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Abstract

A continuously monitored system is considered, which is subject to accumulating
deterioration modelled as a gamma process. The system fails when its degradation level
exceeds a limit threshold. At failure, a delayed replacement is performed. To shorten the
down period, a condition-based maintenance strategy is applied, with imperfect repair.
Mimicking virtual age models used for recurrent events, imperfect repair actions are
assumed to lower the system degradation through a first-order arithmetic reduction of
age model. Under these assumptions, Markov renewal equations are obtained for several
reliability indicators. Numerical examples illustrate the behaviour of the system.
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1. Introduction

Most systems suffer a physical degradation before failure. A classical stochastic model to
describe a nondecreasing accumulated random degradation is the gamma process. A gamma
process is a stochastic process with independent, nonnegative, and gamma-distributed in-
crements with common scale parameter. This process is suitable to model gradual damage
monotonically accumulating over time in a sequence of tiny increments, such as wear, fatigue,
corrosion, crack growth, etc. [17].

For deteriorating systems, when the degradation level reaches a certain level, the system is
no longer able to function satisfactorily. Since it is generally less costly to replace a system
before it has failed, maintenance policies based on the system condition are usually proposed,
aiming at preventing failures. It has been proved that such maintenance strategies minimize
the maintenance cost, improve operational safety, and reduce the quantity and severity of in-
service system failures; see, for example [2], [8], and [10]. Condition-based maintenance is
based on data collected online through continuous monitoring or inspections. Based on the
information data, different maintenance actions are programmed. The condition of the system
after a maintenance action depends on the maintenance efficiency considering two extreme
cases: a minimal repair, where the condition of the system after the repair is just the same as
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before (as bad as old (ABAO)), and a perfect repair, when the condition of the system after
the repair is the same as if it were new (as good as new (AGAN)). Reality lies between these
two extreme cases [7]. Since Chaudhuri and Sahu [6] considered the concept of imperfect
maintenance, many models have been analysed (see [5] and [14] for a review on imperfect
maintenance models).

In the literature, several optimization models for a system subject to an accumulated degra-
dation and under an imperfect maintenance scheme have been proposed. Newby and Barker
[12], using the concept of partial repair given by Stadje and Zuckerman [16], described the
maintenance process for a system whose state is described using a bivariate stochastic process.
Castanier et al. [4] proposed a condition-based maintenance model where the effect of the
imperfect maintenance is a random function of the observed deterioration of the system. Nicolai
et al. [13] implemented different imperfect maintenance actions in systems whose degradation
is modelled by a nonstationary gamma process. The effect of the maintenance action is twofold:
on the one hand, to reduce the system degradation by a random amount and, on the other hand, to
modify the structural parameters of the degradation process. The analysis of the model proposed
by Nicolai et al. [13] is performed assuming that the effect of the imperfect maintenance actions
annihilates the overshoot of the gamma process, whereas the present study takes it into account.

The modelling assumptions of the present paper are inspired by [2] and [10], where the reader
may find practical justifications for them: a system is considered, subject to a cumulative gradual
random deterioration modelled as an homogeneous gamma process. A perfect and continuous
monitoring controls the deterioration of the system. The system fails when its degradation level
exceeds the threshold L and a signal is immediately sent to the maintenance team. They take
τ units of time to arrive on site, and next perform a corrective replacement. Compared to τ ,
this corrective replacement is short and it is considered as instantaneous. To reduce the system
downtime, a preventive maintenance policy is proposed. Under this maintenance strategy, the
signal is sent to the maintenance team as soon as the degradation level exceeds a preventive
threshold M (0 < M < L). It takes the same delay τ for the maintenance team to arrive,
and maintenance actions are assumed to be instantaneous too. A major difference between
the present study and [2] and [10] is that all repairs are assumed to be perfect (AGAN) in
the quoted papers. Here we consider that it depends on the deterioration level at maintenance
times: if the system is found to be failed or too degraded, a perfect corrective or preventive
replacement is performed, accordingly. Otherwise, an imperfect repair is applied. Unlike most
of the maintenance models that combine degradation processes and imperfect maintenance
actions, the maintenance effect is here modelled through a first-order arithmetic reduction of
age, mimicking an ARA1 model for recurrent events [7]. The maintenance efficiency is hence
controlled through an Euclidian parameter ρ, allowing all situations from perfect (AGAN) to
minimal (ABAO) repairs. Within such a setting, the objective of this paper is to analyse the
transient behaviour of the system, which is done in the framework of semiregenerative processes
with continuous space state.

The paper is structured as follows. In Section 2, the functioning of the initial system is
described and the preventive maintenance policy is presented. In Section 3 we develop the
mathematical formulation that describes the functioning of the system under the preventive
maintenance policy explained in Section 2. Sections 4 and 5 focus on the calculus of different
transient reliability measures, which are proved to fulfil Markov renewal equations. In Sec-
tion 6 we present some numerical results for these reliability measures. Note that, due to the
complexity of the Markov renewal equations obtained previously, all numerical computations
are here performed through Monte Carlo simulations. Section 7 concludes the paper.
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2. Description of the system and of the maintenance strategy

In this section we describe the initial functioning of the system and the introduction of a
maintenance strategy to try to improve some performance measures of the system.

2.1. The initial system

A unitary system is considered, with intrinsic deterioration modelled by a gamma process
(Xt )t≥0, where Xt is gamma distributed �(αt, β) with probability distribution function (PDF)

ft (x) = βαt

�(αt)
xαt−1e−βx 1R+(x),

where 1{·} denotes the indicator function and α, β > 0. The cumulative distribution function
(CDF) and survival function (SF) of Xt are denoted by Ft and F̄t , respectively. A gamma
process is also a Lévy process, with Lévy measure given by

µ(ds) = α
e−βs

s
1R

∗+(s) ds.

Recalling that L is the failure threshold, with L > 0, the time to failure of the system is the
reaching time of level L:

σL = inf(t > 0 : Xt > L).

At time σL, a signal is sent to the maintenance team which arrives at time σL + τ and
instantaneously replaces the out-of-order system by a new identical system. The system is
hence replaced by a new system at time σL + τ and the system is unavailable from σL up to
σL + τ .

2.2. The preventive maintenance policy

As presented in Section 1, an alert signal is preventively sent to the maintenance team
as soon as the system reaches a preventive maintenance level M (0 ≤ M ≤ L), namely at
time σM . At time σM + τ , the maintenance team is ready to operate and tries to adjust the
system (preventive maintenance action). Just as in an ARA1 model for recurrent events [7],
a preventive maintenance (PM) action is considered to remove only some part (ρ per cent)
of the age accumulated by the system since the last PM action (or since time t = 0), where
ρ ∈ (0, 1). The PM action tends to be perfect when ρ goes to 1 (AGAN repair) and to have no
effect when ρ goes to 0 (ABAO repair). In the present situation and because of possible large
jumps for a gamma process (XσM

∈ (M, +∞) almost surely), such a PM action may however
be insufficient to bring the system back to a lower level than M (details in the following). In
that case and according to the previously described PM policy, a second PM action should
immediately be planned, which is not coherent. We consequently consider that, in case the
system deterioration level remains beyond the PM level M after a PM adjustment, the system
is too deteriorated and it is preventively replaced. To sum up, there consequently are three
possible actions at maintenance times:

• a corrective replacement (CR) if the system is failed when the maintenance team arrives,

• a single PM action if this PM action brings the system deterioration level below M ,

• a PM action and a preventive replacement (PR) if the PM action does not succeed in
bringing the system deterioration level below M .

All the maintenance actions are considered to be instantaneous.
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To specifically describe the PM policy, we shall make use of independent copies of (Xt )t≥0,
denoted by (X

(n)
t )t≥0 for n = 1, 2, . . . . Corresponding reaching times of the thresholds L and

M are denoted by σ
(n)
L and σ

(n)
M , respectively, for n = 1, 2, . . . , and we set (Yt )t≥0 to be the

process describing the evolution of the maintained system.
Let U1 = S1 = σ

(1)
M + τ be the time of the first maintenance action. We then have Yt = X

(1)
t

for all t < S1. At time S1, different cases are possible.

Case (i): X
(1)
U1

> L. The system failed before S1. An instantaneous CR takes place at time

S1 = σ
(1)
M + τ . We then set YS1 = 0.

Case (ii): X
(1)
U1

≤ L. A PM action puts the system back to its deterioration level at time

(1 − ρ)U1, which is X
(1)
(1−ρ)U1

.

Subcase (ii.1): X
(1)
(1−ρ)U1

> M . The system is considered to be unmaintainable and it is
replaced by a new system (PR action) at time S1; hence, YS1 = 0.

Subcase (ii.2): X
(1)
(1−ρ)U1

≤ M . The system deterioration level after the PM action is

YS1 = X
(1)
(1−ρ)U1

.

Starting from YS1 after the first maintenance action, the evolution of the system is assumed to
be independent of (Yt )t<S1 and is modelled by (X

(2)
t )t≥0 up to the second maintenance action.

The reaching time of level M is then

inf(t > S1 : YS1 + X
(2)
t−S1

> M) = S1 + σ
(2)
M−YS1

.

A second maintenance action is then planned at time S2 = S1 +U2, with U2 = σ
(2)
M−YS1

+ τ .

More generally, assume that S1, . . . , Sn−1 and (Yt )t≤Sn−1 to be constructed, with n ≥ 2. Let

Un = σ
(n)
M−YSn−1

+ τ and Sn = Sn−1 + Un. We first set Yt = YSn−1 + X
(1)
t−Sn−1

for all

Sn−1 < t < Sn, and, consequently, YS−
n

= YSn−1 + X
(n)
Un

(almost surely).

Case (a): YS−
n

> L. The system failed before Sn; hence, YSn = 0.

Case (b): YS−
n

≤ L. A PM action puts the system back to the deterioration level YSn−1 +
X

(n)
(1−ρ)Un

.

Subcase (b.1): YSn−1 + X
(n)
(1−ρ)Un

> M . The system is unmaintainable and it is replaced
by a new system at time Sn; hence, YSn = 0.

Subcase (b.2): YSn−1 + X
(n)
(1−ρ)Un

< M . The system deterioration level after the PM
action is Y

Sn=YSn−1+X
(n)
(1−ρ)Un

.

A new maintenance action is next planned at time Sn+1 = Sn + Un+1, with Un+1 =
σ

(n+1)
M−YSn

+ τ . After a maintenance action at time Sn, the future evolution of the maintained
system (Yt )t≥Sn depends on the past (Yt )t≤Sn only through YSn , and the process (Yt )t≥0
appears as a semiregenerative process with underlying Markov renewal process (Sn, YSn)n∈N

and interarrival times Un; see [1]. Note that the sequence (Sn, (YSn, YS−
n
))n∈N is also a Markov

renewal process, which will be used later on for obtaining the Markov renewal equations for
both reliability and cost functions.
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Figure 1: The condition-based maintenance policy.

This age-based maintenance policy is illustrated in Figure 1. At the end of the first semicycle,
a PM action puts the system back to YS1 = X

(1)
(1−ρ)U1

< M . At the end of the second semicycle,
the system is failed and a CR leads to YS2 = 0. At the end of the third semicycle, a PM action
puts the system back to YS2 + X

(3)
(1−ρ)U3

≥ M and a PR leads to YS3 = 0.

In case M goes to 0+, the signal is immediately sent to the maintenance team after a
maintenance action. The next maintenance action is hence always performed after the same
delay τ . Besides, at each maintenance time the system is either failed or unmaintainable.
Maintenance policy is hence reduced to periodic (corrective or preventive) replacements of the
system with period τ .

If M tends to L−, maintenance policy is reduced to perform corrective replacement actions
after a delay τ .

Finally, when ρ tends to 0+, theABAO maintenance operation leads to a system replacement
and, therefore, leads to an AGAN repair.

3. Markov renewal process

The aim of this section is to obtain the kernel of the Markov renewal process

(Sn, (YSn, YS−
n
))n∈N,

namely the kernel (q(x, ds, dy, dz))x∈[0,M] defined by

q(x, ds, dy, dz) = P(S1 ∈ ds, YS1 ∈ dy, YS−
1

∈ dz | Y0 = x)

= Px(S1 ∈ ds, YS1 ∈ dy, YS−
1

∈ dz) for all x ∈ [0, M],
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where Px denotes the conditional probability given Y0 = x (and Ex denotes the conditional
expectation). With this notation, we recall that

P(Sn ∈ ds, YSn ∈ dy, YS−
n

∈ dz | σ(S1, . . . , Sn−1, YS1 , . . . , YSn−1))

= P(Sn ∈ ds, YSn ∈ dy, YS−
n

∈ dz | YSn−1)

= q(YSn−1 , ds, dy, dz)

for all n ≥ 1, where σ(A) stands for the σ -field generated by A, where A is any set of random
variables. To obtain the kernel, we first deal with the PDF of (S1, X(1−ρ)S1 , XS1).

Proposition 1. The PDF of (S1, X(1−ρ)S1 , XS1) is uM(t, u, v), where

• if τ < t < τ/ρ and M < u < v,

uM(t, u, v) = fρt (v − u)

∫ +∞

M

fτ−ρt (u − w)

(∫ +∞

w−M

ft−τ (w − s)µ(ds)

)
dw, (1)

• if t > τ/ρ and u < M < v,

uM(t, u, v) = f(1−ρ)t (u)

∫ +∞

M−u

fτ (v−u−w)

(∫ +∞

w−(M−u)

fρt−τ (w−s)µ(ds)

)
dw, (2)

• uM(t, u, v) = 0 elsewhere.

Proof. Setting ϕ to be any measurable and nonnegative function, we have to compute

E[ϕ(S1, X(1−ρ)S1 , XS1)] = E[ϕ(σM + τ, X(1−ρ)(σM+τ), XσM+τ )].

We first divide this expression according to whether (1 − ρ)(σM + τ) is greater or smaller than
σM , or, equivalently, according to whether (1 − ρ)τ is greater or smaller than ρσM , and we
write

E[ϕ(S1, X(1−ρ)S1 , XS1)] = I1(ϕ) + I2(ϕ),

with

I1(ϕ) = E[ϕ(σM + τ, X(1−ρ)(σM+τ), XσM+τ ) 1{(1−ρ)τ>ρσM }],
I2(ϕ) = E[ϕ(σM + τ, X(1−ρ)(σM+τ), XσM+τ ) 1{(1−ρ)τ<ρσM }].

The first term is equal to:

I1(ϕ) =
∑
r≥0

1{(1−ρ)τ>ρr} E[ϕ(r + τ, X(1−ρ)(r+τ), Xr+τ ) 1{Xr−≤M<Xr }]. (3)

Setting Fu = σ(Xs, 0 ≤ s ≤ u) for all u ≥ 0, let us first note that {Xr− ≤ M < Xr} belongs to
F(1−ρ)(r+τ) for each r such that (1 −ρ)τ > ρr (because (1 −ρ)(r + τ) > r). By conditioning
on F(1−ρ)(r+τ), writing Xr+τ = X(1−ρ)(r+τ) + (Xr+τ − X(1−ρ)(r+τ)), and using the Markov
property and the independent and homogeneous increments of (Xt )t≥0, we obtain

E[ϕ(r + τ, X(1−ρ)(r+τ), Xr+τ ) 1{Xr−≤M<Xr }] = E[1{Xr−≤M<Xr } g(X(1−ρ)(r+τ))],
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where
g(x) = E[ϕ(r + τ, x, x + Xr+τ − X(1−ρ)(r+τ))]

= E[ϕ(r + τ, x, x + Xρ(r+τ))]
=

∫
R+

ϕ(r + τ, x, x + z)fρ(r+τ)(z) dz.

This yields

E[ϕ(r + τ, X(1−ρ)(r+τ), Xr+τ ) 1{Xr−≤M<Xr }]
=

∫
R+

E[1{Xr−≤M<Xr } ϕ(r + τ, X(1−ρ)(r+τ), X(1−ρ)(r+τ) + z)]fρ(r+τ)(z) dz. (4)

Conditioning on Fr and writing X(1−ρ)(r+τ) = Xr + (X(1−ρ)(r+τ) − Xr), we derive

E[1{Xr−≤M<Xr } ϕ(r + τ, X(1−ρ)(r+τ), X(1−ρ)(r+τ) + z)]
=

∫
R+

E[1{Xr−≤M<Xr } ϕ(r + τ, Xr + y, Xr + y + z)]f(1−ρ)τ−ρr (y) dy

in the same way, noting that X(1−ρ)(r+τ) − Xr is identically distributed as X(1−ρ)τ−ρr . Substi-
tuting this expression successively into (4) and next into (3), we obtain

I1(ϕ) =
∫∫

R
2+

dy dz
∑
r≥0

f(1−ρ)τ−ρr (y)fρ(r+τ)(z)

× 1{(1−ρ)τ>ρr} E[1{Xr−≤M<Xr } ϕ(r + τ, Xr + y, Xr + y + z)].
Following the same arguments as those used in Proposition 2 of [3, p. 76] and setting �Xr =
Xr − Xr− , we obtain

I1(ϕ) =
∫∫

R
2+

dy dz
∑
r≥0

1{(1−ρ)τ>ρr} f(1−ρ)τ−ρr (y)fρ(r+τ)(z)

× E[1{Xr−≤M<Xr−+�Xr } ϕ(r + τ, Xr− + �Xr + y, Xr− + �Xr + y + z)]

=
∫ ((1−ρ)/ρ)τ

0
dr

∫∫∫
R

3+
dy dz µ(ds)f(1−ρ)τ−ρr (y)fρ(r+τ)(z)

× E[1{Xr−≤M<Xr−+s} ϕ(r + τ, Xr− + s + y, Xr− + s + y + z)],
due to the compensation formula. Almost-sure continuity of (Xr)r≥0 allows us to substitute
Xr to Xr− into the previous formula. This yields

I1(ϕ) =
∫ ((1−ρ)/ρ)τ

0
dr

∫∫∫∫
R

4+
dx dy dz µ(ds) 1{x≤M<x+s}

× ϕ(r + τ, x + s + y, x + s + y + z)f(1−ρ)τ−ρr (y)fρ(r+τ)(z)fr(x).

By setting t = r + τ , u = x + s + y, v = x + s + y + z, and w = x + s, and keeping s

unchanged, we obtain

I1(ϕ) =
∫ τ/ρ

τ

dt

∫∫∫∫
R

4+
dx du dv µ(ds) 1{w−s≤M<w}

× ϕ(t, u, v)fτ−ρt (u − w)fρt (v − u)ft−τ (w − s).
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This gives (1) for uM(t, u, v) in the case of τ < t < τ/ρ (and M < u < v). For the second
term, we have

I2(ϕ) =
∑
r≥0

1{(1−ρ)τ<ρr} E[ϕ(r + τ, X(1−ρ)(r+τ), Xr+τ ) 1{Xr−≤M<Xr }].

Conditioning on Fr in the expectation and writing Xr+τ = Xr + (Xr+τ − Xr), we obtain

I2(ϕ) =
∫

R+
fτ (z) dz

×
∑
r≥0

1{(1−ρ)τ<ρr} E[ϕ(r + τ, X(1−ρ)(r+τ), Xr + z) 1{Xr−≤M<Xr }],

because (1 − ρ)(r + τ) < r . Setting Xr = Xr− + �Xr , using the compensation formula and
substituting Xr− by Xr in a next step, we obtain

I2(ϕ) =
∫∫

R
2+
fτ (z) dz µ(ds)

∫ +∞

((1−ρ)/ρ)τ

dr

× E[ϕ(r + τ, X(1−ρ)(r+τ), Xr + s + z) 1{Xr≤M<Xr+s}].
Conditioning on F(1−ρ)(r+τ), writing Xr = X(1−ρ)(r+τ) + (Xr − X(1−ρ)(r+τ)), and using the
fact that Xr − X(1−ρ)(r+τ) is identically distributed as Xρr−(1−ρ)τ , we obtain

I2(ϕ) =
∫∫∫∫

R
4+

fτ (z) dz µ(ds) du dy

∫ +∞

((1−ρ)/ρ)τ

dr

× ϕ(r + τ, u, u + y + s + z) 1{u+y≤M<u+y+s} f(1−ρ)(r+τ)(u)fρr−(1−ρ)τ (y)

=
∫∫∫∫

R
4+

fτ (v − u − w) dw µ(ds) du dv

∫ +∞

τ/ρ

dt

× ϕ(t, u, v) 1{w−s≤M−u<w} f(1−ρ)t (u)fρt−τ (w − s),

with t = r + τ , v = u + y + s + z, w = y + s, and (u, s) unchanged. This yields (2) for
uM(t, u, v) in the case t > τ/ρ (and u < M < v).

Remark 1. Using the fact that the PDF of (σM, XσM
) is

f(σM,XσM
)(u, y) =

∫ +∞

y−M

fu(y − s)µ(ds)

for all y > M and all u > 0 (see [3]), the function uM(t, u, v) may be written as

uM(t, u, v) = fρt (v − u)

∫ +∞

M

fτ−ρt (u − w)f(σM,XσM
)(t − τ, w) dw

if τ < t < τ/ρ and M < u < v. This corresponds to some kind of intuitive result: roughly
speaking, at time σM = t − τ , the process (Xr)r≥0 reaches level w > M . Next, on the time
interval (t −τ, (1−ρ)t] with length τ −ρt , the level is increased by u−w units and the process
reaches level u at time (1 − ρ)t . Finally, on the time interval ((1 − ρ)t, t] with length ρt , the
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level is increased by v−u units and the process reaches level v at time t . In the case of t > τ/ρ

and u < M < v, we obtain

uM(t, u, v) = f(1−ρ)t (u)

∫ +∞

M−u

fτ (v − u − w)f(σM−u,XσM−u
)(ρt − τ, w) dw,

which may be interpreted in the same way: on the interval (0, (1 − ρ)t], the level is increased
by u units (with u < M). Next, starting from level u, it takes ρt − τ time units for the process
to exceed level M − u with a level increment of w units in the meantime (and w > M − u).
At time (1 − ρ)t + ρt − τ = t − τ , the level is therefore u + w. Finally, on the time interval
(t − τ, t] with length τ , the level is increased by v − u − w units and the process reaches level
v at time t .

We are now able to provide the kernel of the Markov renewal process (Sn, (YSn, YS−
n
))n∈N.

Theorem 1. The kernel (q(x, ds, dy, dz))x∈[0,M] of the Markov renewal process

(Sn, (YSn, YS−
n
))n∈N

is provided by

q(x, ds, dy, dz) = 1{s>τ } 1{y≤M<z≤L} uM−x(s, y − x, z − x) dy dz ds

+ 1{s>τ } qx(s, z)δ0(dy) dz ds (5)

for all x ∈ [0, M], where uM is provided by Proposition 1 and

qx(s, z) = 1{L<z}
(∫ z−x

0
uM−x(s, w, z − x) dw

)

+ 1{M<z≤L}
(∫ z−x

M−x

uM−x(s, w, z − x) dw

)
. (6)

The first term on the right-hand side of (5) stands for the PM case, and the two terms on the
right-hand side of (6) stand for the CR and PR cases, respectively.

Proof. Given that Y0 = x, we set Sx = S1 = τ + σM−x . This yields YS−
1

= x + XSx and

YS1 =

⎧⎪⎨
⎪⎩

0 if XSx > L − x,

0 if XSx ≤ L − x and X(1−ρ)Sx > M − x,

x + X(1−ρ)Sx if XSx ≤ L − x and X(1−ρ)Sx ≤ M − x.

For all ϕ measurable and nonnegative, we therefore have

Ex(ϕ(S1, YS1 , YS−
1
)) = J1(x) + J2(x),

with

J1(x) = E[ϕ(Sx, x + X(1−ρ)Sx , x + XSx ) 1{XSx ≤L−x,X(1−ρ)Sx ≤M−x}],
J2(x) = E[ϕ(Sx, 0, x + XSx )(1{XSx >L−x} + 1{XSx ≤L−x,M−x<X(1−ρ)Sx })].
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Using Proposition 1 with M substituted by M − x, we derive

J1(x) =
∫∫∫

R
3+
ϕ(s, x + u, x + v)uM−x(s, u, v)1{v≤L−x,u≤M−x} du dv ds

=
∫∫∫

R
3+
ϕ(s, y, z) 1{y≤M<z≤L} uM−x(s, y − x, z − x) dy dz ds,

where y = x + u, z = x + v, and

J2(x) =
∫∫∫

R
3+
ϕ(s, 0, x + v)uM−x(s, u, v)(1{L−x<v} + 1{v≤L−x,M−x<u}) du dv ds

=
∫∫

R
2+

ϕ(s, 0, z) 1{L<z}
(∫ z

x

uM−x(s, y − x, z − x) dy

)
dz ds

+
∫∫

R
2+

ϕ(s, 0, z) 1{M<z≤L}
(∫ z

M

uM−x(s, y − x, z − x) dy

)
dz ds,

which yields the result.

We finally derive the kernel of the Markov renewal process (Sn, YSn)n∈N.

Corollary 1. The kernel (q̄(x, ds, dy))x∈[0,M] of the Markov renewal process (Sn, YSn)n∈N is
given by

q̄(x, ds, dy) = 1{s>τ } ds{1{y≤M} Hx(s, y) dy + δ0(dy)(Ix(s) + Dx(s))}
for all x ∈ [0, M], where

Hx(s, y) =
∫ L−x

M−x

uM−x(s, y − x, v) dv (PM case), (7)

Dx(s) =
∫ +∞

L−x

dz

(∫ z

0
uM−x(s, w, z) dw

)
(CR case), (8)

Ix(s) =
∫ L−x

M−x

dz

(∫ z

M−x

uM−x(s, y, z) dy

)
(PR case). (9)

Proof. We have

q̄(x, ds, dy) =
∫

q(x, ds, dy, dz)

= 1{s>τ } 1{y≤M} ds dy

∫ L

M

uM−x(s, y − x, z − x) dz

+ 1{s>τ } δ0(dy) ds

∫ +∞

M

qx(s, z) dz

= 1{s>τ } ds

{
1{y≤M} Hx(s, y) dy + δ0(dy)

∫ +∞

M

qx(s, z) dz

}

with ∫ +∞

M

qx(s, z) dz =
∫ L

M

dz

(∫ z

M

uM−x(s, w − x, z − x) dw

)

+
∫ +∞

L

dz

(∫ z

x

uM−x(s, w − x, z − x) dw

)

= Ix(s) + Dx(s),

and the result holds.
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4. The reliability and availability functions

Let Rx(t) be the reliability function of the maintained system at time t , namely the conditional
probability that the system has been functioning from time t = 0 up to time t without any
interruption given that it started from Y0 = x with x ∈ [0, M], i.e.

Rx(t) = Px(T > t),

where T is the time to failure of the maintained system and t ∈ R+.
As S1 = τ + σM−x > τ , let us first remark that, if t ≤ τ then t < S1 and there is no

maintenance action on [0, t]. In that case, Yu = Xu on [0, t] and we simply obtain

Rx(t) = P(σL−x > t) = P(Xt < L − x) = Ft(L − x)

for all t ≤ τ . We next consider the case in which t > τ .

Theorem 2. The reliability function fulfils the Markov renewal equation

Rx(t) = Gx(t) +
∫ t

τ

∫ M

0
Ry(t − s)Hx(s, y) ds dy +

∫ t

τ

R0(t − s)Ix(s) ds

= Gx(t) +
∫ t

τ

∫ M

0
Ry(t − s)νx(ds, dy)

for all t > τ and x ∈ [0, M], where

Gx(t) =
∫ M−x

0
ft−τ (y)Fτ (L − x − y) dy (10)

for all t > τ and x ∈ [0, M], and

νx(ds, dy) = [Hx(s, y) dy + Ix(s)δ0(dy)] ds,

with Hx and Ix as in (7) and (9).

Proof. Let t > τ . We have

Rx(t) = Px(T > t, S1 > t) + Px(T > t, S1 ≤ t), (11)

with
Px(T > t, S1 > t) = P(Xt ≤ L − x, τ + σM−x > t)

= P(Xt ≤ L − x, Xt−τ ≤ M − x)

=
∫ M−x

0
ft−τ (y)Fτ (L − x − y) dy

= Gx(t), (12)

by conditioning with respect of Xt−τ . We also have

Px(T > t, S1 ≤ t) = Ex[1{S1≤t} 1{T >S1} Ex(1{T >t} | σ(Yt , t ≤ S1))]
= Ex[1{S1≤t} 1{Y−

S1
≤L} RYS1

(t − S1)]

=
∫∫

[τ,t]×[0,M]
Ry(t − s)

∫ z=L

z=0
q(x, ds, dy, dz), (13)
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where q(x, ds, dy, dz) is given in Theorem 1. Using similar arguments as those used in the
proof of Corollary 1, we obtain

∫ z=L

z=0
q(x, ds, dy, dz) = {1{y≤M} Hx(s, y) dy + δ0(dy)Ix(s)} ds, (14)

which yields the result upon substituting (14) into (13) followed by (12) and (13) into (11).

We now deal with the availability function of the maintained system at time t , namely with
the conditional probability that the system is working at time t given that it started from Y0 = x,
with x ∈ [0, M]:

Ax(t) = Px(Yt < L).

In the case t ≤ τ(≤ S1), both the reliability and availability functions coincide, i.e.

Ax(t) = Rx(t) = Ft(L − x)

for all t ≤ τ . In the case t > τ , we may write

Ax(t) = Px(Yt < L, S1 > t) + Ex[1{S1≤t} AYS1
(t − S1)]

in a similar way to Theorem 2, which yields the following corollary.

Corollary 2. The availability function fulfils the Markov renewal equation

Ax(t) = Gx(t) +
∫ t

τ

∫ M

0
Ay(t − s)q̄(x, ds, dy)

for all t > τ and all x ∈ [0, M], where Gx(t) is given by (10) and q̄ is given by Corollary 1.

5. The expected cost function

Let cx(t) be the mean cumulated cost on (0, t] given that Y0 = x with x ∈ [0, M], that is,

cx(t) = Ex[C((0, t])],
where C((0, t]) denotes the maintenance cost in (0, t]. We calculate cx(t), taking into account
the following costs for the different maintenance actions: cCR, the CR cost, cPR, the PR cost,
cPM, the PM cost, and cd, the downtime cost per unit time.

For t ≤ τ , again using Yu = Xu in [0, t], we obtain

cx(t) = cdE[(t − σL−x)
+] = cd

∫ t

0
P(t − u > σL−x) du = cd

∫ t

0
F̄t−u(L − x) du,

where (t − σL−x)
+ = max(t − σL−x, 0) stands for the (possible) downtime on [0, t].

We next consider the case in which t > τ , with

cx(t) = Ex[C((0, t]) 1{S1>t}] + Ex[C((0, t]) 1{S1≤t}]. (15)

The first term in (15) is dealt with in the following lemma.
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Lemma 1. For t > τ , we have

Ex[C((0, t]) 1{S1>t}] = cdKx(t)

for all x ∈ [0, M], with

Kx(t) =
∫ τ

0
α(t − τ, t − u, M − x, L − x) du for all x ∈ [0, M],

α(t1, t2, M, L) =
∫ M

0
fmin(t1,t2)(z)F̄|t1−t2|(L − z) dz for all t1, t2 ≥ 0. (16)

Proof. Using a similar method to that used in the proof of Proposition 3 of [11], we have

Ex[C((0, t]) 1{S1>t}] = cdE[(t − σL−x)
+ 1{σM−x+τ>t}]

= cdE

[
1{σM−x+τ>t}

∫ +∞

0
1{(t−σL−x)+>u} du

]

= cd

∫ τ

0
P[σM−x > t − τ, t − u > σL−x] du,

because σM−x > t − τ and t − u > σL−x imply that u ≤ τ . Now, for u ≤ τ , by conditioning
with respect to σ(Xs, s ≤ t − τ), we obtain

P[σM−x > t − τ, t − u > σL−x] = P[Xt−τ < M − x, Xt−u ≥ L − x]

=
∫ M−x

0
ft−τ (y)F̄τ−u(L − x − y) dy

= α(t − τ, t − u, M − x, L − x),

which yields the result.

For the calculus of the second part of (15), we shall need the following technical lemma.

Lemma 2. For fixed t > τ , in the case S1 ≤ t , the conditional expected downtime given Y0 = x

on the first semicycle is
Ex[(S1 − σL)+ 1{S1≤t}] = Wx(t)

for all x ∈ [0, M], where Wx(t) is given by

Wx(t) = W1,x(t) 1{t<2τ } +W2,x(t) 1{t≥2τ }

for t > τ and x ∈ [0, M], with

W1,x(t) =
∫ t−τ

0
F̄v(L − x) dv +

∫ τ

t−τ

β(v, t − τ, M − x, L − x) dv

+
∫ t

τ

∫ M−x

0
fv−τ (y)β(t − v, τ, M − x − y, L − x − y) dy dv,

W2,x(t) =
∫ τ

0
F̄v(L − x) dv +

∫ t−τ

τ

α(v − τ, v, M − x, L − x) dv

+
∫ t

t−τ

dv

∫ M−x

0
fv−τ (y)β(τ, t − v, M − x − y, L − x − y) dy,
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where the function β(t1, t2, M, L) is given by

β(t1, t2, M, L) =
∫ +∞

M

fmin(t1,t2)(z)F̄|t1−t2|(L − z) dz (17)

for all t1, t2 ≥ 0, and α(t1, t2, M, L) is provided by (16).

Proof. We have

Ex[(S1 − σL)+ 1{S1≤t}] = E[(σM−x + τ − σL−x)
+ 1{σM−x+τ≤t}]

= E

[∫
R

1{0<u<σM−x+τ−σL−x } 1{σM−x+τ≤t} du

]

= E

[∫ +∞

0
1{σL−x<v<σM−x+τ } 1{σM−x+τ≤t} dv

]

=
∫ t

0
λ(v, t, τ ) dv,

setting v = σM−x + τ − u and

λ(v, t, τ ) = P[σL−x < v, v − τ < σM−x ≤ t − τ ]
= P(L − x < Xv, X(v−τ)+ ≤ M − x < Xt−τ )

for all 0 ≤ v ≤ t and all t > τ . We now consider how to compute λ(v, t, τ ) for a number of
different cases according to the respective ordering of v and t − τ , and of v and τ . Firstly, if
t − τ < τ then t < 2τ . For t < 2τ , if v ≤ τ , we consider the cases v < t − τ and v ≥ t − τ .
If v < t − τ then

λ(v, t, τ ) = P(L − x < Xv) = F̄v(L − x).

If v ≥ t − τ , we have

λ(v, t, τ ) = P(L − x < Xv, M − x < Xt−τ )

=
∫ ∞

M−x

ft−τ (y)F̄v−(t−τ)(L − x − y) dy

= β(t − τ, v, M − x, L − x),

where β(t1, t2, M, L) is given by (17). For v > τ ,

λ(v, t, τ ) = P(L − x < Xv, Xv−τ < M − x < Xt−τ )

=
∫ M−x

0
fv−τ (y)

∫ ∞

M−x−y

ft−v(w)F̄τ−(t−v)(L − x − y − w) dy dw

=
∫ M−x

0
fv−τ (y)β(t − v, τ, M − x − y, L − x − y) dy.

Hence, for t < 2τ and x ∈ [0, M],
Wx(t) =

∫ t−τ

0
F̄v(L − x) dv +

∫ τ

t−τ

β(v, t − τ, M − x, L − x) dv

+
∫ t

τ

∫ M−x

0
fv−τ (y)β(t − v, τ, M − x − y, L − x − y) dy dv.
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For t > 2τ , we have
λ(v, t, τ ) = P(L − x < Xv) = F̄v(L − x)

for v < τ . For v ≥ τ , we consider two cases: v < t − τ and v ≥ t − τ . For v < t − τ , we
have

λ(v, t, τ ) = P(L − x < Xv, Xv−τ ≤ M − x)

=
∫ M−x

0
fv−τ (y)F̄τ (L − x − y) dy

= α(v − τ, v, M − x, L − x).

Finally, for v ≥ t − τ , we have

λ(v, t, τ ) = P(L − x < Xv, Xv−τ ≤ M − x < Xt−τ )

=
∫ M−x

0
fv−τ (y) dy

∫ ∞

M−x−y

ft−v(w)F̄τ−(t−v)(L − x − y − w) dw

=
∫ M−x

0
fv−τ (y)β(t − v, τ, M − x − y, L − x − y) dy.

This provides the result for t > 2τ and completes the proof.

With Lemmas 1 and 2, the following result holds.

Theorem 3. The expected cost function at time t with Y0 = x fulfils the Markov renewal
equation

cx(t) = Bx(t) +
∫ t

τ

∫ M

0
cy(t − s)q̄(x, ds, dy)

with x ∈ [0, M], where Bx(t) is given by

Bx(t) = cd[Kx(t) + Wx(t)] + cCRZx(t) + (cPR + cPM)Qx(t) + cPMJx(t)

with Kx(t) and Wx(t) provided in Lemmas 1 and 2, and

Zx(t) =
∫ t

τ

Dx(s) ds,

Qx(t) =
∫ t

τ

Ix(s) ds,

Jx(t) =
∫ t

τ

∫ M

0
Hx(s, y) ds dy,

where Hx(s, y), Dx(s), and Ix(s) are defined in (7)–(9).

Proof. Starting from (15), we have

cx(t) = Ex[C((0, t]) 1{S1>t}] + Ex[C((0, S1]) 1{S1≤t}] + Ex[C((S1, t]) 1{S1≤t}], (18)

where the first term on the right-hand side has been computed in Lemma 1. The second term
on the right-hand side is

Ex[C((0, S1]) 1{S1≤t}] = cdWx(t) + cCRZx(t) + (cPM + cPR)Qx(t) + cPMJx(t),
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where Wx(t) is provided in Lemma 2 and

Zx(t) = Px(S1 ≤ t, YS−
1

> L),

Qx(t) = Ex[1{S1≤t} 1{Y
S
−
1

≤L} 1{YS1>M}],
Jx(t) = Ex[1{S1≤t} 1{Y

S
−
1

≤L} 1{YS1≤M}].

Owing to Corollary 1, we obtain

Zx(t) =
∫∫∫

[τ,t]×[0,M]×[L,+∞[
q(x, ds, dy, dz) =

∫ t

τ

Dx(s) ds,

Qx(t) =
∫∫∫

[τ,t]×[M,+∞[×[0,L]
q(xds, dy, dz) =

∫ t

τ

Ix(s) ds,

Jx(t) =
∫∫∫

[τ,t]×[0,M]×[0,L]
q(x, ds, dy, dz) =

∫ t

τ

∫ M

0
Hx(s, y) ds dy.

For the last term on the right-hand side of (18), by conditioning on σ(YS1 , S1), we obtain

Ex[C((S1, t]) 1{S1≤t}] = Ex[cYS1
(t − S1) 1{S1≤t}]

=
∫∫

R
2+

cy(t − s) 1{s≤t} q̄(x, ds, dy),

which completes this proof.

6. Numerical examples

In order to illustrate the analytical results, we consider several numerical examples. To
make the numerical assessments, a possibility might have been to follow [9] and use some
integration scheme for integral equations with singular kernels [15] for example to solve the
Markov renewal equations developed in the paper. Unfortunately, owing to the complexity of
our Markov kernel, this has not been possible. That is why the numerical computations have
finally been performed through Monte Carlo (MC) simulations. To shorten the large computing
times induced by our intricate model, the parallel computer EMPIRE of the Universidad de
Extremadura has been used.

For each of the following examples, the parameters of the gamma process measuring the
intrinsic deterioration of the system are α = 1.5 and β = 3. The system is assumed to be new
at time 0, that is, Y0 = 0. The failure threshold is L = 10. The induced approximated expected
time to exceed level 10 is E(σL) � 20.37 time units. The maintenance efficiency is provided by
ρ = 0.5. The costs associated with the different maintenance actions are cCR = 100 monetary
units, cPR = 60 monetary units, cPM = 5 monetary units, and cu = 2 monetary units per time
unit. For the delay time τ , different values are considered in the following.

In the first case, we take τ = 5 time units. In Figure 2 we plot the expected cost at time
t = 150 versus the preventive threshold M . The data have been obtained using MC simulation
for 50 values of M ranging from 0 to 10, with 4000 realizations in each point.

Now, using Figure 2, we can find a value of M that minimizes c0,M(150), that is, find some
Mopt such that

c0,Mopt (150) = inf{c0,M(150), 0 ≤ M ≤ 10},
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Figure 2: Expected cost at time t = 150 versus the preventive threshold M .
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Figure 3: Availability at time t = 75 versus the preventive threshold M .

where c0,M(150) denotes the expected cost at time t = 150 for each value of M , starting from
Y0 = 0. By inspection, the expected cost c0,M(150) just presents a unique minimum and it is
reached for Mopt � 5.5102 with an expected cost of 423.9 monetary units.

Taking τ = 10 time units, in Figure 3 we plot the values of the availability A0,M(75) at time
t = 75 versus the preventive threshold M and in Figure 4 we plot the values of the expected
cost c0,M(75) at time t = 75 versus the preventive threshold M . The data in these figures
have been obtained using MC simulation for 100 values from 2 to 10, and 40 000 realizations
in each point. Based on Figure 3, we can see that the availability at time t = 75 reaches
its minimum at M∗ � 8.2222, with A0,M∗(75) � 0.5905. Hence, for any value of M , the
probability that the system is working at time t = 75 exceeds or is equal to 59.05%. Based
on Figure 4, we can see that the cost function c0,M(75) reaches its minimum at M∗ � 4.4242,
with c0,M∗(75) � 316.0753 monetary units. Also, using both Figures 3 and 4, it is possible to
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Figure 4: Expected cost at time t = 75 versus the preventive threshold M .
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Figure 5: Transient availability versus time t given M = 5.

find some optimal M∗∗ minimizing the cost c0,M(75) under some availability constraint such
as A0,M(75) ≥ 0.99 for example. This provides M∗∗ � 3.8586, with c0,M∗∗(75) � 320.2977
monetary units and A0,M∗∗(75) = 0.9905. Symmetrically, it is also possible to optimize the
availability function under some cost constraint.

In Figure 5 we plot the transient availability versus time for τ = 15 and M = 5. The data
in this figure has been obtained using MC simulation for 350 values from 0 to 175 and 40 000
realizations in each point. As can be observed in Figure 5, the availability function shows some
alternating decreasing and increasing periods with respect to time, which can be explained by
the following: at the beginning, there is no maintenance action and the availability function
decreases with time t until the first maintenance action at time S1 is more likely to have been
performed, namely until the probability that t > S1 becomes larger. Indeed, we observe that
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Figure 6: Transient reliability versus M at time t = 50.

A0,5(t) decreases up to t � 22.5645, to be compared with

E(S1) = E(σM) + τ � 25.3111

time units (and E(σL) � 20.3912 time units). After reaching its first minimum at t � 22.5645,
the availability function increases along with the probability that a first maintenance action has
already been performed at time t . After a while, the probability that the system fails increases
with the distance between t and the (nearly almost surely past) first maintenance action, which
leads to a decreasing period, and a second minimum at t � 47.6361, and so on. Note that
the randomness of the maintenance times induces some attenuation in the decreasingness and
increasingness over time.

In Figure 6 we plot the transient reliability versus the degradation level M at time t = 50
for τ = 15. The data in this figure has been obtained using 50 points from 0 to 10 and 20 000
realizations in each point. As we can check, the transient reliability is here decreasing against
the preventive threshold M . This means that the shorter the preventive threshold M , the larger
the reliability. In this way, if the point is to maximize the reliability at time t = 50 with
respect to M , it is best to take M = 0, namely perform periodic replacements. Though this
seems challenging to prove from Theorem 2, it seems to be coherent with intuition, because a
smaller M should involve more frequent replacements.

7. Conclusions and future extensions

In this work we analysed the reliability of a system subject to a continuous degradation
modelled as a gamma process with imperfect delay repair. The functioning of the system was
described through a semiregenerative process, and we showed that some transient reliability
measures fulfil Markov renewal equations. Numerical examples of these reliability measures
were shown. For these numerical examples, we used Monte Carlo simulation of the process
due to the complexity of the Markov renewal equations, mainly caused by the overshoot of the
gamma process and by the imperfect repair nature that reduces the system age. It would be
interesting to compare this model (age-based repair) with a similar model in which the imperfect
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repair would reduce the system degradation itself instead of the system age, leading to some
kind of virtual degradation. This should be part of a future work.
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