effect of triangularity Tδ and the magnetic well V ′′ for the configurations
represented in figure 5. The short labels on top refer to: PQA, precise QA; PQH, precise QH
(from Landreman & Paul 2022); NQH, new QH (from Rodríguez et al. 2022c); 22QA, 2022 Qa;
N3V, N3 vacuum; N4LA, N4 long axis; N4W, N4 well; N4M, N4 Mercier; N7 and N3B, N3
beta (all these from Landreman (2022)). For the latter instead of the magnetic well we show the
ε2DMerc, which shows that this finite-β configuration is unstable.

Once again, the variation of the surface ‘triangularity’ induces changes on the axis shape
as well as other features in the equilibrium, explaining the potential disagreement. In the
latter case a comparison with our theory is further complicated because of the variation of
MHD stability properties throughout the volume and the necessary search for a near-axis
description that adequately captures the behaviour of the global equilibrium near the axis.
In any form, from the perspective of the near-axis analysis, the bean shaping we observe in
most of the configurations in figure 5 is detrimental and thus cannot be directly driven by
the stability requirement, as it opposes it. It is natural to believe that it is the requirement
of quasisymmetry or some other property that pushes the configuration to develop such
bean-like feature.

Besides triangularity, the effect of pressure on stability is also modified in
quasisymmetric configurations from that in tokamaks. In the latter, we unavoidably
encountered the equilibrium stability β limit (see (3.7a)). For a quasisymmetric stellarator,
we may write the following two equivalent forms:

ῑ20T|p|
4κ2

= 2α
(3 + α)− F̄(1 + α)

− √
αI[

√
α, σ ] (4.4a)

= − α[(1 − √
α)2 − (1 + α)F̄]

(1 + √
α)[(3 + α)− (1 + α)F̄]

− √
α

(
I[

√
α, σ ] −

√
α

1 + √
α

)
, (4.4b)

where I is the function introduced in (2.6), and we have written the latter in a
form in which the axisymmetric limit, (3.7a), is straightforward (namely F̄ → 0 and
I = √

α/(1 + √
α)). The contribution of I is important, as it is negative and thus

contributes to destabilising the stellarator for a finite plasma β. Its magnitude is bounded
between 0 < [

√
α/(1 + √

α)]min ≤ I < 1, and thus one may take as orientative the case
in which only the first fraction in (4.4b) contributes to T|p|.

The effect of F̄, the measure of asymmetry, is shown in the right-hand plot of figure 4.
The factor T|p| is no longer necessarily negative. Thus, an increase in the pressure gradient
that improves stability is possible; naively, there would be no β limit. This lack of a
stability limit at zero magnetic shear in a stellarator is not a new concept (see Hudson,
Hegna & Nakajima 2005). It could for instance lead to a configuration that is unstable at
small plasma β, but becomes stable above some critical value, introducing the concept of
a second stability regime. This would make reaching the finite β equilibrium in practice
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difficult, but it is an attractive concept nonetheless. To picture T|p|, the integral I was
largely simplified. Changing its contribution leads to changes in the region that satisfies
T|p| > 0. That region narrows when I is larger (tending towards the ‘Max’ curve in the plot,
which assumes I = 1) and widens when it becomes weaker (in the limit I ∼ 0 the lower
bound going towards F̄ → −∞). In practice, the behaviour is more complex, as I and F̄
(and even α) are not completely independent. Figure 5 shows T|p| for some quasisymmetric
designs, showing that in all cases there appears to be a β stability limit.

5. Discussion and conclusions

In this paper, we have addressed how the shaping of poloidal cross-sections is related
to the MHD stability of toroidal plasmas in order to assess the common conception
of positive triangularity bean shapes being favourable. We investigated axisymmetric
tokamaks and quasisymmetric stellarators through a near-axis framework.

The analysis required constructing and defining conventional shaping notions such
as triangularity and Shafranov shift within the inverse-coordinate near-axis-expansion
framework. The work builds on Landreman & Sengupta (2019) and differs from the
so-called direct approach by Mikhailovskii & Aburdzhaniya (1979) (or more recent efforts
like that of Kim et al. (2021)). The direct involvement of the magnetic field magnitude in
our framework is convenient for discussing MHD stability beyond axisymmetry.

In the tokamak limit, we reproduce and more systematically explain existing results
(Freidberg 2014) on how shaping (especially triangularity) affects MHD stability through
the Mercier criterion. Only for vertically elongated cross-sections is positive triangularity
MHD-stabilising. This dependence on elongation is a consequence of the contribution
from the Shafranov shift, which wins over the destabilising effect of negative triangularity
when cross-sections are horizontally elongated. The worsening of stability with increased
pressure gradients and, thus, the appearance of a β limit were also proven.

We then explored the effects of shaping and pressure in stellarator-symmetric,
quasisymmetric stellarators. We expressed the stability criterion in terms of the shape of
a representative up–down symmetric cross-section, which together with an axis shape is
sufficient to parametrise the whole configuration. The change of stability as one changes
the shape of such cross-section was then studied. In practice, when the asymmetry in the
problem is taken into consideration, we show that in most cases (including all the particular
examples considered) negative triangularity is stabilising, contrary to current belief.
The positive triangularity bean shapes most commonly encountered in quasisymmetric
stellarators thus appear to oppose stability (see figure 5), even when the configurations
may be overall stable. The presence of these characteristic shapes must then correspond to
a different property. Note that although we show this to hold for many existing optimised
near-axis configurations, the behaviour is not necessary, and it is possible to change it by
tweaking the asymmetry measure F̄; see (4.3).

This added flexibility also exists for the effect of the pressure gradient. Unlike in the
axisymmetric case, finite β corrections can lead to a more MHD-stable configuration.
Such behaviour requires particular choices of magnetic axis shapes and parameters, but is
not seen in the examples considered. A deeper understanding of their feasibility requires
future work on F̄ and its relation to quasisymmetry and axis shapes.

This work suggests that the relation between cross-sections and stability in a
quasisymmetric stellarator is complicated and does not conform necessarily to the need
of a bean-shaped cross-section for stability. Making a general statement regarding the
benefit of bean-shaped cross-sections to MHD stability in a general stellarator appears to
be misleading. This is worth further exploration beyond quasisymmetry.
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FIGURE 6. Definition of the slant angle ν. Diagram showing the definition of the angle ν
measuring the inclination of the magnetic axis at the origin (φ = 0) with the ‘laboratory’
cylindrical coordinate system. The symbols have their usual meaning.
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Appendix A. Mercier criterion

The Mercier criterion scalar DMerc used in this paper can be written as DMerc = Ds +
Dw + Dd (p. 23 in Bauer et al. (2012) or Landreman & Jorge (2020)):

Ds = 1
16π2

(
dι
dψ

)2

− 1
(2π)4

dι
dψ

∫
dS
μ0j − I′B

|∇ψ |3 , (A1a)

Dw = μ0

(2π)6

dp
dψ

(
d2V
dψ2

− μ0
dp
dψ

∫
dS

B2|∇ψ |
)∫

dS
B2

|∇ψ |3 , (A1b)

Dd = 1
(2π)6

(∫
dS
μ0j · B
|∇ψ |3

)2

− 1
(2π)6

(∫
dS

B2

|∇ψ |3
)∫

dS
(μ0j · B)2

B2|∇ψ |3 . (A1c)

We reproduce this form for the sake of reference, as different forms of the Mercier criterion
exist in the literature. In this case the instability criterion is DMerc < 0.

Appendix B. Elliptic shaping

In this appendix, we derive in some more detail the expressions in § 3.2.1 which relate
the parameters η and σ of the near-axis framework to the geometric properties of the
elliptic cross-sections to leading order. Let us start by writing down the ellipse equation
in the canonical form of a second-order polynomial. To do so we define for the leading
cross-section X = η cosχ and Y = (sinχ + σ cosχ)/η, following (3.1). To construct the
ellipse equation we seek expressions for sinχ and cosχ , so that using the fundamental
trigonometric relation of cos2 χ + sin2 χ = 1,

X2(1 + σ 2)− 2η2σXY + η4Y2 = η2. (B1)
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From this form, one may then construct the rotation angle and ellipticity of the ellipse:

E = F
2η2

[
1 +

√
1 − 4η4

F2

]
, (B2a)

tanϑ = F − 2η4

2ση2

[
1 +

√
1 + 4σ 2η4

(F − 2η4)2

]
, (B2b)

and F = 1 + σ 2 + η4. Here elongation is defined as the ratio of the major to the minor
radius, and ϑ is the angle between the major radius and the positive X direction.

The form of these expressions is reminiscent of a solution to a quadratic equation. In
fact, one may rearrange (B2) in the following form:

E2 − 1 + σ 2 + η4

η2
E + 1 = 0, (B3a)

Θ2 + η4 − 1 − σ 2

ση2
Θ − 1 = 0, (B3b)

where Θ = tanϑ . Rearranging the latter and using the double-angle formula, we obtain

tan 2ϑ = 2Θ
1 −Θ2

= 2ση2

η4 − 1 − σ 2
, (3.2b)

as used in the text. In an analogous way, and defining E = tan e,

sin 2e = 2E
1 + E2

= 2η2

1 + σ 2 + η4
. (3.2a)

We give the geometric interpretations of the angles ϑ and e in figure 1.
We may also invert these relations to obtain a form for η and σ in the geometric ϑ and e.

Using (3.2a) and (3.2b):

σ 2 =
(

sin 2ϑ
tan 2e

)2

, (B4a)

η2 = 1 + cos 2ϑ cos 2e
sin 2e

. (B4b)

Note that these expressions agree with what we know in the up–down symmetric limit,
namely that in the limit of the major radius being aligned with the curvature direction
(ϑ ∼ 0 and η > 1), then η2 = 1/E , and when aligned along the binormal, η2 = E .

We remind the reader that the above is a description of the shape of the cross-section
to leading order in the plane normal to the magnetic axis. In the tokamak case, this is
what we call cross-sections in the ‘laboratory frame’, namely poloidal cross-sections that
result from cuts of the configuration at a constant cylindrical angle. In a more general
stellarator, this shape in the normal plane is not the same as in the laboratory frame.
This difference reduces to a projection factor that modifies the shape of the cross-section.
These changes are important to consider in the context of, for instance, quasisymmetric
stellarators. With this in mind, we must consider the reinterpretation of η as η → η/κ and
the projection factor. Some attempts to describe the latter have been made by Landreman
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FIGURE 7. Basic definitions for triangularity. The diagram defines the length scales needed to
compute the triangularity of an up–downsymmetric cross-section indicated for the outermost
surface. The evolution of the geometric centre Rgeo from one flux surface to another defines the
Shafranov shift, ΔX , with the negative sign indicating displacement outwards.

& Sengupta (2018) and Rodríguez et al. (2022c), but the geometric meaning is generally
obscure and complicated. In a forthcoming paper, we will present a rigorous geometric
form that describes these changes. For now, we content ourselves with understanding its
primary consequences, focusing on the stellarator-symmetric, quasisymmetric stellarator,
particularly the cross-section at φ = 0. The axis at this point has, by construction, its
normal aligned with the major radius. However, generally, the magnetic axis is rotated
about R̂ by an angle ν (i.e. the angle between the binormal and the vertical ẑ, see figure 6).
From this inclination, the cross-section in the plane normal to the axis is re-scaled
Y → Y/ cos ν in the laboratory frame. The ellipse thus shrinks in the vertical direction. For
the most part, this is a simple adjustment that leaves η and σ with most of their geometric
interpretation.

Appendix C. Details of triangularity in the near-axis framework

In the main text, we assessed the effect of the shaping through second-harmonic
modulation of the cross-sections. We did so in a geometrically intuitive form to motivate
the relevant measure of the shaping strength and the final form of δtok. We did not, however,
provide a derivation for the final expression for triangularity, (3.3). Filling that gap is the
purpose of this appendix.

Let us commence by defining triangularity in an up–down symmetric tokamak. We write
this definition as δtok = (Rgeo − Rupper)/a, where Rgeo = (Rmin + Rmax)/2, a = (Rmax −
Rmin)/2, Rupper is the position of the turning point in the vertical direction and Rmin/max
are the leftmost and outermost points of the cross-section along the symmetry line.9
See the diagram in figure 7 for a depiction of these measures. Triangularity is the
relative displacement of the vertical tips of the cross-section from the mid-point along
the symmetry line.

To make rigorous contact with the near-axis modulation, consider X and Y (the normal
and binormal directions of the cross-section) to coincide with the ‘laboratory frame’. In
the tokamak context, this is, in fact, correct (taking into consideration the minus sign
X → −R following the direction in which the major radius points), a notion that needs
some adjustment in the more general quasisymmetric case, which we briefly touch upon
at the end of this appendix. Assuming up–down symmetry, and first only keeping XC

22 and
X20 shaping, we may find the various geometric quantities in δtok straightforwardly. The
points Rmin and Rmax are Rmin /max = 1 ∓ εXC

11 − ε2(X20 + XC
22). The turning point Rupper

9Note that these are not the same as the minimum and maximum radial positions when the triangularity is large
enough to form a bean shape. In that case, we consider the positions along the symmetry line. This choice is unnecessary
in most of the tokamak literature, as it rarely considers bean shapes.
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can simply be found by requiring ∂χY = 0, which occurs at χ = π/2 asymptotically, and
thus Rupper = 1 − ε2(X20 − XC

22). With these results, it then follows that

δtok = −2ε
XC

22

XC
11

(C1)

for a positive XC
11. A positive value of XC

22 then corresponds to what is known as negative
triangularity (end-points of the cross-section pointing in the direction of larger R). We see
the direct relation between XC

22 and triangularity through the measure of strength motivated
in the main text.

The effect of YS
22 on tokamak triangularity is analogous to that of XC

22. In that case,
we may once again compute Rupper as the position for the turning point ∂χY = 0. Doing so
yields an expression for cosχ for the turning point, which may be expanded asymptotically
in ε, as cosχ ∼ 2εYS

22/Y
S
11. In this limit, Rupper ≈ 1 + 2ε2XC

11YS
22/Y

S
11. With this and the

symmetry line being unaffected, δtok ∼ 2εYS
22/Y

S
11. Importantly, the term is analogous to

XC
22, but with the opposite sign.
Of course, in general, these two forms of ‘triangular’ shaping coincide and thus will

interact in some form to result in a net triangularity. Here the asymptotic nature of the
approach becomes highly valuable. In the limit ε → 0, each of these contributes to the
total triangularity independently:10

δtok ≈ 2ε
(

YS
22

YS
11

− XC
22

XC
11

)
. (3.3)

Before concluding this appendix, we consider the case of triangularity in quasisymmetric
stellarators. The derivation above holds at every toroidal angle φ in which the
cross-sections are up–down symmetric.

C.1. Projection to ‘laboratory frame’
We expect the deformation of cross-sections when going from the plane normal to the
axis to the cylindrical laboratory frame to affect triangularity. After careful consideration
of geometry and asymptotics, we find that the triangularity in the laboratory frame of the
up–down symmetric cross-section at the origin of a quasisymmetric stellarator is

δlab = δtok + ε

R0

[
1
2

(
κ

η

)3
(

1 + 3
∂2
φR0

R0

)
− η

κ

]
sin2 ν, (C2)

where φ represents the cylindrical coordinate, R0 is the radial position of the magnetic
axis, ν the angle defined previously denoting the deviation of the axis binormal from ẑ
and all quantities are evaluated at the origin φ = 0. Of course, in the limit of ν = 0, the
triangularity is precisely that computed before, δtok.

The critical realisation is that the only difference is in an order sin2 ν term that shifts the
value of δtok. The difference depends solely on the shape of the axis and η, but no other
higher-order quantity. A change of triangularity in the normal plane thus directly leads to
an equivalent change in the laboratory frame. No rescaling occurs because triangularity is
a quantity normalised to the underlying ellipse shape, which we also learnt to be deformed.
The ratio remains unchanged. Thus, with this caveat, we may mostly ignore this difference
when discussing the effects of increasing or decreasing triangularity, understood as a
consequence of second-order choices.

10The change to the vertical turning point is of order ε, and thus XC
22 effects would only be affected at order ε3 (one

order too high). Similarly, in reverse.
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C.2. Triangularity and up–down asymmetry
We constructed the notion of triangularity in the context of an up–down symmetric
cross-section. Breaking this symmetry needs some adjustments in the analysis. The
symmetry in the near-axis framework may be broken in two different ways. On the one
hand, asymmetry could arise purely at second order from the modulation of XS

22 and YC
22. As

the main text argues, their effect is analogous to triangularity but in the vertical direction.
Thus one may define δy (the vertical triangularity) as a measure of asymmetry.

The up–down symmetry may also be broken at first order whenever the elliptical
cross-sections are not aligned with the Frenet–Serret basis. In that case, regular and
up–down triangularity will no longer correspond to the expressions for δtok and δy.
The rotation of the underlying ellipse mixes the shaping harmonics into a new linear
combination. A reasonable way to define the geometry of such shapes is to define δtok
and δy not in the Frenet frame but rather in the frame of the ellipse. This change requires
a mapping of the shape coefficients that takes the rotation of the ellipse ϑ into account.
Defining X′ and Y ′ as the rotated coordinates, and C = cosϑ and S = sinϑ , where ϑ is
the rotation angle of the ellipse as given by (3.2b), we rotate the original ellipse and define
a new poloidal angle χ ′ so that(

X′

Y ′

)
= 1
η

(√
S2 + (η2C + σS)2 cosχ ′√
C2 + (η2S + σC)2 sinχ ′

)
. (C3)

This expression describes a frame-aligned ellipse, a baseline we used to define
triangularity in this appendix. Here χ ′ = χ −Θ , where tanΘ = −S/(η2C + σS). We get
a similar transformation for the higher order. That is, we rotate the X2 and Y2 components
by −ϑ and re-express the harmonics in χ = χ ′ −Θ to obtain X′

2 and Y ′
2. Then we

define using (3.3) and (3.4), δ′ and δ′
y, which will involve generally complicated linear

combinations of second-order parameters. Doing so is algebraically untidy but may be
accomplished using computational algebra. We do not write down the expressions here,
as they do not provide much insight other than showcasing the mixing effect of the ellipse
rotation. We only use some numerical examples of it in the main text.

Appendix D. Details of the generalised Shafranov shift

We introduced in the main text a definition of a generalised Shafranov shift that
describes the relative displacement of cross-section centres. This generalised form
was originally presented in Rodríguez et al. (2022c). The expression reduces to the
axisymmetric limit as shown by Landreman & Jorge (2020). As emphasised, the
arbitrariness to the centre of cross-sections extends to the definition of the Shafranov shift.
This appendix will motivate the form in (3.5) taken as the definition of the Shafranov shift.

Consider a coordinate map that maps the cross-sections in the plane normal to the axis
(however complicated) into circular shapes (a sort of normal form of the cross-section).
Once we have performed such a mapping, we end up with circles, which have a unique
centre. The transformation will generally be complicated, but it must exist, as the
cross-sections are, after all, an embedding of S1 in the plane.

Let us state how to achieve this at first order. The main idea will be to cast the equations
describing X and Y in a form that explicitly gives cosχ and sinχ . In matrix form,(

X
Y

)
= ε

(
XC

11 cosχ
YS

11(sinχ + σ cosχ)

)
= ε

(
XC

11 0
σYS

11 YS
11

)
︸ ︷︷ ︸

M(1)

(
cosχ
sinχ

)
. (D1)
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Inverting this,

ε

(
cosχ
sinχ

)
=
(

1/XC
11 0

−σ/XC
11 1/YS

11

)(
X
Y

)
, (D2)

and computing the norm provide the equation of a circle (X′)2 + (Y ′)2 = ε2, where

X′ = X
XC

11
= X̄, (D3)

Y ′ = Y
YS

11
− σ

X
XC

11
= Ȳ − σ X̄. (D4)

Note that this is the same as before when defining the ellipticity and rotation angles in the
previous appendix. The ellipses become circles in the transformed space (X′,Y ′).

With this leading-order procedure in mind, we may construct the ‘circles’ for the
second-order shaping. To do so, we use trigonometric relations of the form cos 2χ =
1 − 2 sin2 χ , to O(ε2). With that, and multiplying through M(1),(

X′

Y ′

)
− ε2

(
X̄20 + X̄C

22
Ȳ20(1 − σ)+ ȲC

22 − σ X̄C
22

)

= ε

(
1 + 2εX̄S

22 sinχ −2εX̄C
22 sinχ

2ε(ȲS
22 − σ X̄S

22) sinχ 1 + 2ε(σ X̄C
22 − ȲC

22) sinχ

)(
cosχ
sinχ

)
, (D5)

where the overline indicates normalisation with respect to XC
11 or YS

11 respectively. Inverting
the matrix and keeping the relevant orders in ε, we can define a circle (X∗)2 + (Y∗)2 = ε2:(

X∗

Y∗

)
= 1

1 + 2ε(X̄S
22 + σ X̄C

22 − ȲC
22)(

1 − 2εȲC
22 sinχ 2εX̄C

22 sinχ
−(σ + 2εȲS

22 sinχ) 1 + 2εX̄S
22 sinχ

)(
X̄ − ε2(X̄20 + X̄C

22)

Ȳ − ε2(Ȳ20 + YC
22)

)
. (D6)

Figure 8 shows an example of this transformation. The transformation matrix reduces to
the ellipse map to leading order ε. However, it is clear from this map that cross-sections
have a relative shift. From that, we may read off the Shafranov shift:

Δx = X20 + XC
22, (3.5a)

Δy = Y20 + YC
22. (3.5b)

We refer to these as generalised Shafranov shift. It satisfies the necessary circular
cross-section axisymmetric limit and holds for any φ and second-order shaping. The
quantity Δx is directly related to the mid-point of the cross-section around the up–down
symmetry line. The shift in the Y direction has a similar meaning but in the perpendicular
direction. We emphasise that the approach presented is not unique, and the transformation
(X,Y) → (X∗,Y∗) could have been chosen in another way. However, those forms would
not generally match the axisymmetric limit.11

To conclude this appendix, we must briefly touch on the effect of the projection to
the ‘laboratory frame’ on the Shafranov shift. Focusing on the shift Δx, relevant for

11An example of this occurs if we express the matrix representing the linear transformation in terms of sines. To do
so, we must use the corresponding form of the double-angle formulas, and we end up getting a shift X20 − XC

22, which
makes no geometric sense.
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FIGURE 8. Example of the coordinate map to define the Shafranov shift. Example showing the
coordinate map transformation of a second-order shape onto concentric circles. We can obtain
and identify the cross-section shift from this mapping with the Shafranov shift. The deviation in
(X∗,Y∗) from a circle (broken line) results from higher-order effects.

the up–down symmetric cross-section, one may show that it remains invariant. Although
effectively X20 and XC

22 each have a shift from the projection, these are opposed, and thus
the Shafranov shift is invariant. No scaling is involved because X is aligned with the major
radius. Thus we expect to find a change on Δy. These changes are particularly complex,
as not only does the projection involve the 1/ cos ν scaling, but the components of Z2 are
also involved. Thankfully we do not need to consider this.

Appendix E. Governing near-axis equations

In order to relate the near-axis shaping to |B| harmonics and other natural near-axis
elements, it is necessary to know the expressions that relate them. These come from the
asymptotic expansion in powers of the distance from the magnetic axis of the magnetic
field and its governing equilibrium and magnetic equations. The original works by Garren
& Boozer (1991a,b) and Landreman & Sengupta (2019) are good places for reference
of these equations, while Rodríguez & Bhattacharjee (2021a) gives a more general form
of the description beyond equilibria with isotropic pressure. We here use the notation in
Landreman & Sengupta (2019).

For completeness, we write down the expressions for the quasisymmetric case (which
includes axisymmetry as a particular case). Following the notation of (2.1), the expansion
components of position functions have the form

X = εXC
11 cosχ + ε2(X20 + XC

22 cos 2χ + XS
22 sin 2χ), (E1)

and similarly for Y and Z.
The X2 components come from the requirements on |B| and the Jacobian (see (A34)

and (A36) in Landreman & Sengupta (2019) or Appendix C in Rodríguez & Bhattacharjee
(2021a)):

X2,0 = 1
4l′κ

[l′κ2XC
1,1

2 + (l′τ 2 + ι20/l
′)(XC

1,1
2 + YC

1,1
2 + YS

1,1
2)− 2τYC

1,1XC
1,1

′

+ 2τXC
1,1YC

1,1
′ + 2(ι0/l′)(2l′τXC

1,1YS
1,1 + YS

1,1YC
1,1

′ − YC
1,1YS

1,1
′)

+ XC
1,1

′2 + YC
1,1

′2 + YS
1,1

′2 + 4Z′
20]

+ 1
B3

0(l′)2κ

[
G2

0

(
B20 − 3

4
B0η

2

)
− B0G0(G1 + ι0I1)

]
, (E2a)
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XC
2,2 = 1

4κ

[
4

BC
22

B0
− 3η2 + κ2(XC

11)
2 + (τ 2 − (ῑ0/l′)2)((XC

11)
2 + (YC

11)
2 − (YS

11)
2)

+ 1
(l′)2

((XC
11)

′2 + (YC
11)

′2 − (YS
11)

′2)− 2τ
l′

YC
11XC

11
′ + 2τ

l′
XC

11YC
11

′

+ 2ῑ0
(l′)2

(YS
11YC

11
′ + YC

11YS
11

′
)+ 8ῑ0

l′
ZS

22 + 4
l′

ZC
22

′
]
, (E2b)

XS
2,2 = 1

2κ

[
2

BS
22

B0
+ (τ 2 − (ῑ0/l′)2)YC

11YS
11 − τ

l′
(YS

11XC
11

′ − XC
11YS

11
′
)

+ 1
(l′)2

YS
11

′
YC

11
′ − ῑ0

(l′)2
(XC

11XC
11

′ + YY
11YC

11
′ − YS

11YS
11

′
)+ 4ῑ0

l′
ZC

22 + 2
l′

ZS
22

′
]
, (E2c)

where we define the pressure gradient to include the constant factor μ0 = 4π × 10−7

often shown explicitly, and we use the shorthand l′ = dl/dφ. Here (see (A27)–(A29) in
Landreman & Sengupta (2019) or (24) in Rodríguez & Bhattacharjee (2021a)),

Z20 = 1
4η2κ3l′

[η4κ ′ − κ4(κ ′(1 + σ 2)+ κσσ ′)], (E3a)

ZS
2,2 = 1

4η2κ2l′
[η4 ῑ0 + κ3(ῑ0κ(σ

2 − 1)− 2σκ ′ − κσ ′)], (E3b)

ZC
2,2 = 1

4η2κ3l′
[−2ῑ0κ5σ + η4κ ′ − κ4(κ ′(σ 2 − 1)+ κσσ ′)], (E3c)

which follow from the divergenceless and flux surface nature of the field. The shapes {X2}
and the magnetic field harmonics {B2} are intimately related.

Then (see (A25) and (A26) in Garren & Boozer (1991a) or (27) and (28) in Rodríguez
& Bhattacharjee (2021a)),

ỸC
2,2 = κ2

η2
[(XC

2,2 − X̃2,0)σ + XS
2,2], (E4a)

YS
2,2 = −κ

2
− κ

η2
[(XC

2,2 + X̃2,0)− XS
2,2σ ], (E4b)

where YC
2,2 = Y2,0 + ỸC

2,2 and (see Rodríguez & Bhattacharjee (2021a,b) in the isotropic
limit)

Y20 = 1
2ῑ0κ2

[
4l′η2(ỸC

22ZS
22 + YS

22(Z20 − ZC
22))+ η2ỸC

22

(
2

I2

B0
− τ

)
l′

+ η2XC
22

′ − κl′Z20(η
2 − 4κ(XC

22 − σXS
22))− 4l′κ2σXC

22ZS
22 − 4l′κ2X20ZC

22

+ 4l′κ2σX20ZS
22 + 2η2ι0XS

22 + 4l′κ2σXS
22ZC

22 + η2κl′ZC
22 − η2X20

′

+ κ2

(
(σX20 − σXC

22 − XS
22)

(
2

I2

B0
− τ

)
l′ + σ ỸC

22
′ − 2ι0(ỸC

22 − σYS
22)+ YS

22
′
)]
.

(E5)
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Finally we have the self-consistent equilibrium condition which in an ideally
quasisymmetric case reads (see Rodríguez 2022), using the shorthand τ̃ = τ − I2/B0,

4C
(

−B20

B0
+ 3η2

4

)
+ D = 0, (E6)

where

C = − 1
G0η3κ2

[ῑ0(κ4(1 + σ 2)− 3η4)− 4l′η2κ2τ̃ ], (E7a)

D = D−1

ῑ0
+ D0 + ῑ0D1 + ῑ20D2 + ῑ30D3, (E7b)

where

D−1 = − 8κ2

G0η

d
dφ

{
1
κ2

d
dφ

[
τ̃ 2 + 1

(l′)2

(
κ ′

κ

)2

+ κ2

4

]}
, (E8a)

D0 = 48BS
22

B2
0

(
σ τ̃

η
+ ηκ ′

l′κ3

)
+ 48τ̃

B0η

(
−BC

22

B0
+ 3η2

4

)
+ 16Bα1τ̃

ηBα0B0

+ 8η
κ4B0

[
−4κ4τ̃ + 3κ2τ̃ 3 + 8τ̃

(
κ ′

l′

)2

− κ

(l′)2
(−9κ ′τ̃ ′ + 5τ̃ κ ′′)

−2κ2 τ̃
′′

(l′)2

]
+ 4σ

G0ηκ4

[
−3κ5κ ′ + 24κ

(κ ′)3

(l′)2
− 10κ4τ̃ τ̃ ′

−30κ2κ ′ κ
′′

(l′)2
− 2κ3

(
τ̃ 2κ ′ − 2

κ(3)

(l′)2

)]

+ 2I2
2

B0ηκ2

(
−η2τ̃ + σκ

κ ′

l′

)
+ 4ηI2

B0κ4

(
−κ4 + 2κ2τ̃ 2 + 2

(κ ′)2

(l′)2

)
, (E8b)

G0D1 = 12
(

−BC
22

B0
+ 3η2

4

)(
3η
κ2

+ κ2

η3
(1 − σ 2)

)
+ 4Bα1

G0

(
3η
κ2

− κ2

η3
(1 + σ 2)

)

+ 24κ2σ

η3

BS
22

B0
− 1
ηκ6

[
4κ4(2κ4 + 5η4)+ 4κ2τ̃ 2(κ4 + 6η4)

+ 12
(
κ ′

l′

)2

(8η4 − 5κ4)+ 8κ
κ ′′

(l′)2
(η4 + 4κ4)

]
− 16ση

l′κ3
(8τ̃ κ ′ + κτ̃ ′)

+ 8σ 2

ηκ2

(
2κ4 + κ2τ̃ 2 + 6

(
κ ′

l′

)2

+ κ
κ ′′

(l′)2

)

− I2
2

ηκ4
[2η4 + κ4(−1 + 2σ 2)] − 16ηI2

κ4

(
−η2τ̃ + σκ

κ ′

l′

)
, (E8c)

l′G0D2 = −16ητ̃
κ2

(
3η4

κ4
+ 5

)
− 32σκ ′

l′κη

(
η4

κ4
+ 1

)
− 16ητ̃σ 2

κ2
− 64κ ′σ 3

l′ηκ

+ 8ηI2

κ6
(η4 + κ4σ 2), (E8d)
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D3G0(l′)2 = −4
η

(
4 + 4η8

κ8
+ 11η4

κ4

)
− 4σ 2

η

(
7 + 4η4

κ4

)
. (E8e)

The expressions for the quasisymmetric limit can be found in Landreman & Jorge (2020)
explicitly.

Appendix F. Extra terms for Mercier stability in a quasisymmetric stellarator

If one was to write the form of the Mercier criterion in an ideal quasisymmetric
stellarator using the pressure gradient and the triangularity shaping on the up–down
symmetric cross-section at the origin as free parameters, then we may write

ε2π2DMerc

|p2|G2
0

= T|p||p2| + Tδδ +Λ, (4.1)

where Λ = Λ2 +Λ0 +Λ−2:

Λ2 = 1
η2ι0κ6(3η4 + 5κ4)− 4η4κ8(I2 − τ)

[ι30(η
4 + κ4)(32η8 + 11η4κ4 − 3κ8)

+ 4η2κ6τ(I2 − τ)(20η4I2 − 3(5η4 + κ4)τ )− 2η2ι20κ
2(4(16η8 + 8η4κ4 − 3κ8)I2

− (75η8 + 50η4κ4 − 9κ8)τ )+ ι0κ
4((201η8 + 20η4κ4 + 3κ8)τ 2

+ 20η4(−17η4 + κ4)τ I2 + 16η4(8η4 − 3κ4)I2
2)], (F1)

Λ0 = η4ι20κ
3(−5η4 + κ4)+ 4η6ι0κ

5(τ + 3I2)

η2ι0κ3(ι0(3η4 + 5κ4)+ 4η2κ2(τ − I2))

+ ι0(−11η8 + 46η4κ4 − 3κ8)+ 4η2κ2(11η4 − 3κ4)(τ − I2)

η2κ3(ι0(3η4 + 5κ4)+ 4η2κ2(τ − I2))
κ ′′

− 32η2[−η2ι0 − κ2(τ − I2)]
ι0(ι0(3η4 + 5κ4)+ 4η2κ2(τ − I2))

τ ′′, (F2)

Λ−2 = 8η2κ ′′(κ3 + 4κ ′′)
ι0(ι0(3η4 + 5κ4)+ 4η2κ2(τ − I2))

, (F3)

and the subscript denotes the scaling with rotational transform (or similar elements such
as τ and I2). We write these expressions using a normalised and scaled-out version of the
equations, which eases notation. In this notation, to convert to their full explicit form, κ
and τ should be divided and η multiplied by a factor of dl/dφ. The current I2 should be
divided by dl/dφ, as we assume G0 = dl/dφ. The expression forΛ should be then divided
by (dl/dφ)2 to express it in a form consistent with the other terms in (4.1). All quantities
are evaluated at φ = 0, the location of the up–down symmetric cross-section of choice in
our stellarator-symmetric configuration. Note that whenever the denominators are small,
the near-axis model will be very sensitive to change.

If, instead of triangularity, we were to express the Shafranov shift explicitly, then we
obtain

TΔ = 3κ
(α − 1)+ F̄(1 + α)

α − F̄(1 + α)
, (F4)

which reduces to the axisymmetric limit when F̄ → 0. Note that the tendency of the
configuration will be for TΔ < 0, as this is the limit for a significant asymmetry F̄.
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FIGURE 9. Comparison of the magnetic well criterion between the full near-axis and idealised
evaluation. The plot compares the magnetic well criterion V ′′ for the configurations in figure 5
assessed using the full near-axis description (V ′′) and the idealised quasisymmetric limit (V ′′

ideal).
The plot shows excellent agreement (within 30 % in all cases).

Unlike in the case of triangularity, this is the typical behaviour in a tokamak with vertical
elongation. Bunching of surfaces on the inboard side (that is, Δ < 0) increases stability.
Of course, there is a region in (α, F̄) space in which TΔ > 0. Thus, the behaviour of a
tokamak for a horizontally elongated cross-section may also be, in principle, achieved
with the appropriate axis and parameter combination.

Appendix G. Validity of ideal quasisymmetric assumption

To construct our analytic measure of stability, and understand the contribution of
triangularity in quasisymmetric configurations, we took the simplifying assumption of
ideal quasisymmetry. That is, we assumed B20 to be constant. In practice, optimised
quasisymmetric configurations such as those in figure 5 are not ideal. That is to say, they
all have a finite variation in B20(φ). As presented in the main text, this means that there
will be a mismatch between the estimate of stability from the ideal analysis and the full
approach.

To back the validity of figure 5 we should thus provide evidence of the ideal
consideration being a fair descriptor of the stability. We present in figure 9 a
comparison between the magnetic well evaluated using the full near-axis form and the
idealised scenario representing the stellarator by its up–down cross-section at φ = 0 (the
cross-sections shown in figure 5, at φ = 0 as defined in the relevant papers). Only cases
that showed agreement were kept, as only in those cases do we expect the analysis to be
trustworthy.
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