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Abstract

In this paper we address the general issue of estimating the sensitivity of the expectation
of a random variable with respect to a parameter characterizing its evolution. In finance,
for example, the sensitivities of the price of a contingent claim are called the Greeks.
A new way of estimating the Greeks has recently been introduced in Elie, Fermanian
and Touzi (2007) through a randomization of the parameter of interest combined with
nonparametric estimation techniques. In this paper we study another type of estimator
that turns out to be closely related to the score function, which is well known to be the
optimal Greek weight. This estimator relies on the use of two distinct kernel functions
and the main interest of this paper is to provide its asymptotic properties. Under a slightly
more stringent condition, its rate of convergence is the same as the one of the estimator
introduced in Elie, Fermanian and Touzi (2007) and outperforms the finite differences
estimator. In addition to the technical interest of the proofs, this result is very encouraging
in the dynamic of creating new types of estimator for the sensitivities.
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1. Introduction

This paper is closely related to the work of Elie et al. [5], and so we will try to follow their
notation. Let λ be some given parameter in R

d , and define the function

V φ(λ) := E[φ(Z(λ))],
where Z(·) is a parameterized random variable with values in R

n and φ : R
n → R is a

measurable function. A well-understood issue is the numerical computation of the function
V φ(λ) by means of a Monte Carlo procedure for example. A more difficult problem consists
in approximating the sensitivity of V φ with respect to the parameter λ. For some given
parameter λ0, we denote by β0 the expression of interest defined by

β0 := ∇λV φ(λ0) = ∇λ E[φ(Z(λ))]|λ=λ0 . (1.1)

In financial applications, V φ interprets as the no-arbitrage price of a contingent claim, defined
by the payoff φ(Z(λ)), in the context of a complete market with prices measured in terms of
the price of the nonrisky asset. The sensitivities of V φ with respect to the parameter λ are often
called Greeks, and their interest to practitioners is now well established.
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792 R. ELIE

To the author’s knowledge, three methods are considered mainly for the computation of
the sensitivities of V φ . They are compared in detail in the survey paper of Kohatsu-Higa and
Montero [9], and so we just briefly present their construction and main properties here.

First, the finite differences method consists in approximating the derivative of the price by
its variation in response to a small perturbation ε of the parameter λ of interest:

β0 ∼ V φ(λ0 + ε)− V φ(λ0)

ε
. (1.2)

Given a number of Monte Carlo simulations for the prices, the choice of ε is related to an
equilibrium between the bias and the variance of the estimator. For discontinuous payoff
functions φ, this method appears inefficient, owing to the poor precision of approximation (1.2).
A theoretical study of these estimators is reported in [4], [10], or [12].

Second, we can invert the differentiation and the expectation operators to obtain the pathwise
estimator given by a Monte Carlo estimation based on the representation

β0 = E[φ′(Z(λ0))∇λZ(λ0)].
This method, introduced in [3], therefore requires a lot of regularity on the payoff function φ
as well as the computation of the tangent process ∇λZ of the underlying. Efficient numerical
schemes for the implementation of this method can be found in [7].

Finally, we can compute β0 by reporting the differentiation operator on the regular distri-
bution of the underlying Z(λ). Whenever this random variable admits a density f (λ, ·) with
respect to the Lebesgue measure, we obtain the so-called likelihood ratio estimator based on

β0 = E[φ(Z(λ0))s(λ0, Z(λ0))] where s := ∇λf
f

. (1.3)

The application of this trick in finance has also been introduced in [3]. This type of representation
has been generalized by Fournié et al. [6], who studied the properties of the random variables
π satisfying

E[φ(Z(λ0))π ] for any function φ ∈ L∞(Rn,R).
By means of a Malliavin integration by parts argument, they characterized the set of so-called
Greek weights π . After tedious computations, this characterization leads in some cases to
explicit weights. Nevertheless, beyond all those Greek weight-based estimators, the one related
to the score function s and given by (1.3) leads to the smallest variance.

As in [5], the main purpose of this paper is to study estimators of the Greek β0 whenever the
payoff function lacks regularity and the density f of the underlying is unknown. As detailed in
the next section, a randomization of the parameterλ of interest allows us to rewrite the sensitivity
β0 given by (1.3) as a conditional expectation. Combining a nonparametric estimation of this
conditional expectation with a truncation argument and a kernel estimation of the unknown
score function s leads to our estimator β̃n. A slightly different form of β̃n, without the useful
truncation modification, is presented in [5], where it serves as a basis to introduce other ones
through an integration by parts argument. The main contribution of this paper is the presentation
of the rather demanding derivation of its asymptotic properties suggested in [5]. The use of
a truncated version of the classical kernel estimator allows us to reduce the induced required
assumptions on the coefficients. We provide the asymptotic mean-square error and distribution
of the proposed estimator, leading to the common calibration of the different parameters of
simulation.
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Double kernel estimation of sensitivities 793

Despite the more general form of β̃n, it surprisingly achieves the same rate of convergence
as the estimator introduced in [5]. From a practical perspective, we have to admit that, as
argued in [5], its numerical implementation is more demanding. Nevertheless, the choice
of the two distinct kernel functions significantly increases the class of possible sensitivity
estimators. From a technical point of view, the asymptotics of the estimator require a precise
derivation of the properties of a kernel estimator of the score function, which appear to be
of great interest in themselves. Therefore, this paper offers a new contribution to the current
literature on the combination of several nonparametric estimators, and its particular application
to the computation of the Greeks is furthermore promising in the development of competitive
numerical computations of sensitivities.

The paper is organized as follows. In Section 2 we present in detail the construction of this
estimator. Its asymptotic properties as well as its practical implementation are discussed in
Section 3. Finally, for ease of presentation, the proofs are reported in Section 4.

2. Construction of the estimator

Throughout this paper, we consider a complete probability space (�,F ,P) supporting a
Brownian motion W valued in R

m. We assume that F is the P-completion of the σ -algebra
generated by W . Let Z(λ) be a given random variable valued in R

n and parameterized by
λ ∈ R

d , and let φ ∈ L∞(Rn,R) be a payoff function. The purpose of this paper is to construct
an estimator of β0 defined in (1.1) as the sensitivity of V φ with respect to λ at a given point λ0.

We shall demonstrate in this section the intuition behind the construction of the suggested
estimator. We first identify the score function s defined in (1.3) as the optimal Greek weight in
the sense of [6]. Considering the realistic case where the score function is unknown, we propose
to approximate it through a kernel estimation procedure. Combining Monte Carlo simulations
with the randomization of the parameter λ, we are able to construct a nonparametric estimator
of the score function, leading naturally to the estimation of β0. The reader interested in the
asymptotic properties of the estimator should progress directly to Section 3.

2.1. The score function as the optimal Greek weight

We assume that the distribution ofZ(λ) is absolutely continuous with respect to the Lebesgue
measure, and denote by f (λ, ·) the associated density. As mentioned in the introduction, under
mild smoothness assumptions on the density f , we directly compute that

β0 = E[φ(Z(λ0))s(λ0, Z(λ0))], where s := ∇λf
f

= ∇λ ln f.

In the context of the Black–Scholes model, Broadie and Glasserman [3] noticed that this
representation allows β0 to be computed by a direct Monte Carlo procedure. It is important to
note that the score function s depends only on the distribution of the underlying Z(λ0). In a
more general framework, Fournie et al. [6] considered the set

W := {π ∈ L2(�,Rd) : ∇λV φ(λ0) = E[φ(Z0)π ] for all φ ∈ L∞(Rn,R)}.
Assuming that E[|s(λ0, Z(λ0))|2] < ∞, we note that s(λ0, Z(λ0)) ∈ W . In [6], the authors
constructed a new characterization of the set W by means of a Malliavin integration by parts
argument. After rather tedious computations, this representation sometimes allowed some
alternative Greek weights π to the score s(λ0, Z(λ0)) to be produced. When the density f and,
therefore, the score function s of the underlying are unknown, these alternative weights appear
to be very helpful.
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794 R. ELIE

Nevertheless, their obtention is unfortunately still limited to particular cases and the follow-
ing argument demonstrates that the estimator based on the score s(λ0, Z(λ0)) is of minimal
variance beyond the class of Greek weight-based estimators. Indeed, from the arbitrariness of
φ ∈ L∞(Rn,R), we rewrite

W = {π ∈ L2(�,Rd) : E[π | Z(λ0)] = s(λ0, Z(λ0))}.
We then deduce that, for any π ∈ W ,

var[φ[Z(λ0)]π ] = E[φ(Z(λ0))2 E[ππ� | Z(λ0)]] − ∇V φ(λ0)∇V φ(λ0)�

≥ E[φ(Z(λ0))2 E[π | Z(λ0)] E[π | Z(λ0)]�] − ∇V φ(λ0)∇V φ(λ0)�

= E[φ(Z(λ0))2s(λ0, Z(λ0))s(λ0, Z(λ0))�] − ∇V φ(λ0)∇V φ(λ0)�

= var[φ(Z(λ0))s(λ0, Z(λ0))],
where ‘�’ denotes the transposition operator. Hence,

s(λ0, Z(λ0)) ∈ W is a minimizer of var[φ(Z(λ0))π ], π ∈ W .

As in [5], in this paper we intend to construct a nonparametric estimator based on the approxi-
mation of the optimal Greek weight given by the unknown score s(λ0, Z(λ0)).

2.2. Randomization of the parameter

In order to be able to estimate the unknown score function s, the idea is to create an artificial
density around the parameter λ0, on which we can report the differentiation operation. This
well-known technique in the nonparametric statistics literature (see, e.g. [1]) is based on the
randomization of the parameter λ of interest. We may, for example, interpret the classical finite
difference operator (1.2) as a particular case of a randomizing distribution of λ with two dirac
masses at points λ0 and λ0 + ε.

We then introduce � : R
d → R, some given probability density function, with support

containing the origin in its interior and set

ϕ(λ, z) := �(λ0 − λ)f (λ, z) for λ ∈ R
dandz ∈ R

n.

Considering a couple of random variables (
,Z) with density ϕ, we therefore rewrite β0 as

β0 = E[φ(Z)s(
,Z) | 
 = λ0]. (2.1)

Although we restrict to the case where the density f of the underlying Z(λ) is unknown,
we still consider that we can simulate Z(λ). This is not a limitation in practice since Z(λ) is
typically characterized by a stochastic differential equation, which can be classically discretized.
Hence, we introduce a sequence

(
i, Zi)1≤i≤N of N independent random variables with distribution ϕ,

so that, for any i ≤ N , �(λ0 − ·) is the density of 
i and f (
i, ·) is the conditional density of
Zi given 
i .

We now introduce a kernel function K : R
d → R, i.e. such that

∫
Rd
K dl = 1. Given the N

observations (
i, Zi)1≤i≤N , the conditional expectation given by (2.1) can be approximated
by the classical kernel estimator

β̄N := 1

�(0)Nhd

N∑
i=1

φ(Zi)s(
i, Zi)K

(
λ0 −
i

h

)
, (2.2)

where the bandwidth h > 0 of the estimator is a small parameter.
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This estimator is of course not implementable since the score function s is unknown. Nev-
ertheless, as detailed in the next subsection, the extra regular source of randomness introduced
by � allows us to approximate s and leads to a computable estimator of β0.

2.3. The double kernel-based estimator

In order to approximate the score function s, we shall first estimate the unknown density ϕ
of (
,Z). For this purpose, we introduce a second kernel functionH : R

n → R. GivenN − 1
observations (
j , Zj )1≤j≤N, j �=i , we define ϕ̂−i to be the classical nonparametric estimator of
the density ϕ, given by

ϕ̂−i (λ, z) := h−d−n

N − 1

N∑
j=1, j �=i

K

(
λ−
j

h

)
H

(
z− Zj

h

)
. (2.3)

We denote by ϕ̂λ
−i
(λ, z) the derivative of this estimator with respect to λ and we deduce that

ϕ̂λ
−i
(λ, z) := ∇λϕ̂−i (λ, z) = h−d−n−1

N − 1

N∑
j=1, j �=i

∇K
(
λ−
j

h

)
H

(
z− Zj

h

)
.

Observe now that s and ϕ are closely related since we easily compute

s(λ, z) = ∇λf (λ, z)
f (λ, z)

= ∇λϕ(λ, z)
ϕ(λ, z)

− ∇�(λ0 − λ)

�(λ0 − λ)
for λ ∈ R

d and z ∈ R
n.

Given the observations (
j , Zj )1≤j≤N, j �=i , this naturally leads to the following estimator
of the score function s:

ŝ−iN (λ, z) := ϕ̂λ
−i
(λ, z)

ϕ̂−i (λ, z)+ (δ/3 − ϕ̂−i (λ, z)) 1{|ϕ̂−i (λ,z)|<δ/3}
+ ∇�(λ0 − λ)

�(λ0 − λ)
, (2.4)

where δ is some small fixed parameter ensuring that the estimator ϕ̂−i stays away from 0. This
technical truncation will simply ensure the nonexplosion of the estimator, and the convergence
of the estimator will necessitate some control on the small values of the true density ϕ detailed
in Assumption 3.2, below.

In order to construct an estimator of β0, we now replace each score s(
i, Zi) in (2.2) by the
approximation ŝ−iN (
i, Zi) based on the N − 1 remaining observations. Our estimator is thus
defined by

β̃N := 1

�(0)Nhd

N∑
i=1

φ(Zi)ŝ
−i
N (
i, Zi)K

(
λ0 −
i

h

)
. (2.5)

Based on this type of representation, Elie et al. [5] introduced two other estimators by means
of an integration by parts argument. Even if the representations proposed in [5] appear more
simple, we surprisingly show in the next section that our estimator (2.5) achieves a similar rate
of convergence, under a few more stringent conditions. Even if the practical implementation
and computation of β̃N is more time consuming, the general form of (2.4) offers a large class of
possible estimators, related to different kernel functionsK andH . Since the rate of convergence
of these estimators is similar, we sincerely believe that this result is very encouraging in the
dynamic of creating new types of estimator for the sensitivities. Moreover, the technical proof
for the convergence of the estimator appears to be of great interest in itself.

https://doi.org/10.1239/jap/1253279852 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279852


796 R. ELIE

3. Asymptotic properties

In this section we present the main results of the paper. We first provide the asymptotic
properties of the estimator β̃N defined in (2.5). In particular, the obtention of the asymptotic
mean-square error of the estimator leads to the common optimal choice of the number of
simulations N and the bandwidth h of the two kernel functions K and H .

3.1. Notation

Before stating our results, we recall that the order of a kernel function K : R
d → R is

defined as the smallest nonzero integer p such that there exist some integers (j1, . . . , jp), with
jk ∈ {1, . . . , d}, satisfying

∫
Rd

lα1 · · · lαrK(l) dl = 0 for 0 < r < p, αk ∈ {1, . . . , d},

and
∫

Rd

lj1 · · · ljpK(l) dl �= 0.

Typically, if K is the product of d even univariate kernels then it is (at least) of order p = 2.
In the subsequent subsections, the kernel functionsK andH will be respectively of order p

and q, and we shall use the notation

ξ
p
K [ψ](λ, z) := (−1)p

p!
d∑

j1,...,jp=1

(∫
Rd

lj1 · · · ljpK(l) dl

)
∇p
λj1 ···λjp ψ(λ, z),

ξ
q
H [ψ](λ, z) := (−1)q

q!
d∑

j1,...,jq=1

(∫
Rd

vj1 · · · vjqH(v) dv

)
∇q
zj1 ···zjq ψ(λ, z),

for every smooth function ψ defined on R
d × R

n. We shall also define A⊗ := AA� for every
matrix A, and let C denote a constant whose value may change from line to line.

3.2. Asymptotic moments and distribution of the estimator

We shall work under the following three assumptions respectively concerning the kernelsK
and H , the payoff function φ, and the unknown density function f .

Assumption 3.1. The kernels K and H are the product of some univariate, compactly sup-
ported Lipschitz kernels with orders p and q, respectively, and ∇K has bounded variation.

Assumption 3.2. The payoff function φ is continuous and has compact support. Moreover,
there exists δ > 0 such that, for every z ∈ R

n, inf{ϕ(λ, z) : (λ, z) ∈ V(λ0)×Cφ} > δ for some
neighborhood V(λ0) of λ0, and some compact subset Cφ of R

n with supp(φ) ⊂ int(Cφ).

Assumption 3.3. For every λ, the function ∇λf (λ, ·) is q times differentiable and, for every
integer j ≤ q, the function λ �→ ∇j

z∇λϕ(λ, z) is continuous at λ = λ0 uniformly with respect
to z ∈ S for some subset S such that supp(φ) ⊂ int(S).

For every z, the functions f (·, z) and � are p+ 1 times differentiable and, for every integer
i ≤ p + 1, the function λ �→ ∇i

λf (λ, z) is continuous at λ0 uniformly with respects to z ∈ S
for some subset S such that supp(φ) ⊂ int(S).

Remark 3.1. We have to admit that Assumption 3.2 is at first glance rather restrictive on the
class of possible payoff functions for financial applications. Nevertheless, we observe that most
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of the classical payoff functions can be included. In particular, the call option can be considered
here even if the payoff does not have compact support. We just need to approximate the Greeks
associated to the corresponding put option and use the correspondence provided by the call-put
parity relation satisfied in any arbitrage-free market.

We first present the asymptotic bias and variance of the estimator.

Proposition 3.1. Under Assumptions 3.1, 3.2, and 3.3, choose N and h so that

h → 0 and
(lnN)4

Nhd+n+n∨2 → 0 as N → ∞. (3.1)

Then, the bias and the variance of β̃N satisfy

E[β̃N ] − β0 ∼ C1h
p + C2h

q + C3

Nhd+n+1 and var[β̃N ] ∼ �̃

Nhd+2 , (3.2)

where

C1 := 1

�(0)

∫
Rd

(
ξ
p
K [�(λ0 − ·)fλ + ϕλ] − ϕλ

ϕ
ξ
p
K [ϕ]

)
(λ0, z)φ(z) dz,

C2 := 1

�(0)

∫
Rd

(
ξ
q
H [ϕλ] − ϕλ

ϕ
ξ
q
H [ϕ]

)
(λ0, z)φ(z) dz,

C3 := 1

�(0)

∫
(Rd )4

φ(z)

ϕ(λ0, z)
K(l2 − l1)K(l1)∇K(l1)H 2(v) dl1 dl2 dv dz,

�̃ := E[φ2(Z0)]
�(0)

∫
Rd

(∫
Rd

K(l2 − l1)∇K(l1) dl1

}⊗
dl2.

We now turn to the asymptotic distribution of the estimator.

Theorem 3.1. (i) Under the conditions of Proposition 3.1, we have
√
Nhd+2(β̃N − E[β̃N ]) law−−→ N (0, �̃) as N → ∞.

(ii) If, in addition, Nhd+2+2(p∧q) → 0 then the bias vanishes and
√
Nhd+2(β̃N − β0)

law−−→ N (0, �̃) as N → ∞.

The technical proofs of Proposition 3.1 and Theorem 3.1 are reported in Section 4.

Remark 3.2. Note that the condition n < (p∧ q)+ 1 is necessary in order to satisfy (3.1) and
the condition of Theorem 3.1(ii). Thus, for basket derivatives or Bermudan options in finance,
it is necessary to consider high-order kernels, which is not a limitation in practice.

3.3. Dependence with respect to the price process dynamics

We should typically imagine the random variable Z as the terminal value of a price process
Xλ, whose dynamics are given by a parametrized stochastic differential equation of the form:

Xλ0 = x(λ), dXλu = µ(u, λ,Xλu) du+ σ(u, λ,Xλu) dWu, (3.3)

where x : R
d → R

n, µ : [0, T ] × R
d × R

n → R
n, and σ : [0, T ] × R

d × R
n → Mn,m

R
are

deterministic Lipschitz functions. In this case, Z = XλT can be simulated easily via any time
discretization scheme, even if its density f is unknown.
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798 R. ELIE

We detail in this paragraph how the regularity of f required inAssumption 3.3 can be induced
from conditions on the coefficients x, µ, and σ . First, the absolute continuity of XλT is ensured
by the classical uniform ellipticity condition: suppose that the matrix σσ� is symmetric and
positive, and that there exists a constant cσ > 1 such that

1

cσ
Id(x) ≤ σσ�(t, λ, x) ≤ cσ Id(x) for all (t, λ, x) ∈ [0, T ] × R

d × R
n. (3.4)

Second, the density f of XλT inherits the regularity of the coefficients x, µ, and σ through the
properties of the corresponding transition densities. Following the arguments of Theorem A.2.2
of [2, p. 478] (see also Proposition 5.1 of [8]), Assumption 3.3 is satisfied whenever (3.4) holds,
� is of class C1, x is of class Cq+2, and the coefficients µ and σ are of class C1 in (t, λ, x),
Cp+2 in λ, as well as Cq+2 in x.

It is worth noting that this analysis gives rise to more tractable assumptions for Proposition 3.1
and Theorem 3.1 in the realistic framework where Z is the terminal value of a price process
with dynamics of the form (3.3).

3.4. Optimal choices of N and h

We investigate in this section the optimal balance between the number of simulationsN and
the bandwidth h. As mentioned in Remark 3.2, we suppose that n < (p ∧ q)+ 1. Under this
condition and the assumptions of Proposition 3.1, we obtain a simplification in the asymptotic
expression of the bias, and the mean-square error (MSE) of the estimator becomes

MSE(β̃N ) := E[|β̃N − β0|2] ∼ tr(�̃)

Nhd+2 + |C1|2h2p + |C2|2h2q .

Minimizing the MSE in h, we obtain the asymptotically optimal bandwidth selector:

h̃ =
(

(d + 2)tr(�̃)

2(p ∧ q)|C1 1{p≤q} +C2 1{q≤p} |2N
)1/(d+2(p∧q)+2)

. (3.5)

Therefore, h̃ is of orderN−1/(d+2(p∧q)+2), leading to an MSE of orderN−2(p∧q)/(d+2(p∧q)+2).
Consequently, despite its more complicated form, the double kernel estimator achieves the
same rate of convergence as the one introduced in [5]. The only constraint is the use of kernel
functions of order sufficiently large, i.e. satisfying p∧ q > n− 1. Since, given a large number
of simulations, we should always use a kernel function of high order, this constraint is not
relevant in practice.

3.5. Remarks and extensions

In this section we regroup some remarks and possible extensions of the method, which
unfortunately go beyond the scope of the paper.

Considering a randomizing distribution � with radius equal to the bandwidth h, we can
improve the rate of convergence of the estimator. Indeed, the asymptotic variance of the
estimator then reduces to a term of order 1/

√
Nh2, leading to an MSE of orderN−(p∧q)/(p∧q)+1.

Remarkably, the speed of convergence of the estimator does not depend in this case on the
dimension of the underlying X. For a continuous payoff function, the best finite differences
estimator achieves an MSE of order N−4/5; see [4]. Therefore, this estimator outperforms the
finite differences one as soon as p ∧ q > 4 ∨ (n − 1). We choose to omit the proof of this
result, which is technically rather demanding.
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With no doubt, the choice of the randomizing function � is crucial for the precision of the
estimator presented here. In the particular case of a uniform randomizing distribution �, the
analytical form of the estimator simplifies and, after tedious asymptotic developments, we
can see that the optimal choice for the radius of the distribution � is the bandwidth h of the
kernel function K , i.e. the particular case discussed above. From an empirical point of view,
the optimal choice of the randomizing density � should be intimately related to the choice of
the kernel function K . A simple example where these two density functions are identical can
naturally be considered.

As for the practical calibration of the optimal bandwidth h̃ given by (3.5), we need to
estimate the constants C1, C2, and �̃. As for the choice of the bumping parameter of the finite
differences estimator, it can be approximated by a preliminary Monte Carlo procedure with
very few simulations. For example, the procedure proposed in [5] can be directly adapted to
this setting.

Finally, a generalization of the above estimator could be considered by taking two different
bandwidths. Intuitively, the bandwidth for the estimation of the score function introduced
in (2.3) should be smaller than the one considered for the approximation of the conditional
expectation in (2.2). Indeed, the signification of these two parameters is rather different, but
this question is left for further research.

4. Proofs

This section is dedicated to the proofs of Proposition 3.1 and Theorem 3.1, characterizing
the asymptotic behavior of β̃N . In this section we shall always work under the assumptions of
Proposition 3.1.

4.1. Preliminaries

Recall that

β̃N := 1

�(0)Nhd

N∑
i=1

φ(Zi)ŝ
−i
N (
i, Zi)K

(
λ0 −
i

h

)
, (4.1)

where

ŝ−iN (λ, z) := ϕ̂λ
−i
(λ, z)

ϕ̂−i,δ(λ, z)
+ ∇�(λ0 − λ)

�(λ0 − λ)
,

where ϕ̂−i,δ := ϕ̂−i + (δ/3 − ϕ̂−i ) 1{|ϕ̂−i |≤δ/3} is a truncated version of ϕ̂−i (λ, z) defined by

ϕ̂−i (λ, z) := h−d−n

N − 1

N∑
j=1, j �=i

K

(
λ−
j

h

)
H

(
z− Zj

h

)
and ϕ̂λ

−i = ∇λϕ̂−i .

For every λ and z, we set

ϕ̄(λ, z) := E[ϕ̂−1(λ, z)] =
∫

Rd×Rd

K(l)H(v)ϕ(λ− hl, z− hv) dl dv,

and its derivative is given by

ϕ̄λ(λ, z) = h−1
∫

Rd×Rd

∇K(l)H(v)ϕ(λ− hl, z− hv) dl dv.
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Arguing as in the proof of Proposition 4.1 of [5], a Taylor expansion combined with a classical
change of variable leads to

ϕ̄(λ, z)− ϕ(λ, z) = ξ
p
K [ϕ](λ, z)hp + ξ

q
H [ϕ](λ, z)hq + o(hp∧q). (4.2)

Similarly, we obtain

ϕ̄λ(λ, z)− ϕλ(λ, z) = ξ
p
K [ϕλ](λ, z)hp + ξ

q
H [ϕλ](λ, z)hq + o(hp∧q). (4.3)

Remark 4.1. Since φ and K have compact support by Assumption 3.2, it follows that, for
sufficiently small h, the sum in (4.1) is restricted to pairs (
i, Zi) with values in CK × Cφ ,
where CK ⊂ V(λ0) is defined in Assumption 3.2 and Cφ is a compact subset of R

n such that
suppφ ⊂ Cφ .

For any function ψ defined on CK × Cφ , we set

||ψ ||∞ := sup
(λ,z)∈CK×Cφ

|ψ(λ, z)|,

and, in the following, || · ||r refers to the Lr (�)-norm.

Remark 4.2. By Assumption 3.3, since (λ, z) vary in a compact subset of R
d × R

n, the
remainder terms in (4.2) and (4.3) are uniformly bounded in (λ, z). By the same argument, we
also see that ξpK [ϕ], ξqH [ϕ], ξpK [ϕλ], and ξqH [ϕλ] are uniformly bounded so that

‖ϕ̄ − ϕ‖∞ = O(hp∧q) and ‖ϕ̄λ − ϕλ‖∞ = O(hp∧q). (4.4)

We now study further the tails of the estimators ϕ̂−i and we obtain the following estimates.

Lemma 4.1. There exist α1 and α2 such that

sup
i≤N

P[|ϕ̂−i − ϕ̄|(λ, z) > t] ≤ 2 exp

(
− t2

α1 + α2t
Nhd+n

)
, (λ, z) ∈ CK × Cφ. (4.5)

Furthermore, for any t > 0, there exist Ct > 0 and ct > 0 satisfying

P
[

sup
i≤N

‖ϕ̂−i − ϕ̄‖∞ > t
]

≤ CtN
3 exp(−ctNhd+n). (4.6)

Finally, for any integer r ≥ 1, we have

∥∥∥ sup
1≤i≤N

‖ϕ̂−i − ϕ̄‖∞
∥∥∥

2r
= O

(
ln(N)√
Nhd+n

)
. (4.7)

Proof. Observe first that there exist α1 and α2 such that, for any (λ, z) ∈ CK × Cφ , the
random variablesK[(λ−
i)/h]H [(z−zi)/h] are bounded by 3α2/2 and, by the usual change
of variable, their variance is bounded from above byα1h

d+n/2. Therefore, (4.5) follows directly
from the Bernstein inequality.

We now turn to the proof of the second estimate and first observe that

P
[

sup
i≤N

‖ϕ̂−i − ϕ̄‖∞ > t
]

≤ N P[‖ϕ̂ − ϕ̄‖∞ > t], (4.8)
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where, for ease of notation in this proof, we introduce ϕ̂ := ϕ̂−1. Applying the Liebscher
strategy (see [11]), we recover the compact set CK × Cφ by C0(RN,h)

−d−n balls Bj :=
B((λj , zj ), RN,h), where C0 is a constant chosen large enough. On each ball Bj , we have

sup
Bj

|ϕ̂ − ϕ̄| ≤ |ϕ̂ − ϕ̄|(λj , zj )+ sup
(λ,z)∈Bj

|ϕ̂(λ, z)− ϕ̂(λj , zj )|

+ sup
(λ,z)∈Bj

|ϕ̄(λ, z)− ϕ̄(λj , zj )|. (4.9)

According to Assumption 3.1, the kernel functions K and H are Lipschitz and compactly
supported. Therefore, there exists an M > 0 such that

sup
(λ,z)∈Bj

|ϕ̂(λ, z)− ϕ̂(λj , zj )| ≤ C
RN,h

h
ψ̂(λj , zj ),

where ψ̂ is the classical histogram kernel estimator of the density ϕ defined by

ψ̂(λ, z) := 1

4M2Nhd+n
N∑
i=1

1{|
i−λ|≤Mh} 1{|Zi−z|≤Mh} .

Introducing the notation ψ̄ := E[ψ̂] and choosingRN,h such thatRN,h = o(h), we then deduce
from (4.9) that

sup
Bj

|ϕ̂ − ϕ̄| ≤ |ϕ̂ − ϕ̄|(λj , zj )+ |ψ̂ − ψ̄ |(λj , zj )+ 2C
RN,h

h
ψ̄(λj , zj ).

Summing over all the balls Bj , we obtain

P[‖ϕ̂ − ϕ̄‖∞ > t] ≤ C0R
−(d+n)
N,h

(
P

[
|ϕ̂ − ϕ̄|(λj , zj ) > t

3

]
+ P

[
|ψ̂ − ψ̄ |(λj , zj ) > t

3

])

+ C0R
−(d+n)
N,h P

[
2Ch−1RN,h|ψ̄ |(λj , zj ) > t

3

]
.

Therefore, applying estimate (4.5) to both kernel estimators ϕ̂ and ψ̂ , we deduce the existence
of γ1 and γ2 satisfying

P[‖ϕ̂− ϕ̄‖∞ > t] ≤ CR
−(d+n)
N,h

(
exp

(
− t2

γ1 + γ2t
Nhd+n

)
+ P

[
2C
RN,h

h
|ψ̄ |(λj , zj ) > t

3

])
.

(4.10)
But ψ̄ is bounded so that for any given t , the last term on the right-hand side equals 0 for small
enough h. Since Nhd+n → ∞ according to (3.1), choosing RN,h = h2, we deduce (4.6)
from (4.8).

We now turn to the moment inequalities and introduce the notation

YN :=
√
Nhd+n
ln(N)

sup
i≤N

‖ϕ̂−i − ϕ̄‖∞,

so that we simply need to prove that ‖YN‖2r < ∞ for all integers r ≥ 1. Fix r ∈ N
∗, and

observe that

E[Y 2r
N ] =

∫ ∞

0
2rs2r−1 P[YN > s] ds ≤ Ca +

∫ ∞

a

2rs2r−1 P[YN > s] ds (4.11)
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for any a > 0. We now fix s large enough and take RN,h = h ln(N)/
√
Nhd+n in (4.10) and

(4.8), so that we obtain, for large enough N , the existence of δ1 and δ2 satisfying

P[YN > s] ≤ CN

(√
Nhd+n
h ln(N)

)d+n
exp

(
− s ln(N)2

δ1 + δ2s ln(N)/
√
Nhd+n

)
.

Since ln(N)/
√
Nhd+n → 0 and h → 0, we deduce that, for large enough N ,

P[YN > s] ≤ CNd+n exp

(
− s ln(N)2

δ1 + δ2s ln(N)/
√
Nhd+n

)

≤ C exp((d + n) ln(N)− s(lnN)3/2)

≤ Ce−s .

Substituting this estimate into (4.11) completes the proof.

Since ∇K has bounded variation, the exact same reasoning can apply to the estimators ϕ̂−i
λ ,

and we similarly derive

∥∥∥ sup
1≤i≤N

‖ϕ̂λ−i − ϕ̄λ‖∞
∥∥∥

2r
= O

(
lnN

h
√
Nhd+n

)
, r ∈ N

∗. (4.12)

The estimates of the previous lemma also allow us to control the error due to the truncation
of ϕ̂−i . Indeed, since the function ϕ admits δ as a lower bound according to Assumption 3.2,
it follows from (4.4) that ϕ̄ > 2δ/3 for small enough h, and (4.5) leads to

P

[
|ϕ̂−1(λ, z)| < δ

3

]
≤ P

[
|ϕ̂−1 − ϕ̄|(λ, z) > δ

3

]
≤ 2 exp(−CNhd+n). (4.13)

Introducing ϕ̄δ := E[ϕ̂−1,δ], we derive

‖ϕ̄δ − ϕ̄‖∞ ≤ δ

3
sup

CK×Cφ
P

[
|ϕ̂−1|(λ, z) < δ

3

]
≤ 2δ

3
exp(−CNhd+n), (4.14)

and combining (3.1) and (4.4), we deduce that

‖ϕ̄δ − ϕ‖∞ = O(hp∧q). (4.15)

Similarly, applying (4.6), we obtain

∥∥∥ sup
1≤i≤N

‖ϕ̂−i,δ − ϕ̂−i‖∞
∥∥∥

2r
≤ δ P

[
sup
i≤N

‖ϕ̂−i − ϕ̄‖∞ >
δ

3

]

≤ CδN3 exp(−CNhd+n), r ∈ N. (4.16)

Observe also that (4.14) and (4.16) combined with (3.1) allows us to derive
∥∥∥ sup

1≤i≤N
‖ϕ̂−,δ − ϕ̄δ‖∞

∥∥∥
2r

= O

(
lnN√
Nhd+n

)
for any r ∈ N

∗. (4.17)

Finally, since (λ, z) vary in a compact subset, Assumptions 3.2 and 3.3 imply that

‖ϕ‖∞ + ‖ϕλ‖∞ +
∥∥∥∥ 1

ϕ

∥∥∥∥∞
< ∞. (4.18)
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It then follows from (4.4), (4.15), and the truncation procedure that

‖ϕ̄‖∞ + ‖ϕ̄δ‖∞ + ‖ϕ̄λ‖∞ +
∥∥∥∥ 1

ϕ̄

∥∥∥∥∞
+

∥∥∥∥ 1

ϕ̄δ

∥∥∥∥∞
+ sup

1≤i≤N

∥∥∥∥ 1

ϕ̂−i,δ

∥∥∥∥∞
< ∞. (4.19)

4.2. A suitable decomposition

For any N ∈ N and i ≤ N , we define the following functions on R
d × R

n ×�:

t1i,N := s, t2i,N := ϕ̄λ − ϕλ

ϕ
, t3i,N := (ϕ − ϕ̄δ)ϕλ

ϕ2 ,

t4i,N := (ϕ − ϕ̄δ(ϕ̄λϕ − ϕ̄δϕλ)

ϕ2ϕ̄δ
, t5i,N := ϕ̂λ

−i − ϕ̄λ

ϕ
,

t6i,N := (ϕ̄δ − ϕ̂−i,δ)ϕ̄λ
(ϕ̄δ)2

, t7i,N := (ϕ̂λ
−i − ϕ̄λ)(ϕ

δ − ϕ̄δ)

ϕδϕ̄δ
,

t8i,N := (ϕ̄δ − ϕ̂−i,δ)(ϕ̂λ−i − ϕ̄λ)

ϕ̂−i,δϕ̄δ
, t9i,N := (ϕ̄δ − ϕ̂−i,δ)2ϕ̄λ

ϕ̂−i,δ(ϕ̄δ)2
,

so that

ŝ−iN (
i, Zi) =
9∑
j=1

t
j
i,N (
i, Zi).

This implies the following decomposition of the estimator β̃N :

β̃N =
9∑
j=1

T
j
N , where T

j
N := 1

�(0)Nhd

N∑
i=1

φ(Zi)t
j
i,N (
i, Zi)K

(
λ0 −
i

h

)
(4.20)

for every j = 1, . . . , 9. By (4.18) and (4.19), we observe that

‖tji,N‖∞ < ∞ for all j = 1, . . . , 4.

Lemma 4.2. For any j = 1, . . . , 4, we have E[T jN ] = O(‖tj1,N‖∞).

Proof. The result is derived from the following inequality:

|E[T jN ]| ≤ 1

�(0)hd

∣∣∣∣E
[
φ(Z1)t

j
1,N (
1, Z1)K

(
λ0 −
1

h

)]∣∣∣∣
≤ 1

�(0)

∣∣∣∣
∫

Rd×Rd

φ(z)t
j
1,N (λ

0 − hl, z)K(l) dl dv

∣∣∣∣
≤ C||tj1,N ||∞.

Lemma 4.3. For every j = 1, . . . , 4, var[T jN ] = O(N−1h−d‖tj1,N‖2∞).

Proof. For any j = 1, . . . , 4, the N random variables T jN(
i, Zi) are independent and

var[T jN ] = 1

�(0)2Nh2d var

[
φ(Z1)t

j
1,N (
1, Z1)K

(
λ0 −
1

h

)]

≤ 1

�(0)2Nh2d E

[
φ2(Z1)t

j
1,N (
1, Z1)

2K2
(
λ0 −
1

h

)]

≤ ‖tj1,N‖2∞
�(0)2Nhd

∫
Rd×Rd

φ2(z)K2(l) dl dv.
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The analysis of T jN for j > 4 requires more effort because of the dependence between the
random variables tji,N (
i, Zi).

Lemma 4.4. We have E[T 5
N ] = 0 and var[T 5

N ] ∼ �̃/(Nhd+2), where �̃ is defined in Proposi-
tion 3.1.

Proof. We introduce, for any i = 1, . . . , N and j = 1, . . . , N ,

Tij := φ(Zi)

ϕ(
i, Zi)
K

(
λ0 −
i

h

){
∇λK

(

i −
j

h

)
H

(
Zi − Zj

h

)
− hd+n+1ϕ̄λ(
i, Zi)

}
,

so that T 5
N can be rewritten as

T 5
N = h−2d−n−1

�(0)N(N − 1)

∑
i<j

(Tij + Tji).

By definition, for any i = 1, . . . , N and j = 1, . . . , N with i �= j , we have

ϕ̄λ(
i, Zi) = 1

hd+n+1 E

[
∇λK

(

i −
j

h

)
H

(
Zi − Zj

h

) ∣∣∣∣ 
i,Zi
]
.

Therefore, E[Tij ] = 0 whenever i �= j , leading to E[T 5
N ] = 0.

Since the Tij are not independent, the computation of the variance requires decomposing
T 5
N :

T 5
N = T

5,1
N + T

5,2
N , (4.21)

where

T
5,1
N := h−2d−n−1

�(0)N(N − 1)

∑
i<j

(Tij + Tji − b(
i, Zi)− b(
j , Zj )),

T
5,2
N := h−2d−n−1

�(0)N(N − 1)

∑
i<j

(b(
i, Zi)+ b(
j , Zj )),

and b(λ, z) := E[T12 | 
2 = λ, Z2 = z].
Let us first study the T 5,1

N term. Setting ϒij := Tij + Tji − b(
i, Zi) − b(
j , Zj ), we
derive the key property

E[ϒij | 
i,Zi] = E[ϒij | 
j,Zj ] = 0. (4.22)

Therefore, T 5,1
N has zero mean and we derive

var[T 5,1
N ] = h−4d−2n−2

�(0)2N2(N − 1)2
∑
i<j

E[ϒijϒ�
ij ] = h−4d−2n−2

2�(0)2N(N − 1)
E[ϒ12ϒ

�
12].

By (4.22), we compute

E[ϒ12ϒ
�
12] = 2 E[T12T

�
12 ] + 2 E[T12T

�
21 ] − 2 E[b2(
1, Z1)].
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Next we estimate that |E[T12T
�

12 ]| is dominated by

E

[
φ2(Z1)

ϕ2(
1, Z1)
K2

(
λ0 −
1

h

)
|∇λK|2

(

1 −
2

h

)
H 2

(
Z1 − Z2

h

)]

+ h2d+n
∫
(Rd )4

φ2(z)K2(l1)|∇λK|2(l2)H 2(v)
ϕ(λ0 − hl1 − hl2, z− hv)

ϕ(λ0 − hl1, z)
dl1 dl2 dz dv,

by the usual change of variables. Clearly, the first term on the right-hand side is of order
O(h2d+n), while the second term is of order O(h3d+2n+2) by (4.19). Similarly, we have
E[T12T

�
21 ] = O(h2d+n). Moreover, E[b2(
1, Z1)] = O(N−2h−d−2). We deduce that

var[T 5,1
N ] = O

(
1

N2h2d+n+2

)
= o

(
1

Nh2+d

)
, (4.23)

using the relations between N and h given by (3.1).
Next we rewrite T 5,2

N as

T
5,2
N = h−2d−n−1

�(0)N

∑
i

b(
i, Zi).

By the usual change of variables,

b(λ, z) = hd+n
∫

Rd×Rd

φ(z+ hv)K

(
λ0 − λ

h
− l

)
∇K(l)H(v) dl dv

− hn+1
∫

Rd

φ(z)ϕ̄λ(λ
0 − hl, z)K(l) dl.

By direct calculation, it is easily checked that the second term is negligible. Then, by the usual
change of variables, it follows that

E[b(
i, Zi)b(
i, Zi)�]

∼ h3d+2n
∫

Rd×Rd

(∫
Rd×Rd

φ(z+ hv)K(l2 − l1)∇K(l1)H(v) dl1 dv

)⊗

× ϕ(λ0 − hl2, z) dl2 dz.

By Assumptions 3.2 and 3.3, we deduce from the dominated convergence theorem, together
with the fact that E[b(
i, Zi)] = 0, that

var[T 5,2
N ] ∼ 1

Nhd+2

∫
Rd×Rd

φ2(z)

(∫
Rd

K(l2 − l1)∇K(l1) dl1

)⊗
ϕ(λ0, z) dl2 dz. (4.24)

The proof is completed by collecting estimates (4.23) and (4.24) into (4.21).

Lemma 4.5. We have E[T 6
N ] = o(hp∧q) and var[T 6

N ] = o(N−1h−d−2).

Proof. We decompose t6i,N into the sum of

t
6,1
i,N := (ϕ̄ − ϕ̂−i )ϕ̄λ

(ϕ̄δ)2
, t

6,2
i,N := (ϕ̂−i − ϕ̂−i,δ)ϕ̄λ

(ϕ̄δ)2
, and t

6,3
i,N := (ϕ̄δ − ϕ̄)ϕ̄λ

(ϕ̄δ)2
,

and we study the corresponding T 6,1
N , T 6,2

N , and T 6,3
N separately.
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It can easily be checked that T 6,1
N can be dealt with as T 5

N . By the same calculation we obtain
E[T 6,1

N ] = 0 and

var[T 6,1
N ] ∼ h−4d−2n

�(0)2N2

∑
i

var[b̃(
i, Zi)],

where b̃(λ, z) is given by

E

[
φ(Zi)ϕλ(
i, Zi)

ϕ(
i, Zi)2
K

(
λ0 −
i

h

){
K

(

i − λ

h

)
H

(
Zi − z

h

)
− hd+nϕ̄(
i, Zi)

}]
.

The variables b̃(
i, Zi) also have zero mean and, as in the proof of Lemma 4.4, the usual
change of variables implies that

h−3d−2n var[b̃(
i, Zi)] ∼
∫

Rd×Rd

[G6(l2, z)]⊗ϕ(λ0 − hl2, z) dl2 dz,

with

G6(l2, z) :=
∫

Rd×Rd

φ(z+ hv)
ϕλ

ϕ
(λ0 + hl1 − hl2, z+ hv)K(l2 − l1)K(l1)H(v) dl1 dv.

By the continuity and the uniform boundedness of φ and ϕλ/ϕ implied by Assumptions 3.2
and 3.3, we derive

var[T 6,1
n ] = O

(
1

Nhd

)
= o

(
1

Nhd+2

)
.

We now turn to T 6,2
N and compute

|T 6,2
N | ≤ C sup

i≤N
‖ϕ̂−i,δ − ϕ̂−i‖∞

(
1

Nhd

N∑
i=1

∣∣∣∣φ(Zi)K
(
λ0 −
i

h

)∣∣∣∣
)
.

Therefore, we deduce from the Cauchy–Schwarz inequality that

|E[T 6,2
N ]| ≤ C

∥∥∥ sup
i≤N

‖ϕ̂−i,δ − ϕ̂−i‖∞
∥∥∥

2
E

[(
1

Nhd

N∑
i=1

∣∣∣∣φ(Zi)K
(
λ0 −
i

h

)∣∣∣∣
)2]1/2

,

and (3.1) combined with (4.16) leads to E[T 6,2
N ] = o(hp∧q). Similarly, we obtain

var[T 6,2
N ] ≤ C

∥∥∥ sup
i≤N

‖ϕ̂−i,δ − ϕ̂−i‖∞
∥∥∥

4
E

[(
1

Nhd

N∑
i=1

∣∣∣∣φ(Zi)K
(
λ0 −
i

h

)∣∣∣∣
)4]1/4

,

which leads to var[T 6,2
n ] = o(N−1h−d−2).

We finally observe that T 6,3
N is treated similarly thanks to (4.14).

Lemma 4.6. We have E[T 7
N ] = 0 and var[T 7

N ] = o(N−1h−d−2).

Proof. Observe that

t7N(λ, z) = t5N(λ, z)ψ(λ, z), where ψ := ϕ − ϕ̄δ

ϕ̄δ
.
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Following the lines of the proof of Lemma 4.4, we see that E[T 7
N ] = 0, and we estimate

Nhd+2 var[T 7
N ] ∼

∫
Rd×Rd

[G7(u, z)]⊗ϕ(λ0 − hu, z) du dz,

with

G7(u, z) :=
∫
φ(z+ hv)ψ(λ0 + hl − hu, z+ hv)K(u− l)∇K(l)H(v) dl dv.

By (4.15) and (4.19), it follows that ‖ψ‖∞ = O(hp∧q) and, since ϕ and φ are uniformly
bounded, we deduce that

var[T 7
N ] = O

(
hp∧q

Nhd+2

)
= o

(
1

Nhd+2

)
.

Lemma 4.7. We have

E[T 8
N ] ∼ h−d−n−1

�(0)N

(∫
φ(z) dz

)(∫
H 2(v) dv

) ∫
Rd×Rd

K(l1 − l2)K(l2)∇K(l2) dl1 dl2

and var[T 8
N ] = o(N−1h−d−2).

Proof. We split the proof it two steps.
Step 1. We first estimate E[T 8

N ]. We rewrite t8N(λ, z) as t8,1N (λ, z) + t
8,2
N (λ, z) + t

8,3
N (λ, z)

with

t
8,1
i,N = (ϕ̄ − ϕ̂−i )(ϕ̂λ−i − ϕ̄λ)

ϕ2 ,

t
8,2
i,N = (ϕ̄δ − ϕ̄)(ϕ̂λ

−i − ϕ̄λ)

ϕ2 + (ϕ̂−i − ϕ̂−i,δ)(ϕ̂λ−i − ϕ̄λ)

ϕ2 ,

t
8,3
i,N = (ϕ̄δ − ϕ̂−i,δ)2(ϕ̂λ−i − ϕ̄λ)

ϕ̂−i,δ(ϕ̄δ)2
+ (ϕ̄δ − ϕ̂−i,δ)(ϕ̂λ−i − ϕ̄λ)(ϕ

2 − (ϕ̄δ)2)

ϕ2(ϕ̄δ)2
.

Then T 8
N = T

8,1
N + T

8,2
N + T

8,3
N , where

T
8,k
N := 1

�(0)Nhd

N∑
i=1

φ(Zi)t
8,k
i,N (
i, Zi)K

(
λ0 −
i

h

)
for k = 1, 2, 3.

We now introduce

Uij := ∇λK
(

i −
j

h

)
H

(
Zi − Zj

h

)
− E

[
∇λK

(

i −
j

h

)
H

(
Zi − Zj

h

) ∣∣∣∣ 
i,Zi
]
,

Vij := K

(

i −
j

h

)
H

(
Zi − Zj

h

)
− E

[
K

(

i −
j

h

)
H

(
Zi − Zj

h

) ∣∣∣∣ 
i,Zi
]
,

so that

E[UijVik | 
i,Zi] = E[Uij | 
i,Zi] E[Vik | 
i,Zi] = 0 whenever j �= k.
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Using this property, we directly compute that

E[t8,1N (
1, Z1) | 
1, Z1] = h−2d−2n−1

(N − 1)2ϕ2(
1, Z1)
E

[ ∑
j �=1

∑
k �=1

U1jV1k

∣∣∣∣ 
1, Z1

]

= h−2d−2n−1

(N − 1)ϕ2(
1, Z1)
E[U12V12 | 
1, Z1].

Since the expectation of T 8,1
N is given by

E[T 8,1
N ] = h−d

�(0)
E

[
φ(Z1)K

(
λ0 −
1

h

)
E[t8,11,N (
1, Z1) | 
1, Z1]

]
,

we derive, by the usual change of variables,

�(0)Nhd+n+1 E[T 8,1
N ] ∼

∫
Rd×Rd

G8(l2, z)ϕ(λ
0 − hl2, z) dl2 dz,

with

G8(l2, z) :=
∫

Rd×Rd

φ(z+ hv)

ϕ(λ0 + hl1 − hl2, z+ hv)
K(l2 − l1)K(l1)∇K(l1)H 2(v) dl1 dv.

Finally, by the continuity and the uniform boundedness of ϕ and φ, we derive

E[T 8,1
N ] ∼ h−d−n−1

�(0)N

∫
(Rd )4

φ(z)K(l2 − l1)K(l1)∇K(l1)H 2(v) dl1 dv dl2 dz. (4.25)

Furthermore, by the Cauchy–Schwarz inequality and (3.1), we have

| E[T 8,k
N ]| ≤

∥∥∥ sup
i≤N

‖t8,ki,N‖∞
∥∥∥

2
E

[(
1

Nhd

N∑
i=1

∣∣∣∣φ(Zi)K
(
λ0 −
i

h

)∣∣∣∣
)2]1/2

(4.26)

≤ C

∥∥∥ sup
i≤N

‖t8,ki,N‖∞
∥∥∥

2
, k = 2, 3. (4.27)

Finally, combining relations (4.4)–(4.19), the Cauchy–Schwarz inequality, and (3.1), we obtain
∥∥∥ sup
i≤N

‖t8,2i,N‖∞
∥∥∥

2
= o

(
1

Nhd+n+1

)

and ∥∥∥ sup
i≤N

‖t8,3i,N‖∞
∥∥∥

2
= O

(
(lnN)3

Nhd+n+1
√
Nhd+n

)
= o

(
1

Nhd+n+1

)
.

Therefore, (4.25) and (4.26) lead to the expected equivalent for E[T 8
N ].

Step 2. We now study the variance of T 8
N . We first note that the Cauchy–Schwarz inequality

and (3.1) lead to

var[T 8
N ] ≤ C

∥∥∥ sup
i≤N

‖t8i,N‖4∞
∥∥∥2

4
.

But, again using the Cauchy–Schwarz inequality and relations (3.1), (4.4), (4.19), and (4.17),
we deduce that

var[T 8
N ] = O

(
ln4N

N2h2d+2n+2

)
= o

(
1

Nhd+2

)
.
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Lemma 4.8. We have E[T 9
N ] = O(N−1h−d−n) and var[T 9

N ] = o(N−1h−d−2).

Proof. It can be easily checked that T 9
N can be dealt with as T 8

N and, following the lines of
the proof of Lemma 4.7, we obtain the announced result.

4.3. Asymptotic bias and variance

This section is devoted to the proof of Proposition 3.1 characterizing the asymptotic bias
and variance of the double kernel-based estimator β̃N .

Proof of Proposition 3.1. We split the proof in two steps.
Step 1. We first derive the expectation of β̃N . Note that T 1

N = β̄N as defined in (2.2), which
satisfies

E[β̄N ] = 1

�(0)

∫
Rd×Rd

φ(z)K(l)s(λ0 − hl, z)ϕ(λ0 − hl, z) dt dz.

The regularity of the function sϕ given by Assumption 3.3 enables us to derive

E[T 1
N ] − β ∼ hp

�(0)

∫
Rd

ξ
p
K [�fλ](λ0, z)φ(z) dz.

Using Remark 4.2, we deduce from (4.3) that we have

E[T 2
N ] = hp

�(0)

∫
Rd

ξ
p
K [ϕλ](λ0, z)φ(z) dz+ hq

�(0)

∫
Rd

ξ
q
H [ϕλ](λ0, z)φ(z) dz+ o(hp∧q).

We now rewrite t3i,N as the sum of

t
3,1
i,N := (ϕ − ϕ̄)ϕλ

ϕ2 and t
3,2
i,N := (ϕ̄δ − ϕ̄)ϕλ

ϕ2 ,

and study separately the corresponding T 3,1
N and T 3,2

N . From (4.2) we derive

E[T 3,1
N ] = − hp

�(0)

∫
Rd

ϕλξ
p
K [ϕ]
ϕ

(λ0, z)φ(z) dz− hq

�(0)

∫
Rd

ϕλξ
q
H [ϕ]
ϕ

(λ0, z)φ(z) dz+ o(hp∧q),

and we directly deduce from (3.1) and (4.14) that E[T 3,2
N ] = o(hp∧q).

Note that

t4i,N = (ϕ − ϕ̄δ)2ϕλ

ϕ2ϕ̄δ
+ (ϕ̄λ − ϕλ)(ϕ − ϕ̄δ)

ϕϕ̄δ
.

Then, using (4.4), (4.15), (4.18), and (4.19), we derive ||t4i,N ||∞ = o(hp∧q), and Lemma 4.2
leads to E[T 4

N ] = o(hp∧q).
From Lemmas 4.4, 4.5, and 4.6, we have E[T jN ] = 0 for j = 5, . . . , 7, and Lemma 4.7 gives

E[T 8
N ] ∼ h−d−n−1

�(0)N

∫
(Rd )4

φ(z)

ϕ(λ0, z)
K(l2 − l1)K(l1)∇K(l1)H 2(v) dl1 dv dl2 dz.

Finally, Lemma 4.8 tells us that E[T 9
N ] = o(N−1h−d−n−1).

We then obtain E[β̃N ] by summing up the E[T jN ] for j = 1, . . . , 9.
Step 2. We now analyze the variance of β̃N . For any j = 1, . . . , 4, expressions (4.4), (4.15),

(4.18), and (4.19) imply that ||tjN ||∞ = O(1). Then Lemma 4.3 leads to

var[T jN ] = o(N−1h−d−2) for everyj = 1, . . . , 4.
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From Lemma 4.4 we obtain

var[T 5
N ] ∼ 1

�(0)Nhd+2

∫
Rd×Rd

φ2(z)

{ ∫
Rd

K(l2 − l1)∇K(l1) dl1

}⊗
f (λ0, z) dz dl2. (4.28)

Indeed, Lemmas 4.5 to 4.8 also imply that

var[T jN ] = o(N−1h−d−2) for everyj = 5, . . . , 9.

Hence, cov(T jN , T
k
N) = o(N−1h−d−2) unless j = k = 5 and var[β̃N ] is given by expres-

sion (4.28).

4.4. Central limit theorem

This section is devoted to the proof of Theorem 3.1, which provides a central limit theorem
for the double kernel-based estimator β̃N .

Proof of Proposition 3.1. As in the proof of Proposition 3.1, the variance of β̃N is given by
the variance of

T
5,2
N = h−2d−n−1

�(0)N

∑
i

b(
i, Zi),

where

b(λ, z) := hd+n
∫

Rd×Rd

φ(z+ hv)K

(
λ0 − λ

h
− l

)
∇K(l)H(v) dl dv

− hn+1
∫

Rd

φ(z)ϕ̄λ(λ
0 − hl, z)K(l) dl.

As in the proofs of Theorems 4.1 or 4.2 of [5], using Kolmogorov’s condition with the fourth
moment of b and the Cramer–Wold device, we find that T 5,2

N is asymptotically normal. We
then finally deduce that

√
Nhd+2(β̃N − E[β̃N ]) law−−→ N (0, �̃) as N → ∞.

Under the additional condition Nhd+2+2(p∧q) → 0, we conclude the proof, denoting that the
bias vanishes in the previous expression.
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