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Abstract
We study the length of short cycles on uniformly random metric maps (also known as ribbon graphs) of large
genus using a Teichmüller theory approach. We establish that, as the genus tends to infinity, the length spectrum
converges to a Poisson point process with an explicit intensity. This result extends the work of Janson and Louf to
the multi-faced case.
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1. Introduction

A map, or a ribbon graph, is a graph with a cyclic ordering of the edges at each vertex. By substituting
edges with ribbons and attaching them at each vertex in accordance with the given cyclic order, we
create an oriented surface with boundaries on which the graph is drawn (see Figure 1). Since Tutte’s
pioneering work [58], ribbon graphs have been extensively studied, partly due to the increased interest
following the realisation of their importance in two-dimensional quantum gravity.

Much attention has been devoted to the study of metric maps (i.e., ribbon graphs with the assignment
of a positive real number to each edge). Remarkably, the moduli space parametrising metric ribbon
graphs of a fixed genus g and n faces of fixed lengths is naturally isomorphic to the moduli space of
Riemann surfaces of genus g with n punctures [31, 52, 14]. This fact was employed by Harer and Zagier
to compute the Euler characteristic of the moduli space of Riemann surfaces [32] and by Kontsevich
in his proof of Witten’s conjecture [59, 37]. The latter is a formula that computes the ‘number’ of
metric ribbon graphs recursively on the Euler characteristic: a topological recursion. The same type of
recursion applies to the ‘number’ of hyperbolic surfaces, as discovered by Mirzakhani [45].

Recently, intensive research efforts have been centred around the random large genus regime, both
in the combinatorial and in the hyperbolic contexts. The study of large genus asymptotics holds signifi-
cance for several reasons. Firstly, the intricate nature of several quantities simplifies enormously in the
large genus limit, leading to closed-form asymptotic evaluations. Secondly, many interesting quantities
associated to several geometric models appear to be exclusively attainable in the asymptotic regime.
A (far from exhaustive) list of examples in the combinatorial setting include the connectivity [54, 41, 15],
the local limit [18, 19] and cycle statistics [35, 36]. Analogously, examples in the hyperbolic setting
include the connectivity [46, 17, 16], the local limit [49], curve statistics [30, 47, 23, 24, 62, 33] and the
Laplacian spectrum [63, 40, 3, 34, 39, 28, 57, 50].

1.1. The results

In the present article, we study short cycles on metric ribbon graphs of large genus. A cycle on a metric
ribbon graph is a (finite) set of distinct edges, say {𝑒1, . . . , 𝑒𝑘 }, such that for some k vertices 𝑣1, . . . , 𝑣𝑘 ,
the edge 𝑒𝑖 joins 𝑣𝑖 to 𝑣𝑖+1, where 𝑣𝑘+1 = 𝑣1. The length of a cycle is the sum of the lengths of its edges.
For a given metric ribbon graph G, we define its length spectrum Λ(𝐺) as the multiset of lengths of all
cycles in G that do not represent a face.

Denote by 𝑮𝑔,𝐿 a uniform random metric ribbon graph of genus g with n marked faces of lengths
𝐿 = (𝐿1, . . . , 𝐿𝑛) ∈ R𝑛>0. See Section 2 for the precise notion of random metric ribbon graph. Our main
result, proved in Sections 3 and 4, is an explicit description of Λ(𝑮𝑔,𝐿) in the large genus limit as a
Poisson point process.

Theorem A. Let n be a fixed positive integer, and let 𝐿 = 𝐿(𝑔) = (𝐿1 (𝑔), . . . , 𝐿𝑛 (𝑔)) be a sequence of
vectors of positive real numbers such that, as 𝑔 → ∞,

𝐿1 (𝑔) + · · · + 𝐿𝑛 (𝑔) ∼ 12𝑔 − 12 + 6𝑛 ∼ 12𝑔. (1)

Figure 1. A ribbon graph of genus 0 with 3 faces (left) and a ribbon graph of genus 1 with 1 face (right).
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The random multiset Λ(𝑮𝑔,𝐿), viewed as a point process on R≥0, converges in distribution as 𝑔 → ∞
to a Poisson point process with intensity 𝜆 defined by

𝜆(ℓ) � cosh(ℓ) − 1
ℓ

. (2)

As 𝑮𝑔,𝐿 has almost surely 6𝑔 − 6 + 3𝑛 edges, and the total length of its faces is twice the total length
of all edges, the scaling condition (1) implies that, on average, every edge has length 1 as 𝑔 → ∞. In
this sense, the scaling condition is a natural assumption in this context. Besides, throughout the paper,
L will typically denote a sequence of vectors indexed by the genus g. To simplify the notation, we will
just write L instead of 𝐿(𝑔), when there is no potential for ambiguity.

Actually, we shall prove the following result which implies Theorem A through the method of
moments. For any nonempty interval [𝑎, 𝑏) ⊂ R≥0, denote by 𝑁 [𝑎,𝑏) (𝑮𝑔,𝐿) the number of cycles in
𝑮𝑔,𝐿 of length falling within the interval [𝑎, 𝑏).

Theorem B. Let n and L be as in Theorem A. For any disjoint intervals [𝑎1, 𝑏1), . . . , [𝑎𝑝 , 𝑏𝑝) ⊂ R≥0,
the random vector (

𝑁 [𝑎1 ,𝑏1) (𝑮𝑔,𝐿), . . . , 𝑁 [𝑎𝑝 ,𝑏𝑝) (𝑮𝑔,𝐿)
)

(3)

converges in distribution as 𝑔 → ∞ to a vector of independent Poisson variables of means(∫ 𝑏1

𝑎1

𝜆(ℓ) 𝑑ℓ, . . . ,
∫ 𝑏𝑝

𝑎𝑝

𝜆(ℓ) 𝑑ℓ
)
. (4)

As an application, we obtain the law of the length of the shortest cycle, known as girth or systole, on
a random metric ribbon graph of large genus.

Corollary C. Let n and L be as in Theorem A. The girth of 𝑮𝑔,𝐿 converges in distribution to a non-
homogeneous exponential distribution with rate function 𝜆. In other words, we have

lim
𝑔→∞
P
[
girth(𝑮𝑔,𝐿) ≤ 𝑡

]
= 1 − exp

(
−
∫ 𝑡

0
𝜆(ℓ) 𝑑ℓ

)
. (5)

We remark that all results presented here hold in the more general setting where the boundary lengths
are subjected to the scaling condition 𝐿1 + · · · + 𝐿𝑛 ∼ 𝜇12𝑔 for some 𝜇 > 0. In this case, the intensity is
given by by 𝜆𝜇 (ℓ) � (cosh(ℓ/𝜇) − 1)/ℓ. Besides, all results are still valid when replacing ‘cycles’ by
‘closed walks that do not traverse the same edge more than D times’, with D a fixed positive integer.

In comparison to the analogous results for hyperbolic surfaces due to Mirzakhani and Petri [47], a
natural comment is due. The length spectrum of a hyperbolic surface (or more generally, any Riemannian
manifold) is commonly defined as the multiset of lengths of the shortest primitive closed curve in each
free homotopy class. In this combinatorial setting, it would make sense to consider the length spectrum
defined analogously, instead of restricting it to only cycles. However, Theorem B fails to hold true when
all closed curves are considered, and it fails even when restricted to all simple closed curves. More
precisely, let 𝑁̄ [𝑎,𝑏) (𝐺) denote the number of (free homotopy classes of primitive) closed curves in G
with length falling within the interval [𝑎, 𝑏), and let 𝑁̄◦

[𝑎,𝑏) (𝐺) denote the number of simple closed
curves in G.

Theorem D. For any fixed (𝑔, 𝑛), boundary lengths 𝐿 ∈ R𝑛>0, and [𝑎, 𝑏) ⊂ R≥0, we have the following:

◦ E
[
𝑁̄ [𝑎,𝑏) (𝑮𝑔,𝐿)

]
= ∞,

◦ E
[
𝑁̄◦

[𝑎,𝑏) (𝑮𝑔,𝐿)
]
< ∞ and E

[
𝑁̄◦

[𝑎,𝑏) (𝑮𝑔,𝐿)𝑘
]
= ∞ for any 𝑘 > 3/2.
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Figure 2. In blue, the cycle length statistics of random unicellular metric maps of genus 𝑔 = 2, 8, and
64, sampled over 103 units and properly rescaled. The predicted intensity 𝜆 is depicted in lime.

The intuitive reason behind the above failing is the fact that metric ribbon graphs have zero curvature,
and as such, they can be scaled. Hence, the number of short closed curves on a metric ribbon graph G can
blow up when G approaches the boundary of the moduli space. See Section 5 for a detailed discussion.

Theorem A is supported by evidence from numerical simulations, as discussed in Section 6. Figure 2
illustrates cycle length statistics derived from three samples of 103 uniform random one-faced metric
ribbon graphs of genera 2, 8 and 64, respectively. The theoretical prediction is depicted in lime.

1.2. Related works and proof strategy

In [47], Mirzakhani and Petri study the length spectrum of a random closed hyperbolic surface 𝑺𝑔 of
genus g, sampled according to the Weil–Petersson measure. They prove that the length spectrum Λ(𝑺𝑔)
converges in distribution as 𝑔 → ∞ to a Poisson point process with intensity 𝜆 defined as in Equation (2).
In [36], Janson and Louf consider uniform random unicellular (i.e., one-faced) maps 𝑼𝑣,𝑔 of genus g
with v vertices, metrised by assigning length 1 to all edges. They prove that, as g, 𝑣 → ∞ with 𝑔 = o(𝑣),
the normalised length spectrum

√
12𝑔/𝑣 · Λ(𝑼𝑣,𝑔) converges in distribution to a Poisson point process

with exactly the same intensity 𝜆. The convergence of the length spectrum of large random hyperbolic
surfaces or random maps to a Poisson point process is not entirely unexpected (such events follow the
Poisson paradigm; see [61, 43, 53, 56] for results along these lines). However, the precise matching of
intensity functions is somehow miraculous.

While both [47] and [36] employ the moment method in their proofs, their approaches are of
completely different natures. On the one hand, Mirzakhani and Petri compute moments by means of an
integration formula developed by Mirzakhani in her thesis [45], and the large genus asymptotic analysis
relies on the work of Mirzakhani and Zograf on Weil–Petersson volumes [46, 48]. On the other hand,
the approach adopted by Janson and Louf is entirely combinatorial. In their proof, a bijection due to
Chapuy, Féray and Fusy [20] between unicellular maps and trees decorated by permutations plays a
crucial role, enabling them to proceed using results on random trees and random permutations, both
extensively explored subjects. We emphasise that, as the Chapuy–Féray–Fusy bijection is tied to the
unicellular case, the method of Janson and Louf does not extend to the multi-faced case.

The current paper follows a Teichmüller theory approach, and the proof strategy is similar to that
of [47]. More precisely, our proof makes use of the framework established in [5], which brings several
tools from hyperbolic geometry into combinatorics, as well as the recent result by Aggarwal [1] on the
large genus asymptotics of 𝜓-class intersection numbers. This combination of techniques allows us to
extend the results of [36] to the multi-faced cases.

Let us briefly mention why the model considered in [36] coincides with the one discussed in the
present work for 𝑛 = 1. Curien, Janson, Kortchemski, Louf and Marzouk proposed an alternative model
to random metric unicellular maps which behave as 𝑼𝑣,𝑔 (see [42]). Let 𝑽𝑔 be a uniform random
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unicellular trivalent map of genus g, metrised by assigning to all 6𝑔 − 3 edges i.i.d. Exp(1) random
lengths ℓ𝑖 (exponential distribution of parameter 1). Denote by 𝐿 � 2(ℓ1 + · · · + ℓ6𝑔−3) the length of
the unique face. It is a standard fact that if ℓ1, . . . , ℓ6𝑔−3 are i.i.d. Exp(1) variables, then the random
vector 𝑋 � (2ℓ1/𝐿, . . . , 2ℓ6𝑔−3/𝐿) is Dir(16𝑔−3) distributed (Dirichlet distribution of order 6𝑔 − 3 of
parameters (1, 1, . . . , 1)), and L and X are independent thanks to Lukács’s proportion-sum independence
theorem. Such a model, conditioned on L being fixed, is nothing but 𝑮𝑔,𝐿 .

1.3. Outlook

As highlighted in [36, Section 1.4], random metric ribbon graphs and random hyperbolic surfaces
exhibit remarkably similar behaviours. The former’s combinatorial and topological nature allows for the
application of combinatorics and graph theory to 2D geometry, as well as facilitating numerical tests
(see Figure 2). This advantage is evident in the computation of combinatorial versions of Mirzakhani’s
kernels R and D, which simplifies to a straightforward combinatorial check [5]. A plausible explanation
for these similarities is the spine construction from [14], explored in various contexts such as symplectic
structures [25] and shapes of complementary subsurfaces [8].

With this perspective in mind, it is then natural to consider the question of the Laplacian spectrum
of 𝑮𝑔,𝐿 as 𝑔 → ∞ and its relation to that of random hyperbolic surfaces (see [38] for a definition of
the Laplace operator on a metric graph). To address this, identifying the local limit, also known as the
Benjamini–Schramm limit [11], of 𝑮𝑔,𝐿 as 𝑔 → ∞ is crucial. The Benjamini–Schramm convergence
implies the convergence of spectral measures, a principle recently extended to metric graphs [4, 2].

It is conjectured that the local limit of a random trivalent unicellular map is the random infinite
trivalent metric tree 𝑻 with i.i.d. Exp(1) distributed edge lengths, suggesting 𝑮𝑔,𝐿 converges to 𝑻.
Consequently, exploring the Laplacian spectrum of 𝑻 and comparing it to that of the hyperbolic plane
is of interest. The local limit of unicellular maps, particularly when the genus grows proportionally to
the number of edges, has been identified in [6] as a supercritical Galton–Watson tree conditioned to be
infinite. More recently, moderate genus growth has been studied in [21], where the mesoscopic scaling
limit of the core of such maps was proved to be the infinite trivalent tree with i.i.d. exponential edge
lengths.

2. Background

In this section, we recall some background material about the geometry of the combinatorial Teichmüller
and moduli spaces (see [5] for more details), as well as some probabilistic tools that will be used in
order to prove the main result of the paper.

2.1. Combinatorial Teichmüller and moduli spaces

A ribbon graph is a finite graph G together with a cyclic order of the edges at each vertex. By replacing
each edge by a closed ribbon and glueing them at each vertex according to the cyclic order, we obtain
a topological, oriented, compact surface called the geometric realisation of G. Notice that the graph is
a deformation retract of its geometric realisation. We will assume that G is connected and all vertices
have valency ≥ 3.

The geometric realisation of a ribbon graph G will have 𝑛 ≥ 1 boundary components, also called
faces, and we always assume they are labelled as 𝜕1𝐺, . . . , 𝜕𝑛𝐺. Denote by 𝑉 (𝐺), 𝐸 (𝐺), 𝐹 (𝐺) the set
of vertices, edges and faces, respectively. We define the genus 𝑔 ≥ 0 to be the genus of the geometric
realisation. Thus, |𝑉 (𝐺) | − |𝐸 (𝐺) | + |𝐹 (𝐺) | = 2 − 2𝑔. The datum (𝑔, 𝑛) is called the type of G.

A metric ribbon graph is the data (𝐺, ℓ) of a ribbon graph G together with the assignment of a positive
real number for each edge – that is, ℓ : 𝐸 (𝐺) → R>0. In the following, we will omit the map ℓ from the
notation and simply denote it by ℓ𝐺 when needed. For a given metric ribbon graph G and a nontrivial
edge-path 𝛾, we can define the length ℓ𝐺 (𝛾) as the sum of the length of edges (with multiplicity) visited
by 𝛾. In particular, we can talk about length of the boundary components ℓ𝐺 (𝜕𝑖𝐺).
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Figure 3. The combinatorial Teichmüller space of a one-holed torus (left), and the corresponding
moduli space.

Fix now a connected, compact, oriented surface Σ of genus 𝑔 ≥ 0 with 𝑛 ≥ 1 labelled bound-
aries, denoted 𝜕1Σ, . . . , 𝜕𝑛Σ. Fix 𝐿 ∈ R𝑛>0. Define the combinatorial Teichmüller space as the space
parametrising metric ribbon graphs of type (𝑔, 𝑛) with fixed boundary lengths L embedded into Σ, up
to isotopy:

T comb
Σ (𝐿) �

⎧⎪⎪⎨⎪⎪⎩ (𝐺, 𝑓 )

������
𝐺 is a metric ribbon graph

with boundary lengths ℓ𝐺 (𝜕𝑖𝐺) = 𝐿𝑖
𝑓 : 𝐺 ↩→ Σ is a retract

⎫⎪⎪⎬⎪⎪⎭
/
∼ (6)

where the equivalence relation is given by

(𝐺, 𝑓 ) ∼ (𝐺 ′, 𝑓 ′) if and only if ∃ 𝜑 : 𝐺 → 𝐺 ′ an isometry such that 𝑓 ′ ◦ 𝜑 = 𝑓
and 𝑓 and 𝑓 ′ are isotopic. (7)

Notice that, as G is a retract of Σ, it has the same genus and number of boundary components as Σ.
Often, we will denote elements of T comb

Σ (𝐿) by G.
It can be shown that T comb

Σ (𝐿) is a real polytopal complex of dimension 6𝑔 − 6 + 2𝑛. The cells are
labelled by embedded ribbon graphs, and they parametrise all possible metrics with fixed boundary
lengths on the corresponding embedded graph; the cells are glued together via edge degeneration (see
Figure 3a for an example). The pure mapping class group MCGΣ of isotopy classes of orientation
preserving homeomorphisms of Σ preserving the boundary components naturally acts on T comb

Σ (𝐿).
The quotient space

Mcomb
𝑔,𝑛 (𝐿) � T comb

Σ (𝐿)
/

MCGΣ (8)

is called the combinatorial moduli space. It parametrises metric ribbon graphs of type (𝑔, 𝑛) with
fixed boundary lengths. It is a real polytopal orbicomplex of dimension 6𝑔 − 6 + 2𝑛. The orbicells are
labelled by ribbon graphs, and they parametrise all possible metrics with fixed boundary lengths on the
corresponding ribbon graph, up to automorphism (see Figure 3ba for an example).
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2.2. The symplectic structure, the length function, and the integration formula

As showed by Kontsevich [37], the moduli space Mcomb
𝑔,𝑛 (𝐿) carries a natural symplectic form 𝜔 that

we call Kontsevich form. The associated cohomology class has deep connections with the moduli space
of Riemann surfaces, as recalled in Subsection 2.3.

Denote by 𝑑𝐺 � 𝜔3𝑔−3+𝑛

(3𝑔−3+𝑛)! the volume form associated to 𝜔. The symplectic volumes

𝑉𝑔,𝑛 (𝐿) �
∫
Mcomb

𝑔,𝑛 (𝐿)
𝑑𝐺 (9)

are finite, and they have been computed recursively by Kontsevich using matrix model techniques. It is
worth mentioning that the symplectic volume form is proportional to the Lebesgue measure defined on
each top-dimensional cell forming the combinatorial moduli space, and as such, the symplectic volumes
are proportional to the asymptotic counting of metric ribbon graphs with edge lengths in 1

𝑘Z as 𝑘 → ∞.
A geometric proof of Kontsevich’s recursion, based on the existence of Fenchel–Nielsen coordinates
and a Mirzakhani-type recursion for the constant function 1 on the combinatorial Teichmüller space,
can be found in [5].

Let us recall the notion of combinatorial Fenchel–Nielsen coordinates. Fix an embedded metric
ribbon graph G ∈ T comb

Σ (𝐿) and a free homotopy class 𝛾 of a (non-null) simple closed curve in Σ.
Consider the unique representative of 𝛾 that has been homotoped to the embedded graph as a non-
backtracking edge-path. We will refer to it as the geodesic representative. The geodesic length ℓG(𝛾) is
defined by adding up the lengths of the edges visited by its geodesic representative. Thus, every free
homotopy class 𝛾 of nontrivial simple closed curves on Σ defines a function ℓ(𝛾) : T comb

Σ (𝐿) → R>0
that assigns to G the geodesic length ℓG(𝛾).

Consider now a pants decomposition P of Σ – that is, a collection (𝛾𝑚)3𝑔−3+𝑛
𝑚=1 of simple closed

curves that cut Σ into a disjoint union of pairs of pants. For a given embedded metric ribbon graph
G ∈ T comb

Σ (𝐿), we can assign to each curve in P the data of two real numbers in R>0 × R: the length
ℓG(𝛾𝑚) and the twist 𝜏G(𝛾𝑚) of the gluing. Thus, we get a map

T comb
Σ (𝐿) −→ (R>0 × R)P , G ↦−→

(
ℓG(𝛾𝑚), 𝜏G(𝛾𝑚)

)3𝑔−3+𝑛
𝑚=1 (10)

called the combinatorial Fenchel–Nielsen coordinates. They are the analogue of Fenchel–Nielsen coor-
dinates in hyperbolic geometry, and Dehn–Thurston coordinates in the theory of measured foliations.
Lengths and twists form a global coordinate system on the combinatorial Teichmüller space that is Dar-
boux for the Kontsevich symplectic form (canonically lifted to a mapping class group invariant form).
This is the combinatorial analogue of Wolpert’s magic formula [60] in the hyperbolic setting.
Theorem 2.1 (Combinatorial Wolpert’s formula [5]). For every pants decomposition, the Kontsevich
form on T comb

Σ (𝐿) is canonically given by

𝜔 =
3𝑔−3+𝑛∑
𝑚=1

𝑑ℓ𝑚 ∧ 𝑑𝜏𝑚. (11)

The above formula allows for the integration of natural geometric functions defined on the com-
binatorial moduli space. This fact, which is the combinatorial analogue of Mirzakhani’s integration
formula [45], is one of the main ingredients in the geometric proof of the volume recursion. In order to
state the formula, let us introduce some notation.

A stable graph consists of the data Γ = (V(Γ),H(Γ), (𝑔𝑣 )𝑣 ∈V(Γ) , 𝜈, 𝜄) satisfying the following
properties.
1. V(Γ) is the set of vertices, equipped with the assignment of nonnegative integers (𝑔𝑣 )𝑣 ∈V(Γ) called

the genus decoration.
2. H(Γ) is the set of half-edges, the map 𝜈 : H(Γ) → V(Γ) associates to each half-edge the vertex it is

incident to, and 𝜄 : H(Γ) → H(Γ) is an involution that pairs half-edges together.
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Figure 4. The stable graph corresponding to an ordered tuple of curves.

3. The set of 2-cycles of 𝜄 is the set of edges, denoted E(Γ) (self-loops are permitted).
4. The set of 1-cycles (i.e., fixed points) of 𝜄 is the set of leaves, denoted Λ(Γ). We require that leaves

are labelled: there is a bijection ℓ : Λ(Γ) → {1, . . . , 𝑛}, where 𝑛 � |Λ(Γ) |.
5. The pair (V(Γ),E(Γ)) defines a connected graph.
6. If v is a vertex, denote by 𝑛𝑣 � |𝜈−1 (𝑣) | its valency. We require that for each vertex v, the stability

condition 2𝑔𝑣 − 2 + 𝑛𝑣 > 0 holds.

An isomorphism of stable graphs 𝜑 : Γ → Γ′ is a pair of bijective maps

𝜑V : V(Γ) −→ V(Γ′), 𝜑H : H(Γ) −→ H(Γ′), (12)

of their sets of vertices and half-edges which are compatible with the functions g, 𝜈, 𝜄, and the leaf
labelling. That is,

𝑔𝜑V (𝑣) = 𝑔𝑣 ∀𝑣 ∈ V(Γ),
𝜈(𝜑H (ℎ)) = 𝜈(ℎ) and 𝜄(𝜑H (ℎ)) = 𝜄(ℎ) ∀ℎ ∈ H(Γ),
ℓ(𝜑H(𝜆)) = ℓ(𝜆) ∀𝜆 ∈ Λ(Γ).

(13)

We denote by Aut(Γ) the automorphism group of Γ.
For a given stable graph Γ, define its genus as

𝑔(Γ) �
∑

𝑣 ∈V(Γ)
𝑔(𝑣) + ℎ1 (Γ), (14)

where ℎ1 (Γ) is the first Betti number of Γ. We denote by G𝑔,𝑛 the (finite) set of isomorphism classes of
stable graphs of genus g with n leaves. Abusing notation, we denote the isomorphism class of a stable
graph Γ with the same symbol.

Stable graphs naturally appear as mapping class group orbits of primitive multicurves. Let
𝛾 = (𝛾1, . . . , 𝛾𝑟 ) be an ordered primitive multicurve – that is, an r-tuple of free homotopic classes
of simple closed curves on Σ that are non-null, non-peripheral and distinct. Denote by Γ the mapping
class group orbit MCGΣ · 𝛾. Then Γ is identified with (an isomorphism class of) a stable graph with r
labelled edges, where the vertices and the genus decoration correspond to the connected components of
Σ \ 𝛾, the s-th edge corresponds to the curve 𝛾𝑠 , and the i-th leaf corresponds to the boundary compo-
nent 𝜕𝑖Σ (see Figure 4 for an example). Notice that, in contrast to the previous definition, stable graphs
have now labelled edges.

For a given measurable function 𝐹 : R𝑛>0 × R
𝑟
>0 → R, define 𝐹Γ : T comb

Σ (𝐿) → R as

𝐹Γ (G) �
∑
𝛼∈Γ

𝐹
(
𝐿, ℓG(𝛼)

)
, (15)
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where ℓG(𝛼) = (ℓG(𝛼1), . . . , ℓG(𝛼𝑟 )). If the above series is absolutely convergent, the function 𝐹Γ
descends naturally to a function on the moduli space Mcomb

𝑔,𝑛 (𝐿), that we denote with the same symbol.
Its integral is given by the following formula.
Theorem 2.2 (Integration formula [5]). If the series (15) is absolutely convergent and its projection
onto Mcomb

𝑔,𝑛 (𝐿) is integrable with respect to the Kontsevich measure, then the integral of 𝐹Γ over the
combinatorial moduli space is given by∫

Mcomb
𝑔,𝑛 (𝐿)

𝐹Γ 𝑑𝐺 =
1

|Aut(Γ) |

∫
R𝑟
>0

𝐹 (𝐿, ℓ)𝑉Γ (𝐿, ℓ)
𝑟∏
𝑠=1

ℓ𝑠 𝑑ℓ𝑠, (16)

where 𝑉Γ (𝐿, ℓ) �
∏

𝑣 ∈V(Γ) 𝑉𝑔𝑣 ,𝑛𝑣 (𝐿𝑣 , ℓ𝑣 ). Here, 𝐿𝑣 (resp. ℓ𝑣 ) denotes the tuple of lengths associated
to the leaves (resp. half-edges that are not leaves) attached to v.

2.3. Connection with intersection numbers and Aggarwal’s asymptotic formula

A notable aspect of the combinatorial moduli space Mcomb
𝑔,𝑛 (𝐿) is its homeomorphism to the moduli

space of Riemann surfaces M𝑔,𝑛 (both considered as real topological orbifolds). This fact was proved
by Harer [31] using meromorphic differentials (based on the seminal works of Jenkins and Strebel and
unpublished works of Thurston and Mumford) and by Penner and Bowditch–Epstein [52, 14] using
hyperbolic geometry. For instance, the moduli space Mcomb

1,1 (𝐿) in Figure 3ba is nothing but the moduli
of elliptic curves M1,1 = [SL(2,Z)\H2].

Consequently, any topological invariant of Mcomb
𝑔,𝑛 (𝐿) can be translated into a corresponding topo-

logical invariant of M𝑔,𝑛 and vice versa. As mentioned in the introduction, Harer and Zagier [32] utilise
this fact to compute the Euler characteristic of the moduli space of curves, and Kontsevich employs it
to prove Witten’s conjecture [59, 37]. The former is a consequence of the following result.
Theorem 2.3 (Symplectic volumes as intersection numbers [37]). The symplectic volumes satisfy

𝑉𝑔,𝑛 (𝐿) =
∑

(𝑑1 ,...,𝑑𝑛) ∈Z𝑘≥0
|𝑑 |=3𝑔−3+𝑛

〈𝜏𝑑1 · · · 𝜏𝑑𝑛〉𝑔,𝑛
𝑛∏
𝑖=1

𝐿2𝑑𝑖
𝑖

2𝑑𝑖𝑑𝑖!
, (17)

where

〈𝜏𝑑1 · · · 𝜏𝑑𝑛〉𝑔,𝑛 �
∫
M𝑔,𝑛

𝜓𝑑1
1 · · ·𝜓𝑑𝑛

𝑛 (18)

are the Witten–Kontsevich intersection numbers over the Deligne–Mumford compactification of the
moduli space of Riemann surfaces. Here, 𝜓𝑖 � 𝑐1 (L𝑖) ∈ 𝐻2(M𝑔,𝑛,Q) is the first Chern class of the
i-th tautological line bundle L𝑖 (i.e., the line bundle whose fibre over [𝐶, 𝑝1, . . . , 𝑝𝑛] ∈ M𝑔,𝑛 is the
cotangent line at 𝑝𝑖 of C).

The main tool to estimate volumes in the large genus limit is an asymptotic formula for the Witten–
Kontsevich intersection numbers. The formula was conjectured by Delecroix–Goujard–Zograf–Zorich
based on numerical data [22], and proved shortly after by Aggarwal [1] through a combinatorial analysis
of the associated Virasoro constraints. An alternative proof was recently given in [29] and in [26] through
a combinatorial and resurgent analysis of determinantal formulae, respectively.
Theorem 2.4 (Large genus asymptotic of intersection numbers [1]). For any stable (𝑔, 𝑛) with 𝑛2 <
𝑔/800 and (𝑑1, . . . , 𝑑𝑛) ∈ Z𝑛≥0 with |𝑑 | = 3𝑔 − 3 + 𝑛, we have as 𝑔 → ∞

〈〈𝜏𝑑1 · · · 𝜏𝑑𝑛〉〉𝑔,𝑛 � 〈𝜏𝑑1 · · · 𝜏𝑑𝑛〉𝑔,𝑛
𝑛∏
𝑖=1

(2𝑑𝑖 + 1)!! = (6𝑔 − 5 + 2𝑛)!!
𝑔! 24𝑔

(
1 + o(1)

)
(19)

uniformly in n and (𝑑1, . . . , 𝑑𝑛).
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Combining (17) and (19), we obtain that for any stable (𝑔, 𝑛) with 𝑛2 < 𝑔/800, and any
𝐿 = (𝐿1, . . . , 𝐿𝑛) ∈ R𝑛>0,

𝑉𝑔,𝑛 (𝐿) = (1 + o(1)) (6𝑔 − 5 + 2𝑛)!!
𝑔! 24𝑔

[𝑧6𝑔−6+3𝑛]
𝑛∏
𝑖=1

sinh(𝐿𝑖𝑧)
𝐿𝑖

, (20)

uniformly in n and L, where [𝑧𝑑] 𝑓 (𝑧) denotes the coefficient of 𝑧𝑑 in the Taylor expansion of 𝑓 (𝑧)
around 𝑧 = 0. We will come back to this observation in the next section, when discussing estimates on
Kontsevich volumes.

The asymptotic formula (19) becomes false if n grows too rapidly compared to g (for instance,
consider the exact formula 〈𝜏𝑑1 · · · 𝜏𝑑𝑛〉0,𝑛 =

( 𝑛−3
𝑑1 ,...,𝑑𝑛

)
). However, the following estimate always holds.

Theorem 2.5 (Uniform bound on intersection numbers [1]). For any stable (𝑔, 𝑛) and (𝑑1, . . . , 𝑑𝑛) ∈
Z𝑛≥0 with |𝑑 | = 3𝑔 − 3 + 𝑛, we have

〈〈𝜏𝑑1 · · · 𝜏𝑑𝑛〉〉𝑔,𝑛 ≤
(

3
2

)𝑛−1 (6𝑔 − 5 + 2𝑛)!!
𝑔! 24𝑔

. (21)

2.4. Random metric ribbon graphs and the method of moments

As the combinatorial moduli space has a finite volume, we can turn it into a probability space. More
precisely, given a measurable set 𝐴 ⊆ Mcomb

𝑔,𝑛 (𝐿), define

P[𝐴] � 1
𝑉𝑔,𝑛 (𝐿)

∫
𝐴
𝑑𝐺. (22)

Given random variables 𝑋1, . . . , 𝑋𝑝 : Mcomb
𝑔,𝑛 (𝐿) → R and sets 𝐸1, . . . , 𝐸𝑝 ⊂ R, define

P[𝑋1 ∈ 𝐸1, . . . , 𝑋𝑝 ∈ 𝐸𝑝] � P
[

𝑝⋂
𝑖=1

{
𝐺 ∈ Mcomb

𝑔,𝑛 (𝐿)
�� 𝑋𝑖 (𝐺) ∈ 𝐸𝑖

}]
. (23)

If 𝐸𝑖 = {𝑥𝑖} is a singleton, we simply denote the above quantity as P[𝑋1 = 𝑥1, . . . , 𝑋𝑝 = 𝑥𝑝]. For 𝑝 = 1,
we refer to the function P[𝑋 = 𝑥] as the probability mass function of X. We also define the expectation
value of a random variable X to be

E[𝑋] � 1
𝑉𝑔,𝑛 (𝐿)

∫
Mcomb

𝑔,𝑛 (𝐿)
𝑋 (𝐺) 𝑑𝐺. (24)

Often, we writeE[𝑋 (𝑮𝑔,𝐿)] where𝑮𝑔,𝐿 is a random element inMcomb
𝑔,𝑛 (𝐿) to emphasise the dependence

on the genus and the number/lengths of the boundary components.
As in [47, 36], the main probabilistic tool used in this paper is the method of moments, which we

now recall. Let (Ω,B, P) be a probability space, and let 𝑋 : Ω → Z≥0 be an integer-valued random
variable. For any integer r, define

(𝑋)𝑟 � 𝑋 (𝑋 − 1) · · · (𝑋 − 𝑟 + 1). (25)

The expectation value E[(𝑋)𝑟 ] is called the r-th factorial moment of X.
A special class of integer-valued random variables is constituted by those following a Poisson

distribution. We say that X is Poisson distributed with mean 𝜆 ∈ R>0 if its probability mass function
satisfies

P[𝑋 = 𝑘] = e−𝜆
𝜆𝑘

𝑘!
for all 𝑘 ∈ Z≥0. (26)
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Figure 5. Example (left) and non-example (right) of a cycle on an embedded metric ribbon graph of
type (0, 4).

In this case, it can be shown that the r-th factorial moment of X is given by E[(𝑋)𝑟 ] = 𝜆𝑟 for all integers
𝑟 ∈ Z≥0. The method of moments asserts that the converse is also true. In other words, an integer-valued
random variable is Poisson distributed with mean 𝜆 if and only if its its r-th factorial moment is given
by 𝜆𝑟 . More precisely, we have the following result (see, for instance, [12]).

Theorem 2.6 (Method of moments). Let {(Ω𝑑 ,B𝑑 , P𝑑)}𝑑∈Z≥1 be a sequence of probability spaces,
and let (𝑋𝑑,1, . . . , 𝑋𝑑,𝑝) : Ω𝑑 → Z

𝑝
≥0 be an integer-valued random vector. Suppose there exists

(𝜆1, . . . , 𝜆𝑝) ∈ R𝑝
>0 such that

lim
𝑑→∞
E

[
𝑝∏
𝑖=1

(𝑋𝑑,𝑖)𝑟𝑖

]
=

𝑝∏
𝑖=1

𝜆𝑟𝑖𝑖 (27)

for all (𝑟1, . . . , 𝑟𝑝) ∈ Z𝑝≥0. Then (𝑋𝑑,1, . . . , 𝑋𝑑,𝑝)𝑑∈Z≥1 converges jointly in distribution to a vector of
independent Poisson variables with parameters (𝜆1, . . . , 𝜆𝑝). In other words, for all (𝑘1, . . . , 𝑘 𝑝) ∈ Z𝑝≥0:

lim
𝑑→∞
P
[
𝑋𝑑,1 = 𝑘1, . . . , 𝑋𝑑,𝑝 = 𝑘 𝑝

]
=

𝑝∏
𝑖=1

e−𝜆𝑖
𝜆𝑘𝑖𝑖
𝑘𝑖!

. (28)

Poisson distributions appear, for instance, in the context of point processes. To put it concretely,
a point process on R≥0 is a collection of integer-valued random variables 𝑋𝑆 : Ω → Z≥0 indexed by
Borel sets S on R≥0, such that for all countable collections {[𝑎𝑖 , 𝑏𝑖)}∞𝑖=1 of disjoint intervals, we have
𝑋∪𝑖 [𝑎𝑖 ,𝑏𝑖) =

∑
𝑖 𝑋[𝑎𝑖 ,𝑏𝑖 ) . The value 𝑋𝑆 can be thought of as the number of events happening in the set S.

A point process is called Poisson if there exists a locally integrable nonnegative function 𝜆 : R≥0 →
R≥0, called the intensity, such that 𝑋[𝑎,𝑏) is Poisson distributed with mean∫ 𝑏

𝑎
𝜆(ℓ) 𝑑ℓ, (29)

and for any disjoint intervals [𝑎1, 𝑏1), . . . , [𝑎𝑝 , 𝑏𝑝) ⊂ R≥0, 𝑋[𝑎1 ,𝑏1) , . . . , 𝑋[𝑎𝑝 ,𝑏𝑝) are independent.

3. The combinatorial length spectrum

3.1. Setup

Fix a topological surface Σ of type (𝑔, 𝑛) and a cell in T comb
Σ (𝐿) (i.e., an embedded ribbon graph𝐺 ↩→ Σ

that is a retract). A free homotopy class of a non-null, non-peripheral closed curve C is called a cycle
if its unique non-backtracking edge-path representative visits each edge at most once. Notice that the
notion of cycle depends on the underlying embedded ribbon graph. Moreover, we assume that a cycle
is non-peripheral – that is, we exclude face perimeters. See Figure 5 for an example and a non-example.
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The main object of study is the bottom part of the length spectrum of cycles on metric ribbon graphs
– that is, the function 𝑁𝑔,𝐿, [𝑎,𝑏) : T comb

Σ (𝐿) → Z≥0 defined as

𝑁𝑔,𝐿, [𝑎,𝑏) (G) �
����{ C cycle in G

with length ℓG(C) ∈ [𝑎, 𝑏)

}����. (30)

The function𝑁𝑔,𝐿, [𝑎,𝑏) is mapping class group invariant, so it descends to a function on the combinatorial
moduli space (denoted with the same symbol) that we can regard as a point process onR≥0. As presented
in the introduction, our main result (Theorem A) is the fact that 𝑁𝑔,𝐿, [𝑎,𝑏) converges in distribution as
𝑔 → ∞ to a Poisson point process of intensity given by

𝜆𝜇 (ℓ) �
cosh(ℓ/𝜇) − 1

ℓ
, (31)

under the following assumption on the scaling of the boundary components.
Boundary scaling assumption. The boundary lengths 𝐿(𝑔) = (𝐿1 (𝑔), . . . , 𝐿𝑛 (𝑔)) are positive real

functions of g, and there exists 𝜇 > 0 such that, as 𝑔 → ∞,

|𝐿(𝑔) | � 𝐿1 (𝑔) + · · · + 𝐿𝑛 (𝑔) ∼ 𝜇12𝑔. (32)

For ease of notation, we often omit the dependence on g and simply write L for 𝐿(𝑔).
Remark 3.1. As the homeomorphism Mcomb

𝑔,𝑛 (𝐿) → Mcomb
𝑔,𝑛 (𝜇𝐿), defined by global scaling, preserves

the Kontsevich measure and scales the length spectrum globally by 𝜇, many of the results stated below
for a general 𝜇 follow directly from the case 𝜇 = 1.

As outlined in the introduction, the boundary scaling assumption is naturally explained by the fact
that, for a random ribbon graph of type (𝑔, 𝑛) with constant edge-lengths 𝜇, the total boundary length
is given by |𝐿 | = 2𝜇(6𝑔 − 6 + 3𝑛) ∼ 𝜇12𝑔. It is also worth mentioning that the mean

∫ 𝑏

𝑎
𝜆𝜇 (ℓ)𝑑ℓ can

be written as

1
2

∫ 𝑏/𝜇

𝑎/𝜇
S2(ℓ) ℓ 𝑑ℓ, where S (ℓ) � sinh(ℓ/2)

ℓ/2
. (33)

The function S is the ubiquitous function appearing in the enumerative theory of Riemann surfaces (see,
for instance, [51]). The square and the symmetry factor 1

2 naturally appear by assigning the function S
to the two unlabelled branches of the cycle C. Moreover, the measure ℓ 𝑑ℓ is naturally interpreted as a
length-twist measure, after integrating out the twist parameter.

Following [47], the strategy consists in employing the method of moments together with the key
observation that the function

𝑁𝑔,𝐿,𝐼 �
𝑝∏
𝑖=1

(
𝑁𝑔,𝐿, [𝑎𝑖 ,𝑏𝑖)

)
𝑟𝑖

(34)

has a simple geometric interpretation: it counts the number of ordered p-tuples where the i-th item is the
number of ordered 𝑟𝑖-tuples of cycles with length in [𝑎𝑖 , 𝑏𝑖). Here, we suppose that all intervals [𝑎𝑖 , 𝑏𝑖)
are disjoint, and we denoted 𝐼 �

∏𝑝
𝑖=1 [𝑎𝑖 , 𝑏𝑖)

𝑟𝑖 .
Another key step in the proof is to split 𝑁𝑔,𝐿,𝐼 as a sum of three terms:

𝑁𝑔,𝐿,𝐼 = 𝑁◦
𝑔,𝐿,𝐼 + 𝑁

�
𝑔,𝐿,𝐼 + 𝑁

×
𝑔,𝐿,𝐼 , (35)

where we have set
◦ 𝑁◦

𝑔,𝐿,𝐼 for the number of tuples such that all cycles are simple, distinct and non-separating,
◦ 𝑁�

𝑔,𝐿,𝐼 for the number of tuples such that all cycles are simple, distinct and separating,
◦ 𝑁×

𝑔,𝐿,𝐼 for the number of tuples such that at least one cycle is non-simple, or at least one pair of cycles
intersect.
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We also denote by 𝑁̄∗
𝑔,𝐿,𝐼 the corresponding counting where ‘cycle’ is replaced by ‘closed curve’.

Clearly, 𝑁∗
𝑔,𝐿,𝐼 ≤ 𝑁̄∗

𝑔,𝐿,𝐼 for ∗ ∈ {◦,�,×}. The goal of Subsection 3.4 is to prove the following claims:
under the boundary scaling assumption (32), as 𝑔 → ∞,

A) E[𝑁̄◦
𝑔,𝐿,𝐼 ] = (1 + o(1))

∏𝑝
𝑖=1(
∫ 𝑏𝑖
𝑎𝑖

𝜆𝜇 (𝑥) 𝑑𝑥)𝑟𝑖 ,
B) E[𝑁�

𝑔,𝐿,𝐼 ] = O(𝑔−1/2),
C) E[𝑁×

𝑔,𝐿,𝐼 ] = O(𝑔−1/2),
D) E[𝑁̄◦

𝑔,𝐿,𝐼 ] − E[𝑁
◦
𝑔,𝐿,𝐼 ] = O(𝑔−1/2).

Claims (A)–(D), together with the splitting (35), imply that

lim
𝑔→∞
E
[
𝑁𝑔,𝐿,𝐼

]
=

𝑝∏
𝑖=1

(∫ 𝑏𝑖

𝑎𝑖

𝜆𝜇 (𝑥) 𝑑𝑥
)𝑟𝑖
. (36)

Together with the method of moments, the main result of the paper follows.
The key ingredients that contribute to the proof of Claims (A)–(D) are an estimate on the Kontsevich

volumes, the integration formula, and an estimate on a certain sum over stable graphs.

3.2. Volume estimates

As explained in Subsection 2.3, the large genus asymptotics of the Kontsevich volumes are expressed
in terms of coefficients of the form [𝑧6𝑔−6+3𝑛]

∏𝑛
𝑖=1 sinh(𝐿𝑖𝑧). More generally, in this section, we are

going to compute the 𝑔 → ∞ asymptotic behaviour of coefficients of the form

𝔉𝑔 � [𝑧6𝑔−6+3𝑛] 𝐹𝑔 (𝑧), where 𝐹𝑔 (𝑧) �
(

𝑛∏
𝑖=1

sinh(𝐿𝑖 (𝑔)𝑧)
) (

𝑚∏
𝑗=1

sinh(ℓ 𝑗 (𝑔)𝑧)
)
, (37)

under the following assumptions:

◦ 𝑛 ≥ 1 and 𝑚 ≥ 0 are fixed integers,
◦ 𝐿(𝑔) = (𝐿1 (𝑔), . . . , 𝐿𝑛 (𝑔)) and ℓ(𝑔) = (ℓ1(𝑔), . . . , ℓ𝑚(𝑔)) are positive real functions of g, with

|𝐿(𝑔) | ∼ 𝜇12𝑔 (the boundary scaling assumption (32)) and |ℓ(𝑔) | = O(1), as 𝑔 → ∞. To simplify
the notation, we often drop the dependence of 𝐿(𝑔) and ℓ(𝑔) on g and simply write L and ℓ.

Notice that, strictly speaking, both𝔉𝑔 and 𝐹𝑔 are actually functions of (𝐿, ℓ), which, in turn, is an (𝑛+𝑚)-
tuple of functions of g satisfying the above assumptions. For simplicity, we omit the dependence on
(𝐿, ℓ) and emphasise only the dependence on g.

In order to compute the asymptotic behaviour of 𝔉𝑔, we apply the saddle-point method (see [27,
Chapter VIII]).

Proposition 3.2. Under the assumptions above, we have

𝔉𝑔 ∼ 𝜌−(6𝑔−6+3𝑛)√
3𝜋𝑔

(
𝑛∏
𝑖=1

sinh(𝐿𝑖𝜌)
) (

𝑚∏
𝑗=1

sinh
(
ℓ 𝑗

2𝜇

))
, (38)

where 𝜌 � (6𝑔 − 6 + 3𝑛)/|𝐿 | ∼ 1/(2𝜇).

Proof. The function 𝐹𝑔 (𝑧) is holomorphic on the whole complex z-plane. By Cauchy’s integral formula,
for any radius 𝑟 ∈ R>0,

𝔉𝑔 =
1

2𝜋i

∮
|𝑧 |=𝑟

𝐹𝑔 (𝑧)
𝑧6𝑔−5+3𝑛 𝑑𝑧 =

𝑟−(6𝑔−6+3𝑛)

𝜋

∫ 𝜋/2

−𝜋/2
𝐹𝑔 (𝑟ei𝜃 ) e−(6𝑔−6+3𝑛)i𝜃 𝑑𝜃.
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Figure 6. The graph of the absolute value of the function 𝐹𝑔 (𝑧)𝑧−(6𝑔−5+3𝑛) for 𝑔 = 2 (left) and 𝑔 = 10
(right), with 𝑛 = 𝑚 = 1, 𝐿1 = 𝑔, and ℓ1 = 1. Notice the two saddle-points at 𝑧 ∼ ±6, becoming more
and more pronounced as g increases.

Here, we used the parity property of the integrand and reduce the integral over a semicircle. See Figure 6
for a 3D plot of the absolute value of the integrand. Following the terminology of [27, Chapter VIII], in
order to apply the saddle-point method, we shall choose

◦ a radius so that the integration contour is an approximate saddle-point contour,
◦ a splitting of the approximate saddle-point contour as Ccentr + Ctail, so that the following holds true.

– Tail pruning. The integral along Ctail is negligible.
– Central approximation. The integral along Ccentr is well-approximated by an incomplete Gaus-

sian integral.
– Tail completion. The incomplete Gaussian integral is asymptotically equivalent to the complete

Gaussian integral.

We first start with choosing the radius r and the splitting. Let us write the integrand 𝐹𝑔 (𝑟ei𝜃 ) e−(6𝑔−6+3𝑛)i𝜃

as e 𝑓 (𝜃) , where

𝑓 (𝜃) �
𝑛∑
𝑖=1

log sinh(𝐿𝑖𝑟ei𝜃 ) +
𝑚∑
𝑗=1

log sinh(ℓ 𝑗𝑟ei𝜃 ) − (6𝑔 − 6 + 3𝑛)i𝜃.

For simplicity, we omit the dependence on r and g (through the functions (𝐿, ℓ)). Furthermore, in what
follows, prime notation is used to denote derivatives with respect to 𝜃. The saddle-point equation for
the radius r, namely,

𝑓 ′(0) = i
𝑛∑
𝑖=1

𝐿𝑖𝑟 coth(𝐿𝑖𝑟) + i
𝑚∑
𝑗=1

ℓ 𝑗𝑟 coth(ℓ 𝑗𝑟) − (6𝑔 − 6 + 3𝑛)i = 0,

has a unique solution, which is asymptotically equivalent to 1/(2𝜇) as 𝑔 → ∞. We use 𝜌 = 𝜌(𝑔) �
(6𝑔 − 6 + 3𝑛)/|𝐿 | ∼ 1/(2𝜇) as an approximate saddle-point contour. Near the saddle-point, we have
𝑓 ′(0) = O(1) as 𝑔 → ∞. Moreover, we have

𝑓 ′′(0) =
𝑛∑
𝑖=1

(
𝐿2
𝑖 𝜌

2 csch2(𝐿𝑖𝜌) − 𝐿𝑖𝜌 coth(𝐿𝑖𝜌)
)
+

𝑚∑
𝑗=1

(
ℓ2
𝑗 𝜌

2 csch2 (ℓ 𝑗 𝜌) − ℓ 𝑗 𝜌 coth(ℓ𝑖𝜌)
)

= −6𝑔 + O(1),
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𝑓 ′′′(0) = i
𝑛∑
𝑖=1

(
3𝐿2

𝑖 𝜌
2 csch2 (𝐿𝑖𝜌) − 2𝐿3

𝑖 𝜌
3 csch2 (𝐿𝑖𝜌) coth(𝐿𝑖𝜌) − 𝐿𝑖𝜌 coth(𝐿𝑖𝜌)

)
+ i

𝑚∑
𝑗=1

(
3ℓ2

𝑗 𝜌
2 csch2 (ℓ 𝑗 𝜌) − 2ℓ3

𝑗 𝜌
3 csch2(ℓ 𝑗 𝜌) coth(ℓ 𝑗 𝜌) − ℓ 𝑗 𝜌 coth(ℓ 𝑗 𝜌)

)
= −i6𝑔 + O(1).

Now we set a cut-off 𝜃0 such that 𝑓 ′(0)𝜃0 → 0, 𝑓 ′′(0)𝜃2
0 → ∞, 𝑓 ′′′(0)𝜃3

0 → 0 when 𝑔 → ∞. A possible
choice is then 𝜃0 = 𝑔−2/5. We thus introduce

𝔉𝑔,centr �
𝜌−(6𝑔−6+3𝑛)

𝜋

∫
Ccentr

e 𝑓 (𝜃) 𝑑𝜃, 𝔉𝑔,tail �
𝜌−(6𝑔−6+3𝑛)

𝜋

∫
Ctail

e 𝑓 (𝜃) 𝑑𝜃,

where Ccentr � {𝜌 ei𝜃 ∈ C : |𝜃 | ≤ 𝜃0} and Ctail � {𝜌 ei𝜃 ∈ C : 𝜃0 ≤ |𝜃 | ≤ 𝜋/2}. We can now proceed
with the three main checks of the saddle-point method: tail pruning, central approximation and tail
completion.

Tail pruning. Along the tail contour Ctail, the integrand is negligible as 𝑔 → ∞. Indeed, observe
that along the semicircle {𝜌 ei𝜃 ∈ C : |𝜃 | ≤ 𝜋/2}, the integrand is strongly peaked at 𝜃 = 0. Thus, along
the tail Ctail, we have e 𝑓 (𝜃)− 𝑓 (0) = O(e |𝐿 |𝜌 (cos(𝑔−2/5)−1) ) = O(e𝐶𝑔−1/5 ) for some 𝐶 > 0.

Central approximation. Thanks to the choice 𝜃0 = 𝑔−2/5, we have a quadratic approximation for f
along the central contour Ccentr – that is, e 𝑓 (𝜃) = e 𝑓 (0)−3𝜃2𝑔 (1 + O(𝑔−1/5)). Therefore,

𝔉𝑔,centr =
𝜌−(6𝑔−6+3𝑛)

𝜋
e 𝑓 (0)

∫ 𝜃0

−𝜃0

e−3𝜃2𝑔 𝑑𝜃
(
1 + O

(
𝑔−1/5) )

=
𝜌−(6𝑔−6+3𝑛)

𝜋
√

3𝑔
e 𝑓 (0)

∫ √
3𝑔1/10

−
√

3𝑔1/10
e−𝜑

2
𝑑𝜑
(
1 + O

(
𝑔−1/5) ) .

Tail completion. It follows from
∫ +∞
𝑎

e−𝜑2
𝑑𝜑 = O(e−𝑎2 ) that

𝔉𝑔,centr =
𝜌−(6𝑔−6+3𝑛)

𝜋
√

3𝑔
e 𝑓 (0)

∫ +∞

−∞
e−𝜑

2
𝑑𝜑
(
1 + O

(
𝑔−1/5) )

=
𝜌−(6𝑔−6+3𝑛)√

3𝜋𝑔

(
𝑛∏
𝑖=1

sinh(𝐿𝑖𝜌)
) (

𝑚∏
𝑗=1

sinh(ℓ 𝑗 𝜌)
) (

1 + O
(
𝑔−1/5) )

∼ 𝜌−(6𝑔−6+3𝑛)√
3𝜋𝑔

(
𝑛∏
𝑖=1

sinh(𝐿𝑖𝜌)
) (

𝑚∏
𝑗=1

sinh
(
ℓ 𝑗

2𝜇

))
.

Together with the tail pruning, we have shown that 𝔉𝑔 ∼ 𝔉𝑔,centr. This completes the proof. �

A direct consequence of the above proposition is an estimate on the symplectic volumes.
Corollary 3.3 (Volume estimates). For any sequence 𝐿 = 𝐿(𝑔) = (𝐿1, . . . , 𝐿𝑛) ∈ R𝑛>0 satisfying the
boundary scaling assumption (32), we have as 𝑔 → ∞,

𝑉𝑔,𝑛 (𝐿) ∼
(6𝑔 − 5 + 2𝑛)!!

𝑔! 24𝑔
𝜌−(6𝑔−6+3𝑛)√

3𝜋𝑔

𝑛∏
𝑖=1

sinh(𝐿𝑖𝜌)
𝐿𝑖

, (39)

where 𝜌 � (6𝑔 − 6 + 3𝑛)/|𝐿 | ∼ 1/(2𝜇). Moreover, for any fixed ℓ = (ℓ1, . . . , ℓ𝑟 ) ∈ R𝑟>0, we have as
𝑔 → ∞,

𝑉𝑔−𝑟 ,𝑛+2𝑟 (𝐿, ℓ, ℓ)
𝑉𝑔,𝑛 (𝐿)

∼ 2𝑟
𝑟∏
𝑠=1

cosh(ℓ𝑠/𝜇) − 1
ℓ2
𝑠

. (40)
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Proof. The first estimate is a direct combination of Equation (20) and Proposition 3.2. As for the second
estimate, the same results imply

𝑉𝑔−𝑟 ,𝑛+2𝑟 (𝐿, ℓ, ℓ)
𝑉𝑔,𝑛 (𝐿)

∼
(

24𝑔
6𝑔 − 5 + 2𝑛

)𝑟 𝑟∏
𝑠=1

(
sinh(ℓ𝑠/(2𝜇))

ℓ𝑠

)2
∼ 2𝑟

𝑟∏
𝑠=1

cosh(ℓ𝑠/𝜇) − 1
ℓ2
𝑠

.

The first estimate follows from 𝑔!
(𝑔−𝑟 )! ∼ 𝑔𝑟 , while the last estimate from sinh2 ( 𝑥2 ) =

1
2 (cosh(𝑥) −1). �

For a sanity check, consider the one-faced case (i.e., when 𝑛 = 1). The 1-point 𝜓-class intersection
numbers admit the closed-form expression 〈𝜏3𝑔−2〉𝑔,1 = 1/(𝑔! 24𝑔), and hence, we have

𝑉𝑔,1 (𝐿) =
1

𝑔! 24𝑔
𝐿6𝑔−4

23𝑔−2 (3𝑔 − 2)!
. (41)

By Stirling’s formula, the above expression is asymptotically equivalent to (39) with 𝑛 = 1 and 𝜇 = 1.

3.3. Simple, distinct, non-separating closed curves

We are now ready to prove Claim (A). Recall the notation 𝐼 =
∏𝑝

𝑖=1 [𝑎𝑖 , 𝑏𝑖)
𝑟𝑖 and 𝜆𝜇 (ℓ) = cosh(ℓ/𝜇)−1

ℓ .
Proposition 3.4. Fix 𝐿 = (𝐿1, . . . , 𝐿𝑛) ∈ R𝑛>0 satisfying the boundary scaling assumption (32). Then

lim
𝑔→∞
E

[
𝑁̄◦
𝑔,𝐿,𝐼

]
=

𝑝∏
𝑖=1

(∫ 𝑏𝑖

𝑎𝑖

𝜆𝜇 (ℓ) 𝑑ℓ
)𝑟𝑖
. (42)

Proof. Notice that E[𝑁̄◦
𝑔,𝐿,𝐼 ] is exactly in the form of the integration formula (Theorem 2.2), as all

curves under consideration are simple and distinct. Besides, since all curves are non-separating, the
associated stable graph Γ has 𝑟 � 𝑟1 + · · · + 𝑟𝑝 self-loops attached to a single vertex of genus 𝑔− 𝑟 and n
leaves. In this case, |Aut(Γ) | = 2𝑟 , corresponding to the swapping of half-edges composing the r loops.
Moreover, in the notation of Theorem 2.2, 𝐹 = 1𝐼 is the indicator function of the set I. Thus, we find

E

[
𝑁̄◦
𝑔,𝐿,𝐼

]
=

2−𝑟

𝑉𝑔,𝑛 (𝐿)

∫
R𝑟
>0

1𝐼 (ℓ) · 𝑉𝑔−𝑟 ,𝑛+2𝑟 (𝐿, ℓ, ℓ)
𝑟∏
𝑠=1

ℓ𝑠 𝑑ℓ𝑠 .

The result then follows from the second estimate of Corollary 3.3. �

3.4. The negligible terms

The goal of this section is to prove Claims (B)–(D). The main difference compared to the previous
section is that the integration formula loses its effectiveness when dealing with non-simple curves. To
overcome this limitation, we consider subsurfaces where the curves are filling. Similar methods have
been applied in, for example, [47, 63, 40, 3]. This strategy is implemented by the introduction of an
auxiliary function 𝑀𝐴,𝐵;Γ depending on parameters A and B and a separating stable graph Γ. The main
reason behind the introduction of such a function is that the functions 𝑁�

𝑔,𝐿,𝐼 , 𝑁×
𝑔,𝐿,𝐼 and 𝑁̄◦

𝑔,𝐿,𝐼 −𝑁
◦
𝑔,𝐿,𝐼

can all be bounded by the sum over stable graphs involving the auxiliary 𝑀𝐴,𝐵;Γ (for some specific
choices of A and B).

Recall the notation for stable graphs introduced in Subsection 2.2. Denote by Gsep
𝑔,𝑛 the set of stable

graphs of type (𝑔, 𝑛) with at least two vertices (geometrically, they correspond to separating multicurves).
Let 𝐴 ∈ R≥1, 𝐵 ∈ R>0 and Γ ∈ Gsep

𝑔,𝑛. Define 𝑀𝐴,𝐵;Γ : T comb
Σ (𝐿) → R by setting

𝑀𝐴,𝐵;Γ (G)

�
����{ (𝛾𝑖)𝑖=1,..., |E(Γ) |

���� 𝛾 multicurve in Σ marked by Γ
with length ℓG(𝛾) ≤ 𝐵

}���� · 2 |V(Γ) |+ |E(Γ) |
∏

𝑣 ∈V𝐵 (Γ)
𝐴6𝑔𝑣−6+3𝑛𝑣 . (43)
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Here, V𝐵 (Γ) denotes the subset of vertices 𝑣 ∈ V(Γ) such that v is adjacent to no leaf with length larger
than B. For ease of notation, we omit the dependence on the boundary lengths 𝐿 = (𝐿1, . . . , 𝐿𝑛). The
function 𝑀𝐴,𝐵;Γ is mapping class group invariant, and it descends to a function on the combinatorial
moduli space that will be denoted with the same symbol.

The main technical result, whose proof is postponed to Section 4, is an estimate for the sum over
stable graphs of the expectation value of 𝑀𝐴,𝐵;Γ.

Theorem 3.5 (Main estimate). For any 𝐴 ≥ 1, 𝐵 > 0, as 𝑔 → ∞,∑
Γ∈Gsep

𝑔,𝑛

E
[
𝑀𝐴,𝐵;Γ

]
= O(𝑔−1/2). (44)

Let us start with Claim (B) – that is, an estimate on the combinatorial length spectrum of simple,
distinct, separating cycles.

Proposition 3.6 (Estimate on 𝑁�
𝑔,𝐼 ,𝐿). The following bound holds true:

𝑁�
𝑔,𝐼 ,𝐿 ≤

∑
Γ∈Gsep

𝑔,𝑛

𝑀1,𝑏𝑟 ;Γ (45)

where 𝑏 = max
{
𝑏1, . . . , 𝑏𝑝

}
and 𝑟 = 𝑟1 + · · · + 𝑟𝑝 . Thus, E[𝑁�

𝑔,𝐼 ,𝐿] = O(𝑔−1/2).

Proof. Clearly, 𝑁�
𝑔,𝐼 ,𝐿 ≤ 𝑁̄�

𝑔,𝐼 ,𝐿 . However, any multicurve 𝛾 counted by 𝑁̄�
𝑔,𝐼 ,𝐿 will have an associated

stable graph with at least two vertices (since 𝛾 is separating) and total length bounded by 𝑏1𝑟1 + · · · +
𝑏𝑝𝑟𝑝 ≤ 𝑏𝑟 . Thus,

𝑁�
𝑔,𝐼 ,𝐿 ≤ 𝑁̄�

𝑔,𝐼 ,𝐿 ≤
∑

Γ∈Gsep
𝑔,𝑛

𝑀1,𝑏𝑟 ;Γ .

The value 2 |V(Γ) |+ |E(Γ) | appearing in Equation (43) is an overestimate in this case. The estimate on the
expectation value then follows from Theorem 3.5. �

We now proceed with Claim (C) – that is, an estimate on the combinatorial length spectrum of
non-simple cycles. Here, it will be crucial to consider cycles rather than curves.

Proposition 3.7 (Estimate on 𝑁×
𝑔,𝐼 ,𝐿). The following bound holds true:

𝑁×
𝑔,𝐿,𝐼 ≤ 𝑟!

∑
Γ∈Gsep

𝑔,𝑛

𝑀2𝑟+1 ,2𝑏𝑟 ;Γ, (46)

where 𝑏 = max
{
𝑏1, . . . , 𝑏𝑝

}
and 𝑟 = 𝑟1 + · · · + 𝑟𝑝 . Thus, E[𝑁×

𝑔,𝐿,𝐼 ] = O(𝑔−1/2).

Proof. There are 𝑟! ways to arrange r distinct cycles into an ordered r-tuple. Thus, we find

𝑁×
𝑔,𝐿,𝐼 ≤ 𝑟!

�����
{ unordered collection C of distinct cycles

with at least one intersection
and length ℓ(C) ≤ 𝑏𝑟

}�����.
We claim that the right-hand side is bounded by

𝑟!
∑

Γ∈Gsep
𝑔,𝑛

����{ 𝛾 unordered multicurve of type Γ
with length ℓ(𝛾) ≤ 𝐵

}���� · 2 |V(Γ) |+ |E(Γ) |
∏

𝑣 ∈V𝐵 (Γ)
𝐴6𝑔𝑣−6+3𝑛𝑣 ,

where 𝐴 = 4𝑟 and 𝐵 = 2𝑏𝑟 are constants. The claim would complete the proof, since the above quantity
is bounded by the same expression with ‘unordered’ replaced by ‘ordered’, which is nothing but (43).
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Figure 7. From a collection of intersecting cycles to a separating multicurve.

The strategy is to assign to any given unordered collection of distinct cycles a separating multicurve.
We start from an empty multicurve 𝛾. Let C = C1 + · · · +C𝑟 be the unordered collection of distinct cycles
under consideration, and let K be a connected components of C1 ∪ · · · ∪ C𝑟 , say 𝐾 = C𝑖1 ∪ · · · ∪ C𝑖𝑘 .
Denote by Ξ𝐾 its tubular neighbourhood. Notice that Ξ𝐾 is a subsurface of Σ with boundary, and there
are two mutually exclusive situations that can occur.

1. Ξ𝐾 is a cylinder. In this case, 𝐾 = C𝑖 for some i and C𝑖 is simple. We then add C𝑖 to 𝛾.
2. Ξ𝐾 has negative Euler characteristics. If a boundary component of Ξ𝐾 is peripheral in Σ, then we just

ignore it. The remaining boundary components form an unordered multicurve, say 𝛽 = 𝛽1 + · · · + 𝛽𝑚.
Then we add 𝛽 to 𝛾. Note that by construction, the total length of boundary components of Ξ𝐾 is
bounded by 2(ℓ(C𝑖1) + · · · + ℓ(C𝑖𝑘 )) ≤ 2𝑏𝑟 .

We repeat the same procedure for all connected components of C1 ∪ · · · ∪ C𝑟 . Note that the same curve
may be added several times (at most 3) during the construction. Since we want a primitive multicurve,
we will just keep one copy. By construction, all curves added to 𝛾 are disjoint, the resulting multicurve
𝛾 is separating, and we have ℓ(𝛾) ≤ 2ℓ(C) ≤ 2𝑏𝑟 = 𝐵. See Figure 7 for an example.

The drawback of this procedure is that different collections of cycles may yield the same multicurve.
Given a (resulting) separating multicurve 𝛾 of type Γ, we can estimate the number of different collections
of cycles that yield the same 𝛾 as follows.

First we bound the number of possible tubular neighbourhoods that can give rise to 𝛾. Note that such
a tubular neighbourhood is the union of cylinders and stable subsurfaces. By construction, cylinders
correspond to a subset of E(Γ), while stable subsurfaces correspond to a subset of V𝐵 (Γ). Hence,
the number of tubular neighbourhoods that give rise to the same Γ is bounded by 2 |E(Γ) |+ |V𝐵 (Γ) | ≤
2 |E(Γ) |+ |V(Γ) | .

Next, we bound the number of collections of cycles C that can give rise to the same tubular neigh-
bourhood, say Ξ. Note that a cylinder in Ξ always corresponds to a cycle in C, but a stable subsurface v
in Ξ can be induced by different subsets of C. We claim that the number of such subsets is bounded by
𝐴6𝑔𝑣−6+3𝑛𝑣 with 𝐴 = 2𝑟+1. Indeed, the number of cycles in the subsurface v is bounded by 26𝑔𝑣−6+3𝑛𝑣 ,
as there are at most 6𝑔𝑣 − 6 + 3𝑛𝑣 edges in v and each edge can either be part of the cycle or not.
Moreover, the size of the subset under consideration can vary from 2 to r. Hence, the number of subsets
of C giving rise to v is bounded by (26𝑔𝑣−6+3𝑛𝑣 )2 + · · · + (26𝑔𝑣−6+3𝑛𝑣 )𝑟 ≤ 2(𝑟+1) (6𝑔𝑣−6+3𝑛𝑣 ) . This gives
the desired bound. �

Remark 3.8. The above proof, which is the only one where considering cycles rather than curves
actually matters, generalises to the counting of D-cycles. A D-cycle is an edge-path that visits edges at
most D times. In particular, cycles are the same as 1-cycles. In this case, the above algorithm still holds,
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Figure 8. The decomposition of a surface into ribbons and discs, and the thick neighbourhood of a
multicurve.

but we have to modify the argument for the estimate on the number of different collections of cycles
that yield the same tubular neighbourhood. In this case, if a stable subsurface Ξ corresponds to a vertex
𝑣 ∈ V𝐵 (Γ), then the number of collections of D-cycles in Ξ of size r is bounded by

𝑟∑
𝑠=2

(
(0! + 1! + · · · + 𝐷!)6𝑔𝑣−6+3𝑛𝑣

)𝑠
≤ ((𝐷 + 1)!) (𝑟+1) (6𝑔𝑣−6+3𝑛𝑣 ) . (47)

Thus, Equation (46) still holds with with 𝐴 = ((𝐷 + 1)!)𝑟+1 and 𝐵 = 2𝑏𝑟 .

We conclude with a proof of Claim (D) – that is, an estimate on the difference between the combi-
natorial length spectrum of simple curves and simple cycles.

Proposition 3.9 (Estimate on 𝑁̄◦
𝑔,𝐼 ,𝐿 − 𝑁◦

𝑔,𝐼 ,𝐿). The following bound holds true:

𝑁̄◦
𝑔,𝐿,𝐼 − 𝑁◦

𝑔,𝐿,𝐼 ≤
∑

Γ∈Gsep
𝑔,𝑛

𝑀1,3𝑏𝑟 ;Γ, (48)

where 𝑏 = max
{
𝑏1, . . . , 𝑏𝑝

}
and 𝑟 = 𝑟1 + · · · + 𝑟𝑝 . Thus, E[𝑁̄◦

𝑔,𝐿,𝐼 ] − E[𝑁
◦
𝑔,𝐿,𝐼 ] = O(𝑔−1/2).

Proof. Let 𝛾 = (𝛾1, . . . , 𝛾𝑟 ) be an r-tuple of simple closed curves which is counted in 𝑁̄◦
𝑔,𝐿,𝐼 but not in

𝑁◦
𝑔,𝐿,𝐼 . The embedded ribbon graph gives rise to a decomposition of the surface into ribbons (assigned

to edges) and discs (assigned to vertices); see Figure 8a. By taking the geodesic representative of 𝛾
– that is, the unique non-backtracking edge-path in the homotopy class – we obtain a collection on
non-intersecting segments in each ribbon and a collection of non-intersecting switches in each disc; see
Figure 8b. Define the thick neighbourhood of 𝛾 as the open subset of Σ obtained by taking in each ribbon
(resp. disc) the connected open subset that contains all segments (resp. switches); see Figure 8b again.
The boundary of the thick neighbourhood of 𝛾 is a multicurve 𝛽 (possibly with peripheral components
that we ignore), that we can make into an ordered multicurve in accordance with an arbitrary order of
the (countable) set of closed curves in Σ.

We claim that 𝛽 is nontrivial and separating. Indeed, if 𝛽 were null-homotopic, then 𝛾 would be null-
homotopic as well (it would be contained within the subsurface bounded by 𝛽). Moreover, if 𝛽 were
non-separating, then the thick neighbourhood of 𝛾 would be a collection of cylinders which contain 𝛾,
in contradiction with the fact that 𝛾 traverses at least one ribbon more than once.

Therefore, 𝛽 is a nontrivial separating multicurve. We append to the end of 𝛾 the curves in 𝛽 that are
not already in 𝛾. Thus, we obtain an ordered separating multicurve, denoted by 𝛾̄. Although we have
no control over the number of components of 𝛾̄, we do know that ℓ(𝛾̄) ≤ 3ℓ(𝛾). Since the procedure is
injective (we simply added curves at the end of the original tuple), we have 𝑁̄◦

𝑔,𝐿,𝐼 −𝑁
◦
𝑔,𝐿,𝐼 ≤ 𝑁̄�

𝑔,𝐿,Δ≤3𝑏𝑟
,

where 𝑁̄�
𝑔,𝐿,Δ≤𝐶

counts separating multicurves whose total length is bounded by C. Note that 𝑁̄�
𝑔,𝐿,Δ≤𝐶
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is slightly differ from the counting 𝑁̄�
𝑔,𝐿,𝐼 , since in the former case, we do not fix the number curves.

Nonetheless, the proof-strategy of Proposition 3.6 holds with no modifications, and hence the claimed
bound. �

4. Proof of Theorem 3.5

The goal of this section is to prove the main estimate on the sum over stable graphs of the expectation
value of the auxiliary function 𝑀𝐴,𝐵,Γ. We divide the proof in two parts: an estimate on the single
expectation value E[𝑀𝐴,𝐵;Γ] and an estimate on its sum over all separating stable graphs.

4.1. Estimates on the auxiliary functions

To prepare for the estimate on the expectation value of the auxiliary function, we start by giving a basic
estimate.
Lemma 4.1. Let Γ ∈ Gsep

𝑔,𝑛. Then(
(6𝑔 − 5 + 2𝑛)!!

𝑔! 24𝑔

)−1 ∏
𝑣 ∈V(Γ)

(6𝑔𝑣 + 5 + 2𝑛𝑣 )!!
𝑔𝑣 ! 24𝑔𝑣

≤ 42−|V(Γ) |+ |E(Γ) |

(2𝑔 − 2 + 𝑛)!
∏

𝑣 ∈V(Γ)
(2𝑔𝑣 − 2 + 𝑛𝑣 )!. (49)

Proof. For ease of notation, write v = |V(Γ) | and e = |E(Γ) |. The relations∑
𝑣 ∈V(Γ)

𝑔𝑣 = 𝑔 − 1 + v − e,
∑

𝑣 ∈V(Γ)
𝑛𝑣 = 𝑛 + 2e,

𝑚∏
𝑖=1

(
𝐴𝑖

𝐴𝑖,1, . . . , 𝐴𝑖,𝑟

)
≤
( ∑

𝑖 𝐴𝑖∑
𝑖 𝐴𝑖,1, . . . ,

∑
𝑖 𝐴𝑖,𝑟

)
(see [1, Lemma 2.3] for the last inequality) imply∏

𝑣 ∈V(Γ)

(6𝑔𝑣 − 5 + 2𝑛𝑣 )!!
𝑔𝑣 ! 24𝑔𝑣

=
∏

𝑣 ∈V(Γ)

(
6𝑔𝑣 − 5 + 2𝑛𝑣

3𝑔𝑣 − 3 + 𝑛𝑣 , 2𝑔𝑣 − 2 + 𝑛𝑣 , 𝑔𝑣

)
(2𝑔𝑣 − 2 + 𝑛𝑣 )!
23𝑔𝑣−3+𝑛𝑣 24𝑔𝑣

≤ 1
23𝑔−3+𝑛−e 24𝑔−1+v−e

(
6𝑔 − 6 + 2𝑛 + v − 2e

3𝑔 − 3 + 𝑛 − e, 2𝑔 − 2 + 𝑛, 𝑔 − 1 + v − e

) ∏
𝑣 ∈V(Γ)

(2𝑔𝑣 − 2 + 𝑛𝑣 )!.

The connectivity of Γ implies v ≤ e + 1; hence,

(6𝑔 − 6 + 2𝑛 + v − 2e)!
(6𝑔 − 5 + 2𝑛)! ≤ 1

(6𝑔 − 5 + 2𝑛)1−v+2e ,

(3𝑔 − 3 + 𝑛)!
(3𝑔 − 3 + 𝑛 − e)! ≤ (3𝑔 − 3 + 𝑛)e,

𝑔!
(𝑔 − 1 + v − e)! ≤ 2(𝑔 − 1)1−v+e.

We then conclude that

2e 241−v+e (6𝑔 − 6 + 2𝑛 + v − 2e)!
(6𝑔 − 5 + 2𝑛)!

(3𝑔 − 3 + 𝑛)!
(3𝑔 − 3 + 𝑛 − e)!

𝑔!
(𝑔 − 1 + v − e)!

≤ 2 · 41−v+e (6𝑔 − 6 + 2𝑛)e (6𝑔 − 6)1−v+e

(6𝑔 − 6 + 2𝑛)1−v+2e ≤ 2 · 41−v+e
(

6𝑔 − 6
6𝑔 − 6 + 2𝑛

)1−v+e

≤ 42−v+e,

which proves the lemma. �

Proposition 4.2. For any constants 𝐴 ∈ R≥1 and 𝐵 ∈ R>0, there exists 𝐶 = 𝐶 (𝐴, 𝐵, 𝑛) > 0 such that
for all 𝑔 � 0 and Γ ∈ Gsep

𝑔,𝑛, the following estimate holds:

E
[
𝑀𝐴,𝐵;Γ

]
≤

√
𝑔

|Aut(Γ) |
𝐶 |E(Γ) |

(2|E(Γ) |)!

∏
𝑣 ∈V(Γ) (2𝑔𝑣 − 2 + 𝑛𝑣 )!

(2𝑔 − 2 + 𝑛)! . (50)
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Proof. For ease of notation, write V = V(Γ), V𝐵 = V𝐵 (Γ), E = E(Γ), 𝜒 = 2𝑔−2+𝑛, and 𝜒𝑣 = 2𝑔𝑣−2+𝑛𝑣
for every 𝑣 ∈ V. Applying the integration formula (16), we deduce that

E
[
𝑀𝐴,𝐵;Γ

]
=

1
𝑉𝑔,𝑛 (𝐿)

2 |V |+ |E |

|Aut(Γ) |

( ∏
𝑣 ∈V𝐵

𝐴3𝜒𝑣

) ∫
ΔE
≤𝐵

𝑉Γ (𝐿, ℓ)
∏
𝑒∈E

ℓ𝑒 𝑑ℓ𝑒,

where ΔE
≤𝐵 = { ℓ ∈ RE

>0 :
∑

𝑒 ℓ𝑒 ≤ 𝐵 }. Applying Theorem 2.5 to bound the intersection numbers in the
integrand, we obtain

E
[
𝑀𝐴,𝐵;Γ

]
≤ 1
𝑉𝑔,𝑛 (𝐿)

2 |V |+ |E |

|Aut(Γ) |

(
3
2

)𝑛+2 |E |− |V |
( ∏
𝑣 ∈V𝐵

𝐴3𝜒𝑣

)
×
∫
ΔE
≤𝐵

∏
𝑣 ∈V

(6𝑔𝑣 − 5 + 2𝑛𝑣 )!!
𝑔𝑣 ! 24𝑔𝑣

[𝑧3𝜒]
𝑛∏
𝑖=1

sinh(𝐿𝑖𝑧)
𝐿𝜆

∏
𝑒∈E

(
sinh(ℓ𝑒𝑧)

ℓ𝑒

)2
ℓ𝑒 𝑑ℓ𝑒 .

We can bound part of the right-hand side with the first estimate from Corollary 3.3 and with Lemma 4.1:
setting 𝜌 � (6𝑔 − 6 + 3𝑛)/|𝐿 | ∼ 1/(2𝜇), we have

1
𝑉𝑔,𝑛 (𝐿)

2 |V |+ |E |

|Aut(Γ) |

(
3
2

)𝑛+2 |E |− |V |∏
𝑣 ∈V

(6𝑔𝑣 − 5 + 2𝑛𝑣 )!!
𝑔𝑣 ! 24𝑔𝑣

≤
√
𝑔

|Aut(Γ) |𝐶
|E |
1

∏
𝑣 ∈V 𝜒𝑣 !
𝜒!

𝜌3𝜒
𝑛∏
𝑖=1

𝐿𝑖
sinh(𝐿𝑖𝜌)

for some 𝐶1 = 𝐶1 (𝑛) > 0 and 𝑔 � 0. Here, we also used the inequality |V| ≤ |E| + 1 to write the overall
constant as a power of the number of edges. However, for all 𝐴 ∈ R≥1,

[𝑧3𝜒]
∏
𝑣 ∈V𝐵

𝐴3𝜒𝑣

𝑛∏
𝑖=1

sinh(𝐿𝑖𝑧)
𝐿𝜆

∏
𝑒∈E

(
sinh(ℓ𝑒𝑧)

ℓ𝑒

)2

≤ [𝑧3𝜒])*+
∏
𝑣 ∈V𝐵

∏
𝜆∈Λ(𝑣)

sinh(𝐿𝑣 𝐴𝑧)
𝐿𝑣

,-.)*+
∏
𝑣∉V𝐵

∏
𝜆∈Λ(𝑣)

sinh(𝐿𝑣 𝑧)
𝐿𝑣

,-.
∏
𝑒∈E

(
sinh(ℓ𝑒𝐴𝑧)

ℓ𝑒

)2
.

Here, Λ(𝑣) denotes the set of leaves attached to a vertex v. For any given convergent power series∑
𝑚≥0 𝑎𝑚𝑧

𝑚 with 𝑎𝑚 ≥ 0, we have 𝑎𝑘 ≤ 𝜌−𝑘
∑

𝑚≥0 𝑎𝑚𝜌
𝑚 for all choices of 𝜌 > 0 (within the disc of

convergence). Thus, we find that for all ℓ ∈ ΔE
≤𝐵,

[𝑧3𝜒]
∏
𝑣 ∈V𝐵

𝐴3𝜒𝑣

𝑛∏
𝑖=1

sinh(𝐿𝑖𝑧)
𝐿𝜆

∏
𝑒∈E

(
sinh(ℓ𝑒𝑧)

ℓ𝑒

)2

≤ 𝜌−3𝜒)*+
∏
𝑣 ∈V𝐵

∏
𝜆∈Λ(𝑣)

sinh(𝐿𝑣 𝐴𝜌)
𝐿𝑣

,-.)*+
∏
𝑣∉V𝐵

∏
𝜆∈Λ(𝑣)

sinh(𝐿𝑣 𝜌)
𝐿𝑣

,-.
∏
𝑒∈E

(
sinh(ℓ𝑒𝐴𝜌)

ℓ𝑒

)2

≤ 𝐶 |E |
2 𝜌−3𝜒

𝑛∏
𝑖=1

sinh(𝐿𝑖𝜌)
𝐿𝑖

for some 𝐶2 = 𝐶2 (𝐴, 𝐵, 𝑛) > 0 and 𝑔 � 0. In the first inequality, we chose 𝜌 = (6𝑔 − 6 + 3𝑛)/|𝐿 | as
above, while in the second inequality, we used the fact that for all 𝑣 ∈ 𝑉𝐵 and ℓ ∈ ΔE

≤𝐵,

∏
𝑣 ∈V𝐵

∏
𝜆∈Λ(𝑣)

sinh(𝐿𝑣 𝐴𝜌)
𝐿𝑣

≤ 𝑐1
∏
𝑣 ∈V𝐵

∏
𝜆∈Λ(𝑣)

sinh(𝐿𝑣 𝜌)
𝐿𝑣

,
∏
𝑒∈E

(
sinh(ℓ𝑒𝐴𝜌)

ℓ𝑒

)2
≤ 𝑐 |E |

2 ,
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for some 𝑐𝑖 = 𝑐𝑖 (𝐴, 𝐵, 𝑛) > 0 and 𝑔 � 0. To conclude, we apply the identity
∫
ΔE
≤𝐵

∏
𝑒∈E ℓ𝑒 𝑑ℓ𝑒 =

𝐵2|E|

(2 |E |)! . �

4.2. Summing over all topologies

We are now ready to estimate the sum of E[𝑀𝐴,𝐵;Γ] when Γ runs over all separating stable graphs. To
prepare for it, let us start with a basic estimate on a sum of reciprocals of multinomial coefficients.

Lemma 4.3. Let 2 ≤ 𝑘 ≤ 𝑛 be integers. The following bound holds true:∑
(𝑛1 ,...,𝑛𝑘 ) ∈Z𝑘≥1
𝑛1+···+𝑛𝑘=𝑛

𝑛1! · · · 𝑛𝑘 !
𝑛!

≤ 4
𝑛
. (51)

Proof. Denote by 𝐹 (𝑛, 𝑘) the left-hand side of Equation (51). Let us first prove the claimed bound holds
for 𝑘 = 2. We start by rewriting 𝐹 (𝑛, 2) as

𝐹 (𝑛, 2) =
∑
𝑝,𝑞≥1
𝑝+𝑞=𝑛

𝑝!𝑞!
𝑛!

=
2
𝑛
+
∑
𝑝,𝑞≥2
𝑝+𝑞=𝑛

𝑝!𝑞!
𝑛!

.

In the last sum, there are 𝑛 − 3 summands, each bounded by 2
𝑛(𝑛−1) . Thus, the last sum is bounded by

2(𝑛−3)
𝑛(𝑛−1) ≤ 2

𝑛 , proving the claimed bound. Let us now prove that 𝐹 (𝑛, 𝑘) ≤ 𝐹 (𝑛, 2). We have

𝐹 (𝑛, 𝑘) = 1
𝑛!

𝑛−(𝑘−2)∑
𝑟=2

∑
(𝑛1 ,...,𝑛𝑘−2) ∈Z𝑘−2

≥1
𝑛1+···+𝑛𝑘−2=𝑛−𝑟

𝑛1! · · · 𝑛𝑘−2!
𝑛!

∑
𝑝,𝑞≥1
𝑝+𝑞=𝑟

𝑝!𝑞!.

The first part of the proof implies that the innermost sum is bounded by 4(𝑟−1)!. Thus, after a relabelling
of the index r as 𝑛𝑘−1 + 1, we find

𝐹 (𝑛, 𝑘) ≤ 4
𝑛!

∑
(𝑛1 ,...,𝑛𝑘−1) ∈Z𝑘−1

≥1
𝑛1+···+𝑛𝑘−1=𝑛−1

𝑛1! · · · 𝑛𝑘−1! =
4
𝑛
𝐹 (𝑛 − 1, 𝑘 − 1) ≤ 𝐹 (𝑛 − 1, 𝑘 − 1),

where the last inequality holds for 𝑛 ≥ 4. By repeatedly applying the above inequality, we find 𝐹 (𝑛, 𝑘) ≤
𝐹 (𝑛 − 𝑘 + 2, 2) ≤ 4

𝑛 , and hence the thesis. The cases with 𝑛 < 4 can be checked independently. �

We are now ready to prove Theorem 3.5. For convenience, the proof makes use of labelled stable
graphs – that is, a stable graph Γ together with bijections V(Γ) → {1, . . . , |V(Γ) |} and H(Γ) →
{1, . . . , |H(Γ) |}.

Proof of Theorem 3.5. Let Γ be a stable graph of type (𝑔, 𝑛) with vertex set V, half-edges set H,
and edge set E. Denote by 𝑆(V) and 𝑆(H) the symmetric group over V and H, respectively. Write
𝑆(Γ) = 𝑆(V) × 𝑆(H), and write 𝜋 for the projection that maps a labelled stable graph to its underlying
stable graph. The group 𝑆(Γ) acts on 𝜋−1 (Γ) by permuting the labels, and the stabiliser of any element
in 𝜋−1 (Γ) is isomorphic to Aut(Γ). Thus, we have |𝜋−1 (Γ) | = |𝑆(Γ) |/|Aut(Γ) |, so for any function f
defined on the set of labelled stable graphs that is constant along the fibres of 𝜋, we have∑

Γ∈Gsep
𝑔,𝑛

𝑓 (Γ)
|Aut(Γ) | =

∑
Γ

𝑓 (Γ)
|V|! |H|! .
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The sum on the right-hand side runs over the set of labelled separating stable graphs of type (𝑔, 𝑛). In
light of Proposition 4.2, we consider the following choice of f :

𝑓 (Γ) � √
𝑔

𝐶 |E |

(2|E|)!

∏
𝑣 ∈V (2𝑔𝑣 − 2 + 𝑛𝑣 )!
(2𝑔 − 2 + 𝑛)! .

Note that 𝑓 (Γ) depends only on e = |E|, the genus decoration (𝑔𝑣 )𝑣 ∈V, and the valency decoration
(𝑛𝑣 )𝑣 ∈V, so we can write 𝑓 (e, (𝑔𝑣 ), (𝑛𝑣 )) for 𝑓 (Γ).

Given 𝑚, 𝑘 ∈ Z≥1, we write

C0(𝑚, 𝑘) �
{
(𝑚1, . . . , 𝑚𝑘 ) ∈ Z𝑘≥0

�� 𝑚1 + · · · + 𝑚𝑘 = 𝑚
}
,

C1(𝑚, 𝑘) �
{
(𝑚1, . . . , 𝑚𝑘 ) ∈ Z𝑘≥1

�� 𝑚1 + · · · + 𝑚𝑘 = 𝑚
}
.

We first claim that∑
Γ

𝑓 (Γ)
|V|! |H|! ≤

∑
v≥2, e≥1

v≤e+1

1
v! (2e)!

∑
𝑠≥0, 𝑡≥1
𝑠+𝑡=e

∑
g∈C0 (𝑔−1−e+v,v)

n∈C0 (𝑛,v)
s∈C0 (𝑠,v) ,t∈C1 (2𝑡 ,v)

×
(

𝑛

𝑛1, . . . , 𝑛v

) (
2e

2𝑠1 + 𝑡1, . . . , 2𝑠v + 𝑡v

) ( v∏
𝑖=1

(
2𝑠𝑖 + 𝑡𝑖

2𝑠𝑖

)
(2𝑠𝑖 − 1)!!

)
(2𝑡 − 1)!! 𝑓 (e, g, n + 2s + t).

Indeed, any labelled stable graph of type (𝑔, 𝑛) having v ≥ 2 vertices and e ≥ 1 edges, out of which
𝑠 ≥ 0 are self-loops and 𝑡 ≥ 1 are not, can be constructed as follows. Fix v vertices and decorate them
with their genus g ∈ C0 (𝑔−1−e+v, v). Fix a splitting of the leaves – that is, n ∈ C0 (𝑛, v) – and distribute
the labels. This can be achieved in

( 𝑛
𝑛1 ,...,𝑛v

)
different ways. Second, fix a splitting of the half-edges that

are not leaves as self-loops and non-self-loops – that is, s ∈ C0 (𝑠, v) and t ∈ C1 (2𝑡, v). Attach 2𝑠𝑖 + 𝑡𝑖
half-edges to the i-th vertex; there are

( 2e
2𝑠1+𝑡1 ,...,2𝑠v+𝑡v

)
ways to label them. Third, among the 2𝑠𝑖 + 𝑡𝑖 half-

edges attached to the i-th vertex, choose 2𝑠𝑖 of them and pair them up to form 𝑠𝑖 self-loops; there are(2𝑠𝑖+𝑡𝑖
2𝑠𝑖
)
(2𝑠𝑖 − 1)!! ways to do so. Finally, we tie the remaining 2𝑡 half-edges two-by-two to form t edges

connecting distinct vertices; there are at most (2𝑡 − 1)!! ways to do so. This is an overestimate, since
we may create self-loops by connecting the last half-edges, or create a disconnected graph, or create a
graph where the stability condition does not hold. Nonetheless, this proves the above claim.

Denote 𝜒 = 2𝑔 − 2 + 𝑛. With our choice of f, we find∑
Γ

𝑓 (Γ)
|V|! |H|! ≤ √

𝑔
∑

v≥2, e≥1
v≤e+1

𝐶e

v! (2e)!
∑

𝑠≥0, 𝑡≥1
𝑠+𝑡=e

𝑛! (2𝑡 − 1)!!
2𝑠 𝜒!

∑
g∈C0 (𝑔−1−e+v,v)

n∈C0 (𝑛,v)
s∈C0 (𝑠,v) , t∈C1 (2𝑡 ,v)

v∏
𝑖=1

(2𝑔𝑖 − 2 + 𝑛𝑖 + 2𝑠𝑖 + 𝑡𝑖)!
𝑛𝑖! 𝑠𝑖! 𝑡𝑖!

≤ √
𝑔
∑

v≥2, e≥1
v≤e+1

𝐶e

v! (2e)!
∑

𝑠≥0, 𝑡≥1
𝑠+𝑡=e

𝑛! (2𝑡 − 1)!!
2𝑠 𝜒!

v𝑛+𝑠+𝑡

𝑛! 𝑠! 𝑡!

∑
x∈C1 (𝜒,v)

v∏
𝑖=1

x𝑖

≤ 3√𝑔
∑

v≥2, e≥1
v≤e+1

v𝑛

v!
(2v𝐶)e

(2e)!
1
𝜒!

∑
x∈C1 (𝜒,v)

v∏
𝑖=1

x𝑖 .

The second last inequality follows from the multinomial theorem, while the last inequality follows form
2−𝑠 (2𝑡−1)!!

𝑡! ≤ 2𝑡−𝑠 ≤ 2e and
∑

𝑠+𝑡=e
1
𝑠! ≤ exp(1) ≤ 3. By Lemma 4.3, the above quantity is bounded by

12
𝜒

√
𝑔
∑

v≥2, e≥1
v≤e+1

v𝑛

v!
(2v𝐶)e

(2e)! ≤ 12
𝜒

√
𝑔

∞∑
v=2

v𝑛

v!
exp(2v𝐶) ≤ 12𝐶 ′

𝜒

√
𝑔 = O(𝑔−1/2)

for some 𝐶 ′ = 𝐶 ′(𝐴, 𝐵, 𝑛) > 0. Now the result follows from Proposition 4.2. �
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5. What is wrong with closed curves

Contrary to the hyperbolic case, in the metric ribbon graph setting, we consider the length spectrum of
closed curves satisfying a specific condition: the cycle condition. The goal of this section is to explain
why this is the case. In a nutshell, the reason is the absence of a collar lemma for metric ribbon graphs.

In [9, 10], Basmajian has shown that the length of any closed geodesic with self-intersection number
k on any hyperbolic surface is bounded below by some universal constant 𝑀𝑘 , and 𝑀𝑘 → ∞ as 𝑘 → ∞.
In particular, if a closed geodesic intersects itself many times, then it cannot be very short. Basmajian’s
proof relies on the (generalised) collar lemma, which says roughly that a short closed geodesic on a
hyperbolic surface has a large tubular neighbourhood which is a topological cylinder.

In the context of metric ribbon graphs, the collar lemma fails dramatically. The distinction lies
in the fact that metric ribbon graphs, unlike hyperbolic surfaces characterised by a constant nonzero
sectional curvature, permit scaling. In particular, short curves of high topological complexity (𝜔(1)
self-intersections or 𝜔(1) intersections between two curves) can exist within a ribbon graph of low
topological complexity, as we go deep into the thin part of the moduli space. This idea was used to
establish the 𝐿𝑝-integrability of the combinatorial unit ball of measured foliations in [13], which exhibit
different behaviour compared to its hyperbolic analogue [7]. In this section, we use the same idea to
study the 𝐿 𝑝-integrability of the functions 𝑁̄◦

𝑔,𝐿, [𝑎,𝑏) and 𝑁̄𝑔,𝐿, [𝑎,𝑏) .
Let us start with an estimate for the case of a one-holed torus.

Lemma 5.1. Fix 0 ≤ 𝑎 < 𝑏.

◦ There exist 𝜖◦, 𝛿◦, 𝐶◦ > 0 depending only on a and b such that, for any 𝐿 ≤ 𝜖◦ and 𝐺 ∈ Mcomb
1,1 (𝐿)

trivalent with edge lengths in [(1/3 − 𝛿◦)𝐿, (1/3 + 𝛿◦)𝐿], we have

𝑁̄◦
1,𝐿, [𝑎,𝑏) (𝐺) ≥ 𝐶◦

𝐿2 . (52)

◦ There exist 𝜖, 𝛿, 𝐶, 𝑐 > 0 depending only on a and b such that, for any 𝐿 ≤ 𝜖 and 𝐺 ∈ Mcomb
1,1 (𝐿)

trivalent with edge lengths in [(1/3 − 𝛿)𝐿, (1/3 + 𝛿)𝐿], we have

𝑁̄1,𝐿, [𝑎,𝑏) (𝐺) ≥ 𝐶 𝐿 e𝑐/𝐿 . (53)

Proof. Let us proceed with the first claim. Let 𝜖◦ > 0, 0 < 𝛿◦ < 1/3, and𝐺 ∈ Mcomb
1,1 (𝜖◦) trivalent with

edge lengths in [(1/3 − 𝛿◦)𝐿, (1/3 + 𝛿◦)𝐿]. The fundamental group of a torus with a single boundary
component is a free group of rank 2. We can choose a generating set {𝛼, 𝛽} such that 𝛼 and 𝛽 traverse
exactly two edges. A cyclically reductive word in {𝛼, 𝛽} of m letters has length (with respect to G)
between 2(1/3 − 𝛿◦)𝜖◦𝑚 and 2(1/3 + 𝛿◦)𝜖◦𝑚. If 𝜖◦ and m satisfy

𝑎𝑡

2(1/3 − 𝛿◦) ≤ 𝜖◦𝑚 <
𝑏𝑡

2(1/3 + 𝛿◦) for some 𝑡 > 0,

which is possible whenever 𝛿◦ < (𝑏 − 𝑎)/(3𝑎 + 3𝑏). Then every cyclically reductive word of m letters
has length (with respect to G) in [𝑡𝑎, 𝑡𝑏), and we find

𝑎

1/3 − 𝛿◦
𝑡

𝜖◦
≤ 𝑚 <

𝑏

1/3 + 𝛿◦
𝑡

𝜖◦
.

It follows from [44, Theorem 2.7] that for 𝜖◦ small enough,

𝑁̄◦
1, 𝜖 ◦ , [𝑡𝑎,𝑡𝑏) (𝐺) ≥ 1

4𝜁 (2)

(
𝑏

1/3 + 𝛿◦ − 𝑎

1/3 − 𝛿◦

)2 ( 𝑡
𝜖◦

)2
.
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Therefore, for any 𝐿 ≤ 𝜖◦, we have

𝑁̄◦
1,𝐿, [𝑎,𝑏) (𝐺) = 𝑁̄◦

1, 𝜖 ◦ , [ 𝜖 ◦𝐿 𝑎, 𝜖
◦
𝐿 𝑏)

(
𝜖 ◦

𝐿 · 𝐺
)
≥ 1

4𝜁 (2)

(
𝑏

1/3 + 𝛿◦ − 𝑎

1/3 − 𝛿◦

)2 1
𝐿2 ,

as claimed.
As for the second inequality, the argument is similar. It can be shown that the number of conjugacy

classes in a torus with a single boundary component representing primitive closed curves of m letters is
asymptotically equivalent to 3𝑚/𝑚. Thus, for any small enough 𝜖 , we have

𝑁̄1, 𝜖 , [𝑡𝑎,𝑡𝑏) (𝐺) ≥ 𝐶 (𝜖/𝑡) exp(𝑐𝑡/𝜖)

for some 𝐶, 𝑐 > 0. �

Proof of Theorem D. The volume of subset ofMcomb
1,1 (ℓ) consisting of those metric ribbon graphs where

every edge has length in [(1/3− 𝛿◦)ℓ, (1/3+ 𝛿◦)ℓ] is (2𝛿◦)3𝑉1,1(ℓ). Thus, it follows from the first claim
of Lemma 5.1 that

E

[
(𝑁̄◦

𝑔,𝐿, [𝑎,𝑏) )
𝑘
]
≥ (𝐶◦)𝑘 (2𝛿◦)3

𝑉𝑔,𝑛 (𝐿)

∫ 𝜖 ◦

0
ℓ−2𝑘 · 𝑉1,1(ℓ) · 𝑉𝑔−1,𝑛+1(𝐿1, . . . , 𝐿𝑛, ℓ) ℓ 𝑑ℓ.

The right-hand side blows up if 𝑘 > 3/2. Similarly, from the second claim of Lemma 5.1,

E
[
𝑁̄𝑔,𝐿, [𝑎,𝑏)

]
≥ 𝐶 (2𝛿)3

𝑉𝑔,𝑛 (𝐿)

∫ 𝜖

0
ℓ e𝐶/ℓ · 𝑉1,1 (ℓ) · 𝑉𝑔−1,𝑛+1 (𝐿1, . . . , 𝐿𝑛, ℓ) ℓ 𝑑ℓ = ∞.

This completes the proof. �

6. Numerical evidence

Let us briefly outline the simulation for the unicellular case (i.e., when 𝑛 = 1). We fix the unique
boundary length as 𝐿 = 12𝑔. A random ribbon graph is almost surely trivalent, and in the unicellular
case, each trivalent ribbon graph has an equal chance of being selected. Hence, 𝑮𝑔,𝐿 can be sampled
in two steps: firstly, we sample a trivalent one-faced ribbon graph, and secondly, we endow it with a
uniformly random metric. Once a random metric graph is generated, we can count cycles to get the
bottom part of its length spectrum.

Generating random unicellular metric maps

The first step can be achieved as follows. Based on the work of Chapuy, Féray and Fusy [20], the
generation of a random combinatorial unicellular trivalent map can be reduced to generating a random
plane trivalent tree and a random permutation that satisfies certain conditions. The generation of random
trees can be accomplished recursively using Rémy’s algorithm [55]. Starting with the tree having one
vertex and two leaves, at each step, an edge is uniformly chosen, a vertex is added at its midpoint, and a
leaf is attached to the new vertex. Once the tree accumulates 6𝑔−3 edges, we randomly merge its leaves
three-by-three, resulting in a random trivalent unicellular map of genus g. To conclude, each edge of the
resulting graph is endowed with a length sampled according to a Dirichlet distribution of parameters
(16𝑔−3). See Figure 9 for examples of random unicellular maps of genus 64.

Counting cycles

What remains now is to find all cycles of length falling within a fixed interval [𝑎, 𝑏). We performed this
search using the FindCycle function in Mathematica and recording the lengths of the resulting cycles.
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Figure 9. The graphs underlying two random unicellular maps of genus 64. The highlighted cycles
include all cycles with at most 4 edges.

The simulation

For the simulations presented in Figure 2, we chose [𝑎, 𝑏) = [0, 4). For efficiency reasons, our search
was limited to cycles with at most 12 edges. Since edge-lengths are, on average, equal to 1, only few
cycles are missed in the search. Nonetheless, this accounts for why the histogram is slightly below the
theoretical prediction.
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