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Streamline coordinates in three-dimensional
turbulent flows
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For several applications there are advantages in writing turbulent flow equations in a
coordinate frame aligned with the streamlines and several two-dimensional examples of
this approach have appeared in the literature. In this paper, we extend this approach to
general three-dimensional flows. We find that, in any flow that has a component of its
vorticity aligned in the streamline direction, congruences of its streamlines do not form
integrable manifolds. This limits the development of a streamline coordinate description
of such flows, although some useful results can still be obtained. However, in the
case of general three-dimensional complex-lamellar flows, where the mean velocity and
mean vorticity are everywhere orthogonal, a complete streamline coordinate description
can be derived. Furthermore, we show that general complex-lamellar flows are a good
approximation to boundary layers and thin free shear layers. We derive the underlying
true coordinate system for such flows, where the orthogonal coordinate surfaces are
two stream surfaces and a modified potential surface. From this we obtain physical
equations, where flow variables have the same dimensions they would have in a Cartesian
coordinate frame. Finally, we show that rational approximations to these equations, which
describe small-perturbation flows, contain some terms that have been ignored in previous
applications and we detail some practical applications of the theory in modelling and
analysis.
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1. Introduction

For certain problems in turbulent flows, there are advantages in representing the flow
equations in coordinates that approximate the flow streamlines and various analyses that
use such approaches have appeared in the literature. At a practical level, if one coordinate
direction can be chosen almost parallel to the mean flow direction, then extra terms
arising from deviations of the mean flow from the coordinates may be small enough
to be approximated or ignored in calculation schemes. A second advantage is that, in
thin shear layers and boundary layers, the maximum strain applied to the flow is shear
at right angles to the mean flow direction so that the response of turbulent stresses to
this straining can be calculated most simply in an approximately streamline coordinate
frame. In non-separating flows close to solid surfaces, surface-following coordinates
form a reasonable approximation to the streamlines and Howarth (1951) developed the
surface-normal or s-n coordinate system for use in analysing three-dimensional (3-D)
boundary layer flows. Howarth’s s-n system consists of a family of Lame surfaces, parallel
to the solid surface, together with two families of orthogonal surfaces forming a normal
congruence with the Lame surfaces. The intersections of these three families of surfaces
furnish the coordinate lines. An equivalent 2-D s-n system was developed independently
by Janour (1975). Bradshaw (1973) showed that the s-n system was also appropriate for
use in thin shear layers and he applied it in his analysis of curved shear flows. However,
although surface-following coordinates approximate streamlines very close to a solid
surface, as we move away from the surface the streamlines will tend to become parallel, as
we see for example in flow around an aerofoil outside the boundary layer or in atmospheric
flow above hilly topography, so that s-n coordinates are then as inappropriate as Cartesian
coordinates are close to the surface.

As a result, true streamline coordinates have remained an attractive goal for computation
and analysis of complex shear flows. When the situation being modelled is straining of
turbulence by a distorted irrotational mean flow, the mean streamlines can be computed
to first order by potential flow theory, as in Hunt (1973) or Durbin & Hunt (1980).
When the flow is being modelled by methods of computational fluid dynamics such
as higher-order turbulence closures or large eddy simulations, orthogonal coordinates
appropriate for 2-D flows have been generated by using von Mises transform (Barron
1989). The study of Zeman & Jensen (1987) is particularly relevant here as they used
that approach to transform a second-order closure model of atmospheric boundary layer
flow into streamline coordinates, obtaining first and second moment equations identical to
those derived using more general tensor methods by Finnigan (1983) (henceforth F83). By
comparing their numerical solutions with field measurements over a 2-D ridge, they were
able to show the important role played by streamline curvature in modulating turbulent
stresses over the hill. In more complex 3-D flows, non-orthogonal streamline coordinates
have also been used to optimise calculations, for example by Sullivan, McWilliams &
Patton (2014), who used a non-orthogonal streamline system to compute flow over water
waves.

The immediate motivation for the present work has been the computation of atmospheric
flows over hilly topography or the interpretation of measurements made in such flows.
For roughly two decades, beginning around 1970, studies of flow over hills was one
of the main fields of interest in boundary layer meteorology and its development has
recently been reviewed in detail by Finnigan et al. (2020). Our conceptual understanding
of such flows was greatly influenced by the analytic theory of Jackson & Hunt (1975)
(henceforth JH75) and the series of studies that followed it. JH75 developed a model for
neutrally stratified flow over a low rough hill by linearising the equations of motion for the
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Streamline coordinates in three-dimensional turbulent flows

hill-induced flow perturbations about a background wind profile. Their key insight was
that the flow can be divided into two layers: a thin inner layer near the surface, where
perturbations to the turbulent Reynolds stress terms are important, and an outer layer,
where the flow perturbations are essentially an inviscid response to the pressure field
that develops around the hill. Scaling analysis yields different leading-order terms and
to a separate analytical solution in each layer. These were then matched asymptotically
to give an overall solution. Further refinements to this approach (discussed in Finnigan
et al. 2020), particularly a rigorous analysis of the matching process by Sykes (1980), led
eventually to a major paper by Hunt, Leibovich & Richards (1988), where the two layers
were each divided into sublayers so that surface and outer boundary conditions could be
formally satisfied. An in-depth review by Finnigan (1988) summarised the state of theory
and experimental results on boundary layer flow over hills up to that date and described in
detail the advances in understanding to be gained when experimental data over 2-D hills
are analysed in streamline coordinates.

As discussed in some detail by Van Dyke (1975), choice of coordinate systems can be
critical when applying the method of matched asymptotic expansions to small-perturbation
solutions of problems in fluid dynamics. In JH75 and Hunt et al. (1988), the outer layer
solutions were obtained in Cartesian coordinates while the inner layer equations were
developed in surface-following coordinates. While not affecting the conceptual basis
of their results, the mismatch of coordinates did influence the numerical accuracy of
the model and is particularly important when the perturbation solutions are expanded
to second order, as is necessary to compute changes to the pressure field that follow
the first-order changes to the velocity field. Hence, in later developments of the theory,
Belcher (1990) and Belcher, Newley & Hunt (1993) adopted a coordinate system consisting
of the streamfunction and potential function of inviscid irrotational flow over a 2-D
hill. This approach was equivalent to the von Mises transform of Zeman & Jensen
(1987), noted above. However, while this furnished them with a coordinate system that
followed the surface exactly but relaxed to parallel flow aloft, they did not transform the
dependent variables in their equations, the velocity components remaining in Cartesian
coordinates.

Developing this asymptotic expansion approach further, Finnigan & Belcher (2004)
produced an analytic model of flow over a 2-D ridge covered with a tall plant canopy.
Their model followed the overall structure of Hunt et al. (1988) but replaced Hunt et al.’s
inner surface layer with a two-layer canopy representation, comprising a linearised upper
canopy and a nonlinear lower canopy formulation. Their model was able to show why
flow separation and increased form drag on topography occurred at much lower angles on
hills covered with canopies than on rough hills of the same geometry. They also adopted a
coordinate system composed of the streamfunction and potential function of inviscid flow
but took the further step of using the streamline coordinate theory of F83 to transform
both the coordinates and the dependent variables in the flow equations, leading to more
intuitive perturbation expansions and matching of inner and outer layer solutions.

While the basic theory of JH75 and later Hunt et al. (1988) was equally applicable to
2-D or 3-D hills and the studies of Mason & Sykes (1979) and Sykes (1980) specifically
dealt with 3-D isolated hills, they all suffered from the problem of a mismatch between
a Cartesian representation of the outer flow and the use of surface-following coordinates
for the inner layer. Although inviscid flow solutions over 3-D topography can be obtained
by numerical or approximate methods and so can generate a driving pressure field, there
exists no accompanying 3-D streamline theory able to generate coordinates that smoothly
change from surface following to Cartesian with distance from the surface. Similarly, the
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J.J. Finnigan

further step of deriving the perturbation equations from a rational scale analysis, of the
transformed flow equations, as Finnigan & Belcher (2004) were able to do using the 2-D
theory of F83, is unavailable for general topography. As a result, there has been continuing
interest in finding equivalent coordinate systems for general 3-D flow fields.

The second main application of streamline coordinate representations is in the
interpretation of measurements in complex boundary layer flows. When the mean
streamlines of a curved flow make a significant angle with a Cartesian reference frame,
interpretation of the evolution of the turbulent stresses and their relationship to the mean
strain field is at best non-intuitive and at worst almost impossible. The review by Finnigan
(1988) mentioned above showed how transformation of the equations for the first and
second moments of the turbulent flow into the 2-D streamline coordinate system of F83
allowed the flow dynamics of both wind tunnel simulations and field experiments to be
interpreted by straightforward extensions of methods familiar from plane boundary layer
flows. It was for the same reason that Zeman & Jensen (1987) transformed a second-order
closure model, originally designed for horizontally homogeneous planetary boundary
layers, into streamline coordinates to interpret field measurements made over a 2-D ridge.

In many cases, however, field measurements of turbulent fluxes, for example, those made
on the several hundreds of ‘flux towers’ deployed in the global FLUXNET experiment
(fluxnet.org), or when arrays of flux towers are deployed to measure atmospheric flow
over complex topography, for example as in the international Perdigao field campaign,
discussed with many other examples in Finnigan et al. (2020), it is impossible to relate
the measurements to any notional objective Cartesian frame. Instead, velocity components
obtained in the reference frame of the sonic anemometer are rotated post facto into a
local Cartesian frame whose ‘x axis’ is parallel to the mean velocity vector. Since only
the direction of the x axis can be defined unambiguously from mean velocity components
measured by the anemometer, extra information has to be supplied to fix the directions of
the y and z axes. Two methods are in most common use. The first employs the components
of the mean wind vector and the Reynolds stress tensor to define those directions, while
the ‘planar-fit’ method (Wilczak, Oncley & Stage 2001) uses instead an ensemble of
mean wind vectors obtained at different times. The two methods are compared and
their relationship to 3-D streamline coordinates described in Finnigan (2004). Whichever
method is used, the experimentalist is left with the task of relating measurements of
mean velocities and turbulent stresses made in spatially varying coordinate systems. If
the objective is (as it usually is) to construct scalar or momentum budgets in some relevant
control volume, then the budget must be constructed in a streamline coordinate frame as
the separated measurements are automatically aligned with that frame. When the flow is
close to two-dimensional, then this can be done in the F83 2-D coordinate system, but in
more complex situations, a 3-D streamline system is needed.

With these motivations, the goal of this paper is to investigate how we can extend the
2-D streamline coordinate theory of F83 to 3-D turbulent flows so, in the following § 2, as
a starting point for the full 3-D development that follows, we briefly review the essential
characteristics of the 2-D theory.

2. Flow equations in two-dimensional Streamline coordinates

2.1. Notation
Many of the formulae in this paper can be derived most directly using the modern
description of curves on manifolds, which exploits the correspondence between a vector
basis and the dual basis of one-forms, see for example, Misner, Thorne & Wheeler (1970)
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or Schutz (1980). However, this approach is probably unfamiliar to many readers and so
results are presented in more familiar tensor notation except in Appendix B, where the
use of the dual basis avoids tedious index gymnastics. Elsewhere, vectors and tensors
are denoted by bold letters and their components by lower case letters. Base vectors are
distinguished by lower indices, e.g. ei, where the index i denotes the base vector not the
component. Components of vectors and tensors are distinguished by upper indices so that
a vector a can be written, a = a1e1 + a2e2 + a3e3. We have adopted the mathematical
convention of treating directional derivatives as vectors, hence the base vector ei can also
be written as the directional derivative along a space curve xi so that ei = d/dxi = ∂i and
the components of ei at a point P, whose coordinates in the background Cartesian reference
coordinate frame are P(y) = {y1, y2, y3} become dy/dxi = ∂iy. Other variables are defined
as encountered in the text.

2.2. Two-dimensional momentum equations
The streamline coordinate system for 2-D shear flows developed in F83 employs the
Lagrange streamfunction ψ(y) and a modified potential function φ(y) as the x2 and x1

coordinates, respectively, where y = {y1, y2, y3} is the background reference rectangular
Cartesian coordinate frame. For axisymmetric shear flows, the Lagrange streamfunction is
replaced by the Stokes streamfunction (Finnigan 1990). Vector and tensor flow variables
are referred to an orthogonal basis consisting of the tangent vectors to the coordinate lines.
The coordinate lines in turn are given by the intersections of constant surfaces of the
streamfunction, the modified potential function and the planes of symmetry. Written in this
true coordinate system, the flow equations contain familiar partial derivatives but distance
along the x1 and x2 coordinate lines is measured in units of φ and ψ , respectively. As
a result, physical quantities acquire unfamiliar dimensions. For example, the transformed
velocity vector u has dimensions L2/T2 rather than L/T . F83, therefore, took the further
step of normalising this vector basis to an orthonormal basis and parameterising the
coordinate lines by physical distance so that flow variables appearing in the equations
take their familiar dimensions. The trade-off for this transform to physical coordinates
(Truesdell 1953; Aris 1962) is that partial derivatives are replaced by directional
derivatives. These ‘physical streamline coordinate equations’ are suitable for interpreting
measurements or forming a basis for small-perturbation theories of flow over hills, as
discussed earlier. In this sense physical equations differ from transforms from Cartesian to
true curvilinear coordinates, which are intended to simplify calculations, for example by
making the governing equations separable, and where partial derivatives are retained. The
most fundamental difference between streamline coordinates and conventional coordinate
systems, however, is that the coordinate frame is determined by the flow field itself rather
than being externally prescribed.

The streamwise and cross-stream momentum equations for steady, incompressible,
neutrally stratified, 2-D turbulent flow in this system become, respectively,

U∂1U = U2

La
= −∂1P − ∂1u1u1 − ∂2u1u2 + 1

La
(u1u1 − u2u2)+ 2u1u2

R

+ ν

[
∂1(∂1U)+ ∂2(∂2U)− 2

La
∂1U − 1

R
∂2U − U

R2

]
, (2.1)
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La
x2

x3

R

e3

e1

e2

U, x1

y3 = constant
φ = constant

Ψ = constant

Figure 1. Coordinate surfaces and base vectors in the 2-D streamline coordinate system.

U2

R
= −∂2P − ∂1u1u2 − ∂2u2u2 + (u1u1 − u2u2)

1
R

+ 2
u1u2

La

− ν

[
∂1(∂2U)− 1

La
∂2U − ∂1

(
U
R

)
− U

RLa

]
. (2.2)

In (2.1) and (2.2), ∂i denotes a directional derivative in the xi coordinate direction.
The x1 coordinate lines are the streamlines while the x2 coordinates are the orthogonal
trajectories to the streamlines. The x3 coordinates are the straight lines normal to the planes
of symmetry y3 = constant (figure 1). Here U is the mean velocity, ui is the turbulent
velocity fluctuation in the xi direction, P is the mean kinematic pressure and ν is the
kinematic viscosity. The overbar denotes an ensemble or time average. Since the flow
is two-dimensional, there are no terms involving ∂3 or u3. Two parameters representing
flow geometry appear in the equations. Here R is the local radius of curvature of the
streamlines and is related to Ω3, the x3 component of the mean vorticity, which in this
coordinate system takes the form, Ω3 = (U/R − ∂2U); La is the e-folding distance of
streamwise acceleration and is also the local radius of curvature of the x2 coordinate lines;
La is related to the continuity equation for this solenoidal flow as the expression ∇ · u = 0
transforms to ∂1U − U/La = 0 so that 1/La = (∂1U)/U. Through these parameters, the
response of the turbulent stresses to flow acceleration and curvature becomes transparent.
A further interesting property of these equations is that (2.1) contains all the information
about changes in the linear momentum of the flow U∂1U, which are always directed along
the tangent to the streamline, and (2.2) contains all the information about the angular
momentum of the flow U2/R, which is always directed along the principal normal to the
streamline, the direction in which the streamline has its maximum curvature.

In addition to the turbulence terms, which require closure assumptions to represent them
as functions of the mean flow, (2.1) and (2.2) have three unknowns, U, 1/R and P instead
of the conventional U1, U2, P, which would appear in Cartesian coordinates. However,
the continuity equation ∇ · u = 0, which would close the equation set in Cartesian
coordinates, is now incorporated into (2.1) and (2.2) through the geometric coefficient
(1/La) so the equation set is closed through the structure equation (2.3), which describes
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Streamline coordinates in three-dimensional turbulent flows

the constraint on the mutual orientation of the base vectors in E3

∂1

(
1
La

)
−

(
1
La

)2

= ∂2

(
1
R

)
−

(
1
R

)2

. (2.3)

The vector basis of the physical F83 system is a right-handed orthonormal triad,
{e1, e2, e3}. This is a special case of the Serret–Frenet basis of a space curve. If we identify
the tangent to the streamline with e1, its principal normal with e2 and its binormal with e3,
the three vectors are linked by the Serret–Frenet equations (Aris 1962)

∂1e1 = e2

R
, ∂1e2 = −e1

R
+ e3

σ
, ∂1e3 = −e2

σ
, (2.4a–c)

where 1/R is the curvature and 1/σ the torsion or twist of the streamlines. The plane
spanned by e1 and the principal normal e2 is called the osculating plane and the maximum
curvature of the streamline is given by its projection onto this plane. The plane spanned
by e1 and the binormal e3 is called the tangent plane and the third plane, spanned by e2
and e3, is known as the normal plane. In the 2-D case treated in F83, the streamlines are
confined to the planes of symmetry and so are plane curves with 1/σ = 0. A vector basis
such as ei, which is defined by the properties of the space curve which generates it, is
known as a moving frame. We shall find it useful to distinguish a vector basis generated by
rescaling a true coordinate basis, as in the physical F83 system described above, by calling
it a non-coordinate basis although it is also a special case of a moving frame.

The rest of this paper addresses the question of, under what circumstances can
we extend the physical coordinate representation of (2.1) and (2.2), with its desirable
separation of angular and streamwise momentum and transparent influence of curvature
and acceleration, to general 3-D flows, where the streamlines may be twisted curves?

The analysis is set out as follows: in § 3 we derive the general form of 3-D flow
equations in the streamline Serret–Frenet basis ei. This focusses the question above to
that of defining the way that the components of ei vary as we move along the streamline
x1 and its orthogonal trajectories, x2 and x3, which we wish to use as coordinate lines.
We then show in § 4 that, in 3-D flows with a component of the vorticity aligned along
the streamlines, the variation of ei along the xi lines cannot be completely specified,
which limits the utility of a streamline coordinate description in such a case. However,
we also show that complex-lamellar flows, that is flows where the mean velocity and
mean vorticity are everywhere orthogonal, do admit such a specification. The 2-D flow
described by (2.1) and (2.2), together with axially symmetric flows, are the best known
cases of complex-lamellar flows but there also exist general 3-D complex-lamellar flows,
which form a good approximation to flow in boundary layers and thin shear layers. In
such flow fields, we can use the approach described for the 2-D case in F83, where a true
coordinate system was first derived and then rescaled to produce physical coordinates.
In § 5 we develop the transformation from Cartesian coordinates into a system defined
by the intersection of two orthogonal stream surfaces and a modified potential surface,
which together form a true coordinate system for general complex-lamellar flow fields.
This is a generalisation of the approach described in F83, and from this we derive the
corresponding physical equations. In § 6 we derive the physical conservation equation for
a general scalar, C. Finally in § 7 we discuss some fundamental differences between these
streamline equations and familiar Cartesian equations, particularly inasmuch as deriving
small-perturbation approximations as a basis for modelling, leads to different results,
according to which equations were used as starting points.
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3. Flow equations in the Serret–Frenet basis

The momentum equations for the flow of an incompressible fluid can be written as

∂uk

∂t
+ uiΓ k

it = −∂jτ
kj − ταjΓ k

αj − τ kαΓ
j
αj + Fk

D, (3.1)

where Fk
D represents a body force and the velocity vector u and the fluid stress tensor T

are expanded in the orthonormal basis ei as

u = uiei = u1e1 + u2e2 + u3e3, T = τ ijeiej = τ 11e1e1 + τ 12e1e2 + · · · + τ 33e3e3.
(3.2a,b)

The components of the rates of change of the base vectors ei along the coordinate lines xi

are called the connection coefficients

Γ i
jk = 〈ei, ∂kej〉, Γ i

jt = 〈ei, ∂ej/∂t〉, (3.3a,b)

where 〈, 〉 denotes the inner product. Equation (3.1) expresses the balance between the
spatial and temporal acceleration of the flow and the divergence of the stress tensor. The
connection coefficients appear because the vector basis ei can change its spatial orientation
but not its magnitude as we differentiate vectors and tensors along the coordinate lines.
General expressions for gradient, divergence and curl of vectors and tensors in an
orthonormal moving frame are given in Appendix A.

From hereon we will be concerned with steady flows only. The components of the rate
of change of the base vectors in time, Γ i

jt, are included in (3.1) for completeness but it is
only when such variations can be simply specified that unacceptable complications can be
avoided. The only common situation where this is true is in a steadily rotating reference
frame such as generates the Coriolis terms on a beta plane. This situation is dealt with
in F83 and the results there transfer directly to the 3-D cases considered here. In steady
conditions (3.1) becomes

0 = ∂jτ
kj + ταjΓ k

αj + τ kαΓ
j
αj − Fk

D. (3.4)

The mean velocity vector U is aligned with the x1 coordinate direction and so its
components are

Ui = (U, 0, 0), (3.5)

and the turbulent velocity vector u has components

ui = (u1, u2, u3), (3.6)

so that the kinematic fluid stress tensor has components

τ ij = [Pδij + UUδi1δj1 + uiu j − ν(∂jUδi1 + UΓ i
1j)]. (3.7)

Here, P is the mean kinematic pressure and δij is the Kronecker delta.
To expand (3.4) we need explicit expressions for the connection coefficients, Γ i

jk. Since

ei is orthonormal, 〈ei, ej〉 = δij, whence Γ i
jk = −Γ j

ik so that, Γ ααj = 0 with no sum on
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Greek indices. From the Serret–Frenet relationships (2.4) we have

Γ 2
11 = −Γ 1

21 = 1/R, Γ 3
21 = −Γ 2

31 = 1/σ, Γ 3
11 = −Γ 1

31 = 0, (3.8a–c)

which leaves six of the nine non-zero connection coefficients undetermined. These are

Γ 1
22 = −Γ 2

12, Γ 1
23 = −Γ 2

13, Γ 1
32 = −Γ 3

12,

Γ 1
33 = −Γ 3

13, Γ 2
32 = −Γ 3

22, Γ 2
33 = −Γ 3

23.

}
(3.9)

To deduce values for these coefficients directly, six independent equations are needed.
These are the structure equations of the ei basis in E3. Finnigan (1990) derived and
analysed these equations for general 3-D flows and showed that such flows do not admit
a simple streamline coordinate description. Before discussing those results, however, it
is necessary to distinguish the properties of different flow fields according to whether
congruences of their streamlines form integrable manifolds as this is the property which
determines the viability of a streamline coordinate description.

4. Classification of flows

4.1. Classifying flows topologically using the Frobenius integral theorem
As a first step, we derive expressions for the divergence and curl of the flow in the ei
basis. In the Cartesian reference frame yi, the spatial variation of the mean velocity field is
described by the flow deformation tensor ∂Ui/∂y j. This may be split into symmetric and
skew symmetric parts

∂Ui

∂y j = 1
2

sij + 1
2

aij = 1
2

(
∂Ui

∂y j + ∂U j

∂yi

)
+ 1

2

(
∂Ui

∂y j − ∂U j

∂yi

)
, (4.1)

where sij is the rate of strain tensor while the elements of aij, the rotation tensor, are Ω i,
the components of the vorticity vector Ω = ∇ ∧ U ; sij is a real symmetric second-order
tensor, and so has three scalar invariants. These ‘Cayley–Hamilton’ invariants are the
coefficients of the characteristic equation of sij. Two of these invariants have no simple
physical meaning (Dishington 1960) but the third is the trace of sij, where Tr(sij) = sii =
∇ · U . Using the general expression for the divergence in an orthonormal moving frame
(Appendix A), we obtain

∇ · U = ∂1U + (Γ 2
12 + Γ 3

13)U = 0, → (Γ 1
22 + Γ 1

33) = 1/La. (4.2)

In the ei basis, the mean flow vorticity Ω becomes

Ω = ∇ ∧ U = (UA)e1 + (∂3U)e2 +
(

U
R

− ∂2U
)

e3, (4.3)

where A is the abnormality of the field of e1 vectors

A = 〈U,∇ ∧ U〉
〈U,U〉 = 〈e1,∇ ∧ e1〉, (4.4)

and

∇ ∧ e1 = (Γ 1
23 − Γ 1

32)e1 + Γ 2
11e3 = (Γ 1

23 − Γ 1
32)e1 + 1

R
e3, (4.5a)
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so

A = (Γ 1
23 − Γ 1

32). (4.5b)

Similarly, we can write the curls and abnormalities of the fields of principal normal e2 and
binormal e3 vectors as

∇ ∧ e2 = Γ 3
22e1 + (Γ 1

23 − Γ 3
21)e2 + Γ 1

22e3 = Γ 3
22e1 +

(
Γ 1

23 − 1
σ

)
e2 + Γ 1

22e3, (4.6a)

so

An =
(
Γ 1

23 − 1
σ

)
, (4.6b)

∇ ∧ e3 = Γ 2
33e1 + Γ 1

33e2 + (Γ 1
23 − Γ 1

32)e3 = Γ 2
33e1 + Γ 1

33e2 +
(
Γ 1

23 − 1
σ

)
e3, (4.7a)

so

Ab = −
(
Γ 1

32 + 1
σ

)
. (4.7b)

Hence

A − An − Ab = 2
σ
. (4.8)

We see from (4.5)–(4.8) that the link between the abnormality of the e1 field and the
torsion of the mean streamlines x1 is mediated by the abnormalities of the principal
normal and binormal fields. We also note that when a field of base vectors eα has non-zero
abnormality, the curl of eα will have a component Γ αβγ eα with α, β, γ all different.

We are now able to use the vector form of the Frobenius integral theorem (Schutz
1980) to classify different flow fields. This theorem states that, if we have space curves,
xi, defined by the intersections of constant surfaces in space, which are differentiable
manifolds, the partial derivatives ∂/∂xi form a vector basis because these vectors
automatically commute, i.e.

[∂/∂xi, ∂/∂x j] = ∂2

∂xi∂x j − ∂2

∂x j∂xi = 0. (4.9)

However, if we choose an arbitrary vector basis, for example the non-coordinate physical
basis ei formed from the directional derivatives of the reparametrised coordinate lines as
in the physical 2-D equations (2.1) and (2.2), these vectors do not, in general, commute

[ei, ej] = [∂i, ∂j] = (∂i∂j − ∂j∂i) = (∂iej − ∂jei) /= 0. (4.10)

The commutator or Lie bracket (4.10) defines a vector field and so can itself be expanded
in the coordinate basis ∂/∂xi

[∂i, ∂j]k∂/∂xk = (∂1∂2 − ∂2∂1)
3∂/∂x3 + (∂1∂3 − ∂3∂1)

2∂/∂x2 + (∂2∂3 − ∂3∂2)
1∂/∂x1.

(4.11)

The tangent planes of the coordinate base vectors, ∂/∂xi, taken in pairs, foliate the
integrable manifolds whose intersections define the coordinate lines xi (Schutz 1980).
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Streamline coordinates in three-dimensional turbulent flows

If ei were obtained by rescaling the coordinate basis ∂/∂xi, then the tangent planes of
the ei base vectors, taken in pairs, must be parallel to the coordinate basis tangent planes.
For this to be true, the commutator of ∂1 and ∂2 must have no component in the ∂/∂x3 or
∂3 direction, i.e. it must lie in the plane spanned by ∂/∂x1 and ∂/∂x2, or equivalently, by ∂1
and ∂2, and the same goes for the other commutators: [∂1, ∂3] can have no component in
the ∂/∂x2 or ∂2 direction and [∂2, ∂3]can have no component in the ∂/∂x1 or ∂1 direction.
The converse is also true. If the commutators of the ei base vectors, taken in pairs, have
components that do not lie in the plane spanned by the pairs of partial derivatives, they
cannot be derived by scaling a true coordinate system.

We now apply the Frobenius theorem to the Serret–Frenet basis, ei. Following (4.10),
the components of the commutator [ei, ej] are

[∂1, ∂2] = ∂1e2 − ∂2e1 = −e1

R
+ e3

σ
− Γ 2

12e2 − Γ 3
12e3, (4.12a)

[∂1, ∂3] = ∂1e3 − ∂3e1 = −e2

σ
− Γ 2

13e2 − Γ 3
13e3, (4.12b)

[∂2, ∂3] = ∂2e3 − ∂3e2 = (Γ 1
32 − Γ 1

23)e1 + Γ 2
32e2 − Γ 3

23e3. (4.12c)

Evidently, from (4.5)–(4.8), when the flow has a component of mean vorticity in the x1,
direction, the streamlines are twisted curves with 1/σ /= 0 and the integral curves of the
principal and binormal fields x2, x3 are also twisted curves so that the coefficients of ei in
(4.12a–c), which involve Γ i

jk terms with i, j, k all different, are non-zero. As a result, the
commutator of any pair of bases, [eα, eβ] has a component in the eγ direction, signalled
by the appearance of the coefficient of eγ being Γ γαβ /= 0. Hence, the commutators of the
Serret–Frenet basis in a general 3-D flow field do not lie in the tangent planes spanned
by the base vectors and the basis cannot be derived by rescaling an underlying coordinate
basis.

In the 2-D case treated in F83, the streamlines are confined to the planes of symmetry
and so are plane curves with 1/σ = 0. In such flows, the only component of the mean
vorticity vector, Ω = {Ω1,Ω2,Ω3} is Ω3 = (U/R − ∂2U) and is aligned with the e3
base vector or the rectilinear x3 coordinate line. Flows with 〈U,Ω〉 = 0, are known as
complex-lamellar flows, that is, the vorticity is everywhere normal to the velocity (Aris
1962). As discussed in F83 and references therein, complex-lamellar flows admit a normal
congruence of surfaces, the desirable property that allowed the use of φ(y), ψ(y) and the
planes of symmetry as orthogonal coordinate surfaces and the generation of an orthogonal
physical coordinate system, with the advantages of interpretation that confers. While the
most familiar examples of complex-lamellar flows are two-dimensional and axisymmetric,
these do not exhaust the class of such flows and in the next § 5, we develop first true then
physical coordinate systems for general 3-D complex-lamellar flows. First, however, we
make some observations on general 3-D flows where 〈U,Ω〉 /= 0.

4.2. Flow equations in the general three-dimensional case
Finnigan (1990) notes that there are two related properties that prevent the moving frame
ei, attached to the twisted streamlines of flows where 〈U,Ω〉 /= 0, from forming a useful
coordinate system. The first is that the congruence of streamlines that pass through a trace
formed by an arbitrary space curve ϕ(y) do not form an integrable manifold, as we saw
above. In practical terms, this means that we cannot find general solutions of the structure
equations that determine all the Γ i

jk. This conclusion is reviewed briefly in Appendix B.
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The second is that the basis ei is not orientable (Spivak 1979, Vol. 2) so that the defination
of the positive direction along the coordinate lines, which are the integral curves of ei, is
indeterminate. In the 2-D case of F83, where the streamlines are plane curves, the basis
is orientable so that the curvature 1/R is a signed quantity defined as +ve (−ve) if the
centre of curvature of the streamline lies in the +ve (−ve) x2 direction. Taking ei as a
right-handed system then defines the other coordinate directions. When the streamlines are
twisted curves, the torsion 1/σ can be interpreted as the rate at which the e2 and e3 base
vectors, which are confined to the normal plane, rotate around the e1 vector as x1 changes
(Aris 1962). As a consequence, whenever 1/σ changes sign, the coordinate directions will
reverse.

Surprisingly, despite these limitations, the full ei moving frame equations do reveal an
interesting property of general flows, as we can see in the momentum equations written
in the ei basis. Accepting that we cannot specify four of the connection coefficients,
Γ 1

22, Γ
1

33, Γ
2

33, Γ
3

22 the streamwise x1 direction equation becomes

U∂1U = U2

La
= −∂1P − ∂1u1u1 − ∂2u1u2 − ∂3u1u3 + u1u1 1

La
− u2u2Γ 1

22

− u3u3Γ 1
33 + u1u2

(
2
R

+ Γ 2
33

)
+ u1u3Γ 3

22 + F1
D + viscous terms, (4.13)

where La, as defined in (4.2), is the e-folding distance of streamwise acceleration as in
the 2-D equations but is no longer the radius of curvature of the x2 coordinate lines. The
momentum equation in the principal normal x2 direction is

U2

R
= −∂2P − ∂1u1u2 − ∂2u2u2 − ∂3u2u3

− (u1u1 − u2u2)
1
R

− (u3u3 − u2u2)Γ 2
33 + u1u2Γ 1

22

+ u1u2 1
La

+ u2u32Γ 3
22 + F2

D + viscous terms, (4.14)

where in this case R is still the local radius of curvature of the streamline when measured
in the osculating plane spanned by the e1 and e2 base vectors. The x3 binormal direction
equation is

0 = −∂3P − ∂1u1u3 − ∂2u2u3 − ∂3u3u3 − (u2u2 − u3u3)Γ 3
22

+ u1u3 1
La

+ u1u3Γ 1
33 − u2u3

(
2Γ 3

23 − 1
R

)
+ F3

D + viscous terms. (4.15)

(Note that in (4.13), (4.14) and (4.15), for brevity we have not written out the viscous stress
divergence in full as its inclusion does not affect the following argument.)

These equations reveal an important result. As in the 2-D case, the x1 equation captures
all the information about the linear momentum of the flow. The inertial acceleration
U∂1U = U2/La is balanced by the streamwise pressure gradient ∂1P and the x1 component
of the stress divergence plus any body force in the x1 direction. The x2 equation captures
all the information about the angular momentum of the flow. The centrifugal acceleration
U2/R is balanced by the pressure gradient in the direction of the principal normal to the
streamline, the direction in which the streamline has its maximum curvature, and the x2

component of the stress divergence plus any body force in the x2 direction. There is no
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Streamline coordinates in three-dimensional turbulent flows

other form of momentum so that the x3 equation tells us that any pressure gradient in the
binormal direction must be balanced by the stress divergence and body force as there is no
inertial acceleration in the x3 direction. If we were considering an inviscid non-turbulent
fluid obeying Euler’s equations, the three equations would take the form

U∂1U = −∂1P, U2/R = −∂2P, 0 = −∂3P. (4.16a–c)

So there can be no mean pressure gradient in the binormal direction in a steady inviscid
flow without a body force. At first sight this result seems counter-intuitive as we might
expect that streamline divergence as the flow approaches a solid obstacle would be caused
by a pressure gradient acting along the x3 direction to move streamlines apart but a simple
counter-example shows this is not necessary. Consider irrotational flow approaching a
body of revolution like a sphere. The streamlines diverge from the stagnation streamline
as they pass around the sphere but in axially symmetric streamline coordinates (Finnigan
1990), the x3 lines are circles around the stagnation streamline and symmetry demands
that there can be no mean gradients in the x3 direction. Pressure gradients do play a
role because adjacent streamlines are decelerated to differing degrees depending on their
distance from the obstacle. This causes shear in the cross-streamline x2 direction but,
in an inviscid flow, Ω3 = U/R − ∂2U = 0 and the shear is compensated by streamline
curvature, which takes the flow around the sphere. In viscous and turbulent flows, there
may well be a non-zero ∂3P as the flow negotiates obstacles but this is not essential and
must be the result of stress divergence and body forces.

5. A description of general three-dimensional complex-lamellar flows

5.1. Complex-lamellar boundary layer flows
For flow over a solid surface, the expression for mean vorticity (4.3) in the Serret–Frenet
basis ei, orientated so that the e2 base vectors intersect the surface normally and the e1 and
e3 base vectors are in the tangent planes parallel to the surface, takes the form

∇ ∧ U = (UA)e1 + (∂3U)e2 +
(

U
R

− ∂2U
)

e3. (5.1)

The no-slip condition then ensures that as x2 → 0, (UA) → 0, (∂3U) → 0. In boundary
layer flows, by definition, ∂2U � ∂1U, ∂3U so that in this region, the vorticity becomes,
∇ ∧ U � 0e1 + 0e2 + (U/R − ∂2U)e3 and the flow becomes approximately complex
lamellar. Similar scaling arguments apply equally to thin shear layers as long as the
ei basis is orientated appropriately. Complex-lamellar flows are, therefore, a useful
approximation to many practical situations such as atmospheric boundary layer flow over
gentle topography or non-separating boundary layers in engineering applications. In the
next section, therefore, we develop true and physical coordinate descriptions of general
3-D complex-lamellar flows

5.2. Coordinates for three-dimensional complex-lamellar flow

5.2.1. Stream surfaces and normal surfaces
Along a streamline, the velocity components Ui in the Cartesian reference frame y obey
the equation

dy1

U1 = dy2

U2 = dy3

U3 . (5.2)
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x3

R

e1

y2

y3 y1

e3

e2

U, x1

x2

g ( y) = constant

φ (y) = constant

f ( y) = constant

Figure 2. Coordinate surfaces and base vectors in the 3-D streamline coordinate system.

The solution of this type of first-order differential equation was of great interest to
mathematicians of the 18th and 19th centuries and is usually referred to as Pfaff’s problem
(Ince 1956; Piaggio 1958). A solution to (5.2) consists of the intersection of two stream
surfaces, f (y) = constant, g(y) = constant and Yih (1977) shows that, without loss of
generality, the values of f and g can be chosen so that

u = ∇f ∧ ∇g. (5.3)

For complex-lamellar flows there exists a normal congruence of surfaces and we can
define f and g as two of these so that 〈∇f ,∇g〉 = 0. We obtain the third normal surface as
the solution of 〈u, dx〉 = 0, which is simply a restatement of (5.2) and, since the flow is
complex lamellar, we can find an integrating factor ζ(y) such that

〈ζu, dx〉 = 0 = dφ, (5.4a)

is exact so

∇φ = ζu. (5.4b)

The surface φ(y) = constant is normal to f and g. We are free to choose the
orientation of f and g around the streamline and we have shown in (4.12) that in a
complex-lamellar flow we can choose surfaces that are integrable manifolds and whose
tangent planes are parallel to those spanned by the Serret–Frenet base vectors so we
identify the φ(y), g(y) and f (y) surfaces as a true orthogonal coordinate system for general
complex-lamellar flow. The coordinate lines xi are now the intersections of constant
φ, g, and f surfaces. We choose the f = constant surface as that whose tangent planes
are parallel to the Serret–Frenet osculating planes so that the value of f increases along the
x3 coordinate lines. Similarly, the g = constant surface has its tangent planes parallel to the
Serret–Frenet tangent planes so that the value of g increases along the x2 coordinate lines
and the φ = constant surface has its tangent planes parallel to the Serret–Frenet normal
planes so that the value of φ increases along the x1 coordinate lines. The base vectors
∂/∂φ, ∂/∂g, ∂/∂f are tangent to the coordinate lines and parallel to the tangent, principal
normal and binormal to the streamline. The system is shown graphically in figure 2.

999 A101-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.723


Streamline coordinates in three-dimensional turbulent flows

To complete the specification of this system we need to define ζ(y). From (5.3) and
(5.4), we can write

U = ∇f ∧ ∇g → U = ∇ ∧ ( f ∇g) = ∇ ∧ Ψ,
∇φ = ζU = ζ(∇ ∧ Ψ ),

∇ ∧ ∇φ = 0 → ∇ ∧ (ζ ∇ ∧ Ψ ) = ∇ ∧ ζU = 0,

∇ ∧ ζU = ζ ∇ ∧ U + ∇ζ ∧ U = 0,

∇ ∧ U = Ω, and so, ζ Ω + ∇ζ ∧ U = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

hence
Ω = −∇ ln ζ ∧ U, (5.6)

〈U,Ω〉 = 0 and in the Serret–Frenet basis, U = {U, 0, 0} and Ω = {0, 0,Ω3}, therefore
∇ ln ζ is aligned with the principal normal e2 direction (see figure 2) so that ∇ ln ζ has
components

∇ ln ζ =
{

0,
∂ ln ζ
∂f

, 0
}
. (5.7)

In the Serret–Frenet basis, Ω = {0, 0,Ω3} = {0, 0, (U/R − ∂2U)} and ∇ ln ζ ∧ U =
{0, 0,−(U∂2 ln ζ )}.

So we can write

∂2 ln ζ =
(

1
R

− ∂2 ln U
)

or ∂2 ln(Uζ ) = 1
R
. (5.8)

An equivalent expression for ζ was obtained in the 2-D case described in F83 and we shall
find that we will not have to solve (5.8) explicitly.

5.2.2. Metric tensor and Christoffel symbols
We are now in a position to define the metric tensor for the transformation from Cartesian
yi coordinates to the true streamline xi = {φ, g, f } system. The contravariant metric tensor
can be constructed directly from the products of the base vectors (Aris 1962)

gpq =
∑

i

∂xp

∂yi
∂xq

∂yi =
⎛
⎝ζ 2Q2 0 0

0 Q 0
0 0 Q

⎞
⎠ . (5.9)

And, since the xi system is orthogonal, the covariant metric is

gpq = (gpq)−1 =
∑

i

∂xp

∂yi
∂xq

∂yi =

⎛
⎜⎜⎜⎜⎜⎝

1
ζ 2Q2 0 0

0
1
Q

0

0 0
1
Q

⎞
⎟⎟⎟⎟⎟⎠ . (5.10)

And we have written Q = |U| to avoid confusion when using terms derived from the metric
to perform steps in the coordinate transformation. It is worth noting that the metric takes a

999 A101-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.723


J.J. Finnigan

somewhat different form from that used in the 2-D streamline coordinates in F83. In that
case the contravariant metric took the form

gpq =
⎛
⎝ζ 2Q2 0 0

0 Q2 0
0 0 1

⎞
⎠ , (5.11)

the difference arising from the fact that in the 2-D case, the Lagrange streamfunction
has dimensions L2/T , whereas in the present 3-D case, the f and g streamfunctions each
have dimensions (L2/T)1/2. The modified potential function φ, however, has the same
dimensions in both two and three dimensions.

The Jacobian of the transform is denoted by J and given by

J = |gij|1/2 = ζQ2. (5.12)

So that the transformation is not invertable at stagnation points and solid surfaces, where
the no-slip condition ensures Q → 0. Finally, to effect the transformation we need to
define the Christoffel symbols for the metric. These are the counterparts of the connection
coefficients defined in (3.3) but since in the true xi = {φ, g, f } coordinate system, the
base vectors can change their magnitude as well as their orientation as we move along
coordinate lines, the simplifications we were able to use in the case of the orthonormal
Serret–Frenet ei basis are not available. The Christoffel symbols (of the second kind) are
defined as (Aris 1962)

Γ̂ i
jk = 1

2
gip

[
∂gpj

∂xk + ∂gpk

∂x j − ∂gjk

∂xp

]
. (5.13)

The Γ̂ i
jk values for the xi = {φ, g, f } metric (5.9), (5.10) are listed in Appendix C. If we

now define a,ij, the covariant derivative in the x j direction of a vector a with components
ai in the xi system, as

a,ij =
∂ai

∂x j + Γ̂ i
kja

k, (5.14)

we are now in a position to transform flow equations from Cartesian yi coordinates to
xi = {φ, g, f } coordinates. The procedure is as follows.

(i) Write down the original equation in Cartesian form.
(ii) Rewrite the equation in general tensor form, replacing partial derivatives by

covariant derivatives and ensuring all terms have the same variance.
(iii) Substitute for the covariant derivatives using (5.14) and (5.13).
(iv) Recover physical components.

These steps were set out in Bradshaw (1973, Appendix I) and can be followed in detail in
the 2-D case in F83.

5.2.3. Connection coefficients for the Serret–Frenet basis
We are ultimately interested in step (iv), so in the present case, rather than go through steps
(i)–(iii), we will simply normalise the Christoffel symbols Γ̂ i

jk to recover the equivalent
connection coefficients Γ i

jk of the orthonormal Serret–Frenet ei basis corresponding to the
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Streamline coordinates in three-dimensional turbulent flows

xi = {φ, g, f } system and substitute these in (3.4) with the form of the fluid stress tensor
given in (3.7).

These nine connection coefficients are

Γ 1
22 = −Γ 2

12 = 1/2La, Γ 1
33 = −Γ 3

13 = 1/2La, Γ 2
11 = −Γ 1

21 = 1/R,

Γ 2
33 = −Γ 3

23 = 1/2La2, Γ 3
22 = −Γ 2

32 = 1/2La3,

Γ 3
11 = −Γ 1

31 = 0, Γ 1
23 = −Γ 2

13 = 0, Γ 1
32 = −Γ 3

12 = 0, Γ 3
21 = −Γ 2

31 = 0,

⎫⎪⎪⎬
⎪⎪⎭
(5.15)

where
1

La2
= 1

U
∂2U,

1
La3

= 1
U
∂3U, (5.16a,b)

and the streamline curvature 1/R is a signed quantity which is +ve (−ve) if the centre
of curvature lies in the +ve (−ve) x2 direction. Note that connection coefficients Γ αβγ
with α, β, γ all different are zero as non-zero values would indicate that the coordinate
lines were twisted curves. In general 3-D complex-lamellar flows, the streamlines and their
orthogonal trajectories are plane curves.

5.3. Spatial geometry of the coordinates and base vectors
It is illuminating to make explicit the links between the geometry of the coordinate lines,
the ei basis and the variation of the mean velocity in space. In the 2-D case treated in F83,
the streamline and the x2coordinate line were both confined to the osculating plane and
(1/R̂), the curvature of the x2 line equalled 1/La. In the present 3-D case, we can only
assume that the principal normal and binormal to the x2 line lie in the tangent plane of
the x1 streamline, as we show in figure 3(a). If we denote the tangent, principal normal,
binormal and curvature of the x2 line as ê1, ê2, ê3 and (1/R̂), respectively, and the angle
between ê2 and e1 as θ , it follows from the Serret–Frenet relationships (2.4) and from the
definitions of the connection coefficients (5.15) that

Γ 1
22 = cos θ

R̂
= 1

2La
, Γ 3

22 = sin θ

R̂
= 1

2La3
. (5.17a,b)

Similarly, we can only assume that the principal normal and binormal to the x3 line lie
in the osculating plane of the x1 streamline (figure 3b). If we denote the tangent, principal

normal, binormal and curvature of the x3 line as ˆ̂e1, ˆ̂e2, ˆ̂e3 and (1/ ˆ̂R), respectively, and the
angle between ˆ̂e2 and e1 as φ, it follows from the Serret–Frenet relationships and from the
definitions of the connection coefficients that

Γ 1
33 = cosφ

ˆ̂R
= 1

2La
, Γ 2

33 = sinφ
ˆ̂R

= 1
2La2

. (5.18a,b)

Hence, the spatial geometry of the x2 and x3 coordinate lines is completely determined by
the e-folding distances of the mean velocity in the streamwise and cross-stream directions.

Finally, we point out that, since we have orientated the basis by identifying the ei tangent
planes with the tangent planes to the surface, the surface streamlines are curves whose
principal normals are always normal to the surface and so are geodesics.
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ê̂2

ê̂2
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ê̂3

e3, ê̂1

ê2

ê3
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θ

θ

θ

θ

(a)

(b)

Figure 3. (a) Curvature of x2 coordinate line relative to the base vectors ei. (b) Curvature of x3 coordinate
line relative to the base vectors ei.

5.4. Physical momentum equations in three-dimensional complex-lamellar flow
Substituting (5.15), (5.16) and (3.7) into (3.4) we obtain the momentum equations

U∂1U = U2

La
= −∂1P − ∂1u1u1 − ∂2u1u2 − ∂3u1u3

+ u1u1 1
La

− u2u2 1
2La

− u3u3 1
2La

+ u1u2
(

2
R

+ 1
2La2

)
+ u1u3 1

2La3

+ ν

[
∂1(∂1U)+ ∂2(∂2U)+ ∂3(∂3U)− 3

2La
(∂1U)

−
(

2
R

+ 1
2La2

)
(∂2U)− 1

2La3
(∂3U)

]
+ F1

D, (5.19)

U2

R
= −∂2P − ∂1u1u2 − ∂2u2u2 − ∂3u2u3

− (u1u1 − u2u2)
1
R

− (u3u3 − u2u2)
1

2La2
+ u1u2 3

2La
+ u2u3 1

2La3

+ ν

[
∂1(∂2U)− 1

2
∂2(∂1U)+ ∂3(∂3U)+ ∂1U

3
2R

− ∂2U
3

2La
− ∂3U

1
La3

]
+ F2

D,

(5.20)
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0 = −∂3P − ∂1u1u3 − ∂2u2u3 − ∂3u3u3

− (u2u2 − u3u3)
1

2La3
+ u1u3 3

2La
− u2u3

(
2Γ 3

23 − 1
R

)

+ ν

[
∂1(∂3U)+ ∂2(∂3U)− 1

2
∂3(∂1U)− (∂3U)

(
3

2La
+ 1

R
+ 1

La2

)]
+ F3

D.

(5.21)

Before discussing these equations in more detail in § 6, we can make the following
comments: the asymmetry of the connection coefficients, which results from the
asymmetry in the variation of the base vectors along their integral curves as set out in
the Serret–Frenet equations (2.4), together with the fact that we have orientated the ei
basis by identifying its tangent planes with those of the surface, means that the coordinate
indices x1, x2, x3 cannot be simply interchanged. e2 and x2 must intersect the surface
normally and ei is taken as a right-handed triad. If the meteorological convention with
e3, x3 normal to the surface is preferred, then ei should be treated as left handed and
appropriate changes made to the sign conventions. This lack of symmetry in the vector
basis leads to a corresponding lack of symmetry in the elements of the stress tensor
divergence, which is particularly noticeable in the viscous terms.

As noted in (4.10) et seq, the directional derivatives ∂i(∂j) do not commute so that the
order of second derivatives in the flow equations cannot be altered arbitrarily. Expressions
for the non-commutivity of directional derivatives of an arbitrary vector are given in
Appendix A.

Finally, the 3-D momentum equations have, in principle, four unknowns, U, P, (1/R),
(1/σ). The pair of 2-D equations presented in § 1 had three unknowns, U, P, (1/R)
and the equation set had to be closed by use of a structure equation (2.3). In the 3-D
complex-lamellar case we have stipulated that (1/σ) = 0, which plays the role of a
structure equation, hence one variable has disappeared and the three momentum equations
are closed.

6. Scalar conservation equations

Since one of the original motivations for this work was understanding the transport of
scalars in atmospheric flow over complex terrain, it is appropriate to add the equation for
conservation of an arbitrary scalar C(y) in the physical complex-lamellar system, xi, ei.
The flux of C is given by

Fi
C = UCδi1 + uic − κc(∂jC)δij, (6.1)

where c is the turbulent fluctuation of the scalar around its mean value C and κc is the
coefficient of molecular diffusion of C. Then, from the expression for the divergence of
a vector in Appendix A and using the values for the connection coefficients Γ i

jk given in
(5.15), we obtain

U∂1C = −∂1u1c − ∂2u2c − ∂3u3c + u1c
La

+ u2c
(

1
2La2

+ 1
R

)
+ u3c

2La3

+ κc

[
∂1(∂1C)+ ∂2(∂2C)+ ∂3(∂3C)− ∂1C

La
− ∂2C

2La2
− ∂2C

R
− ∂3C

2La3

]
+ χC,

(6.2)
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where χC is the source strength of C. As in the case of the momentum equations, the
advection term is simplified to advection along the streamline at the expense of extra terms
related to the distortion of an infinitesimal control volume as streamlines curve, converge
and diverge.

7. Summary and discussion

7.1. General three-dimensional flow fields
We have attempted to extend the 2-D physical streamline coordinate equations derived in
F83 to three dimensions. This exercise devolves to defining the nine non-zero connection
coefficients of an orthonormal moving frame, consisting of the Serret–Frenet basis, ei,
in terms of the mean flow field U(x) so that the coordinate system itself is supplied
by the solution of the equations. The connection coefficients Γ i

jk are the components
of the derivatives of ei along their integral curves xi. We found that, if the mean flow
has a component of its vorticity aligned in the streamwise direction, i.e. if 〈U,Ω〉 /= 0,
its streamlines are twisted curves the so that ei basis is not orientable. Furthermore, by
applying the vector form of the Frobenius integral theorem to the field of ei vectors, we
deduced that the congruence of streamlines passing through any space curve does not
constitute an integrable manifold. As a result, it is not possible to solve the ‘structure
equations’, which define the connection coefficients, by analytic means. These two
properties mean that it is not possible to write physical streamline coordinate equations
for completely general flow fields but, conversely, in complex-lamellar flows, where
〈U,Ω〉 = 0, these obstacles disappear and the extension of the 2-D case to three
dimensions is possible.

Remaining with general flows for the moment, it is possible to write the flow equations
in the Serret–Frenet moving frame although not all the connection coefficients can be
defined. The form of the resulting momentum equations shows that all the information
about the linear momentum of the flow is contained in the streamwise, x1, e1 equation,
where the streamwise mean pressure gradient is balanced by the inertial acceleration
along the streamline plus the streamwise components of the fluid stress divergence and
body force. Similarly, all the information about the angular momentum of the flow is
contained in the principal normal, x2, e2 equation, where the mean pressure gradient
in the cross-stream e2 direction is balanced by the centrifugal acceleration plus the e2
components of the fluid stress divergence and body force. There is no other kind of
momentum so any mean pressure gradient in the x3, e3 or binormal direction can only
be produced by fluid stress divergence or a body force. In inviscid non-turbulent fluids
in the absence of body forces, there can be no mean pressure gradient in the binormal
direction. This seems a slightly surprising result but consideration of simple flows such as
those around a body of revolution shows that this condition is generally observed.

Finnigan (1990) investigated the consequences of the non-integrability of stream
surfaces in general 3-D flow fields in more detail and showed that there were regions
where combinations of values of 1/La,A,An and Ab would lead the streamlines to exhibit
chaotic trajectories with possible enhancement of mixing through Lagrangian turbulence.

7.2. Complex-lamellar flows in three dimensions
Turning our attention to general complex-lamellar flows, it can be shown that they are
a good approximation to boundary layers and free shear layers, which vary much more
slowly in the streamwise than in the cross-stream directions. We first constructed a
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true coordinate system for these flows by deriving the functional form of two stream
surfaces, f , g and a modified potential surface, φ, which together formed a normal
congruence of surfaces, a condition that is a general property of complex-lamellar flows.
The intersections of the surfaces define the streamline and two orthogonal trajectories,
which can be taken as the coordinate axes. Distance along the axes is measured by the
change in the value of the particular φ, f or g that the axes intersect normally and
differentiation along any coordinate is automatically partial differentiation as only one
of φ, f , g varies along their intersections. In principal, flow equations in this true system
could be solved by standard methods so we have supplied the metric of the transform from
Cartesian coordinates and the relevant Christoffel symbols but have not followed all the
necessary steps in the derivation. These can be followed in detail in F83 or Bradshaw
(1973).

Instead, we deduced the form of the physical equations directly by normalising the
Christoffel symbols and using general expressions for the gradient, divergence and curl
of vectors and the divergence of second-order tensors in an orthonormal moving frame
as explained above. This was equivalent to normalising the vector basis of the true
coordinates to yield the Serret–Frenet basis and to measuring distance along the coordinate
axes by physical distance. Variables in the resulting physical momentum and scalar
conservation equations took the form they would have in Cartesian coordinates. The
advection terms and dominant stress divergence terms are simplified but at the expense
of the replacement of partial derivatives by directional derivatives and of extra terms that
reflect the fact that the base vectors change orientation as they are convected along the
streamline. As explained in § 5.1, we orientate the Serret–Frenet ei basis by making its
tangent planes tangent to the solid surface so that the principal normal e2 vectors are
normal to the surface and consequently, the surface streamlines are geodesics. The only
component of mean vorticity isΩ3 = (U/R − ∂2U) and the no-slip condition ensures that
as x2 → 0, Ω3 → −∂2U.

7.3. Scaling the flow equations
When we make a set of rational approximations to the streamline momentum equations,
discarding smaller terms and retaining larger, as is done in small-perturbation approaches
to calculations (e.g. Van Dyke 1975; Hunt et al. 1988; Harman & Finnigan 2010, 2013),
it is interesting to see that we arrive at a different place than if took the Cartesian or
surface-following s-n equations as our starting point. As a practical example we will
address the application of the streamline equations to an atmospheric boundary layer over
gentle topography but the arguments apply equally to attached boundary layers over a
non-planar surfaces or to thin free shear layers. We assume the ground surface is covered
with bumps, undulations or hills with dimensions L1, H, L3 in the streamwise x1, vertical
x2 and lateral x3 directions respectively with H/L1, H/L3 � 1. We also assume that the
shear stress layer thickness δ, defined as the region in which perturbations to the turbulent
stresses affect perturbations to the mean flow at first order (Hunt et al. 1988) satisfies

δ � L1 or, equivalently, that the mixing length l = u∗/Ω3 � L1, where u∗ =
√

−u1u2 is
the friction velocity. In the high Reynolds number turbulence of the atmospheric surface
layer we can ignore the viscous in comparison with the turbulent stresses. We note also that
these scaling assumptions are precisely those needed to approximate the flow as complex
lamellar (see § 5.1).

Focussing on the streamwise momentum equation (5.19) we observe four groups of
terms. First, we have the mean inertia terms, U∂1U = U2/La and −∂1P and we expect
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these to vary on the streamwise length scale L1 because it is perturbations on this scale
that generate perturbations in streamwise velocity and pressure gradient and so their
magnitudes should scale as H/L1. Next, we have gradients of the shear and normal
stresses −∂1u1u1 − ∂2u1u2 − ∂3u1u3. The second moments themselves are of order u∗2

and so smaller than U2 but in turbulent boundary layers over very rough surfaces, such as
vegetation canopies, (u∗2/U2)1/2 can be as large as 0.3 (Raupach, Antonia & Rajagopalan
1991). Since ∂1 ∼ 1/L1, ∂2 ∼ 1/δ, ∂3 ∼ 1/L3 in the shear stress layer x2 ≤ δ, the leading
turbulent stress divergence term −∂2u1u2 is comparable to the inertial terms. Next, we
have a set of terms that are associated with the variation of the base vectors in space and
which appear because the infinitesimal control volume dx1 ∧ dx2 ∧ dx3 changes its shape
and orientation as it is advected along the streamline. These are the terms

+u1u1 1
La

− u2u2 1
2La

− u3u3 1
2La

+ u1u2
(

2
R

+ 1
2La2

)
+ u1u3 1

2La3
, (7.1)

and they all take the form of turbulent stresses multiplied by coefficients that describe the
variation of the mean velocity in space. They involve 1/U∂iU the spatial variation of the
logarithm of U and so are intrinsically smaller than the scale over which U itself varies, but
in a free shear layer or boundary layer 1/La2 � 1/La, 1/La3 and so u1u2(1/2La2) cannot
be discarded a priori. Applying these arguments to (5.18), we can deduce that to O[H/L1]
the dominant terms in a high Reynolds number turbulent boundary layer will be

U∂1U = U2

La
= −∂1P − ∂2u1u2 + u1u2

(
2
R

+ 1
2La2

)
+ F1

D, (7.2)

and applying similar arguments to (5.19) and (5.20), the dominant terms will be

U2

R
= −∂2P − ∂2u2u2 − (u1u1 − u2u2)

1
R

− (u3u3 − u2u2)
1

2La2
+ F2

D, (7.3)

and

0 = −∂3P − ∂2u2u3 + u2u3
(

1
La2

+
1
R

)
+ F3

D. (7.4)

Finally, applying the same arguments to the scalar conservation equation (6.2), we obtain

U∂1C = −∂1u1c − ∂2u2c − ∂3u3c + u2c
(

1
2La2

+ 1
R

)
+ χC. (7.5)

In these small-perturbation equations we have retained the terms involving the eddy fluxes
multiplied by 1/La2 and 1/R. The first of these is because 1/La2 is intrinsically larger than
1/La1 and 1/La3. The second is because turbulent shear flows are particularly responsive
to streamline curvature as we discuss next.

We can estimate the size of 1/R by assuming the surface streamline over a bump
or hill is an arc of a circle of radius R and chord 2L1. Then by the chord theorem
1/R ∼ H/L2

1 so 1/R is much smaller than 1/L1 so that on pure scaling grounds, curvature
effects can only be significant if (u∗2/U2)(2U/RΩ3) ≈ 1, where 2U/RΩ3 is the curvature
Richardson number, Rc. However, Rc is a measure of the stability of a curved flow to
small perturbations (Bradshaw 1969, 1973). It is the analogue of the buoyancy Richardson
number in diabatically influenced flows. Positive Rc denotes a stable flow, which can
supress turbulence over a hill crest and so helps promote separation behind a hill (Zeman
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& Jensen 1987; Finnigan 1988; Finnigan et al. 1990), while negative Rc promotes
the appearance of coherent streamwise vortices which augment turbulent transport of
momentum to the surface. In the present 3-D case it is important to appreciate that this
‘stability’ effect is applied parallel to the e2, x2 direction, not vertically, and so operates
around the sides of any hills, with complicating effects on the turbulent stress divergence.
Wind tunnel experiments by Harman and Finnigan (2021) on axisymmetric hills covered
by a tall canopy and parallel large eddy simulations of those experiments by Patton,
Sullivan & Weil (2022) illustrate these features and will be analysed in the framework
presented here in forthcoming publications. Importantly, we deduce that, if the starting
point for deriving small-perturbation approximations had been the momentum equations
in surface-following coordinates (see Janour 1975) or displaced Cartesian coordinates
(see Hunt et al. 1988), then all the terms involving 1/La2 and 1/R would be absent.
Furthemore, even if we did discard those terms so that the Cartesian and streamline
equations took identical forms, ‘solutions’ to the the streamline equations would be located
at different places over the topography than the Cartesian ‘solutions’. Hence, the solutions
to small-perturbation models of flow over gentle topography derived from these several
starting points can be significantly different.

7.4. Practical applications
We conclude with some comments on applying the 3-D theory to two practical cases. First,
since one of the motivations for this work is the extension of small-perturbation analysis
to flow over 3-D topography, we can ask how we parameterise and apply (7.2), (7.3) and
(7.4) in such a case. Given topography defined by Zs(y1, y3) = H f (y1, y3) with H the
hill height and y = {y1, y2, y3} the Cartesian reference frame, the first step is to compute
an appropriate 3-D streamline coordinate frame. Following Belcher (1990), Belcher et al.
(1993) and Finnigan & Belcher (2004) in the 2-D case, we can use as a vector basis the
Frenet frame referred to the inviscid irrotational flow over Zs(y1, y3). We obtain this by
solving for the velociy field v(y) that satisfies v = ∇φ with ∇2φ = 0 and v · n = 0 on
the solid surface, with n the normal to the surface. For gentle topography, the boundary
condition v · n = 0 can be applied on the plane Zs = 0 and analytic solutions easily
obtained. For steeper topography, the v · n = 0 condition must be applied on Zs(y1, y3)
and numerical methods are then required.

We can assume that deviations of the actual flow from these potential flow coordinate
lines are small except if separation occurs in the lee of the hill, see for example Kaimal
& Finnigan (1994). In fact, the nonlinear parameterisation of the lower canopy layer in
Finnigan & Belcher (2004) does allow separation and reversed flow to occur in canopy in
the lee of the hill but even in that region the potential flow coordinates still provide a useful
reference frame. If we wish to obtain an analytical solution in the ‘small-perturbation,
gentle topography’ case, then the only closure we can use to represent the turbulent stresses
in terms of the mean flow is the first-order or ‘eddy diffusivity’ approach. Finnigan et al.
(2015) have presented a detailed analysis of the use of first-order closure in complex
canopy flows but their analysis is generally applicable, whether a canopy is present or
not. In Cartesian coordinates, first-order closure takes the form(

uiu j − 1
3

uiuiδij

)
= −K(y)

(
∂Ui

∂y j + ∂U j

∂yi

)
, (7.6)

where K(y) is a position dependent scalar eddy diffusivity for momentum and the
deviatoric part of the turbulent stress tensor uiu j is taken as proportional to the mean
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rate of strain tensor. To use (7.6) in the 3-D streamline system we rewrite it as

(
uiu j − 1

3 uiui
)

= −K(x)(∂jUδi1 + Γ i
1jU + ∂iUδj1 + Γ

j
1iU). (7.7)

An equivalent slightly simpler formula relates the scalar eddy flux and the mean scalar
gradient

uic = −Kc(x)∂iC. (7.8)

The assumptions implicit in first-order closure are reasonably well satisfied in flow over
topography up to the point of separation, at which point there is an abrupt change in the
character of the flow and of the turbulence. In small-perturbation theories, upstream of the
separation point, the eddy diffusivity is typically constructed using x2, the distance from
the surface, as a mixing length multiplied by some measure of the strength of the turbulent
mixing such as the friction velocity of the undisturbed upwind flow, e.g. Hunt et al. (1988),
Finnigan & Belcher (2004). Once the flow has separated, the scale of the turbulence is
set by the size of the separation bubble rather than by x2 and first-order closure fails.
In the absence of a general theory of turbulent flow separation, we turn to the empirical
data on separation behind hills reviewed by Finnigan (1988) to anticipate when it should
be expected. He found that steady separation bubbles usually appeared behind rough 2-D
ridges with downwind slopes greater than 10°, while for 3-D axisymmetric hills the critical
downstream angle was around 20°. In both cases the presence of a tall plant canopy caused
separation to occur at lower angles. Behind hills steep enough or other objects bluff enough
to have permanent separation regions, steady streamline coordinate theory can yield little
insight into the flow. Nevertheless, the 3-D streamline system provided by the inviscid flow
solution discussed above does give a useful reference frame linked to the geometry of the
object.

The second main application we suggested for this theory was interpretation of data
from field, wind tunnel or numerical experiments such as large eddy simulations of hill
flows (e.g. Patton & Katul 2009). Experiments with sufficient data resolution to enable
3-D streamlines and consequently the xi coordinate lines to be accurately defined are
now becoming available, mainly from wind tunnel simulations (Harman & Finnigan 2021)
and LES (Patton et al. 2022). Analysis of these data in the streamline frame is ongoing.
We believe it will provide new information on the sensitivity of the turbulent stresses
to the flow distortion captured in the geometric parameters, 1/R, 1/La, 1/La2, 1/La3,
and improve our empirical understanding of the relationship of these parameters and the
topography. On the one hand, in the case of sparse field measurements of eddy fluxes on
separate towers in the landscape, this should improve our ability to construct conservation
budgets. On the other, it should lead to newer and more accurate parameterisations of
complex natural flows and their practical consequences such as the estimation of landscape
scale energy and carbon budgets or seed and pathogen dispersal.
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Appendix A

General expressions for gradient, divergence and curl of vectors and second-order tensors
in an orthonormal moving frame ei

a = aiei, (A1)

∇ ∧ a = e1[∂2a3 − ∂3a2 + (Γ 3
i2 − Γ 2

i3)a
i] + e2[∂3a1 − ∂1a3 + (Γ 1

i3 − Γ 3
i1)a

i]

+ e3[∂1a2 − ∂2a1 + (Γ 2
i1 − Γ 1

i2)a
i], (A2)

∇a = e1[∂1(aiei)] + e2[∂2(aiei)] + e2[∂2(aiei)]

= e1[ai∂1ei + ei∂1ai] + e2[ai∂2ei + ei∂2ai] + e3[ai∂3ei + ei∂3ai], (A3)

where we note that the gradient of a vector is a second-order tensor

∇ · a = ∂1a1 + ∂2a2 + ∂3a2 + (Γ 2
12 + Γ 3

13)a
1 + (Γ 1

21 + Γ 3
23)a

2 + (Γ 1
31 + Γ 2

32)a
3. (A4)

Expression (A4) is the contraction of (A3)

T = τ ij(eiej), (A5)

∇ · T = ek[∂jτ
kj + ταjΓ k

αj + τ kαΓ
j
αj]. (A6)

In the transformed flow equations we encounter expressions involving successive
directional differentiation. Because directional differentiation in the xi, ei system does
not commute, the order of directional differentiation must be respected. For example

[∂i(∂ja)− ∂j(∂ia)] = (Γ
j

ki − Γ i
kj)∂ka, (A7)

where a = aiei is an arbitrary vector and we see from (5.14) that, in general, (Γ j
ki −

Γ i
kj) /= 0.

Appendix B

The structure equations determine the mutual orientation of the base vectors of a moving
frame. For the ei Serret–Frenet basis in a general 3-D flow they can be derived most
succinctly by involving the dual basis of one-forms that complements the vector basis ei.

Let d denote the exterior derivative (Schutz 1980), then

dej = ωi
jei, (B1)

where the vector valued one-form dej, which is the exterior derivative of the base vector,
is expanded in the basis with one-form coefficients, ωi

j (Misner et al. 1970). Evidently

ωi
jek = Γ i

jk. (B2)

By Poincare’s lemma

d(dej) = 0 = d(ωi
jei) and d(ωi

jei) = ωk
j ∧ ωi

kei, (B3)

where ∧ denotes exterior multiplication.
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Then, since the ei are linearly independent

dωi
j = ωk

j ∧ ωi
k. (B4)

Equations (B4) are the structure equations (Finnigan 1990). By combining (B3) and (B4)
we obtain nine independent equations for the connection coefficients. Finnigan (1990)
discusses the properties of these equations in some detail and shows that they are not
integrable analytically in the general case of non-complex-lamellar flow.

Appendix C

The Γ̂ i
jk values for the xi = {φ, g, f } metric, are as follows:

Γ 1
11 = ςQ

∂

∂x1

(
1
ςQ

)
, Γ 2

22 = Q
2
∂

∂x2

(
1
Q

)
,

Γ 3
33 = Q

2
∂

∂x3

(
1
Q

)
, Γ 1

12 = Γ 1
21 = ςQ

∂

∂x2

(
1
ςQ

)
,

Γ 1
22 = ς2

2
∂Q
∂x1 , Γ 2

12 = Γ 2
21 = Q

∂

∂x1

(
1
Q

)
,

Γ 2
11 = −Q

2
∂

∂x2

(
1

ς2Q2

)
, Γ 2

13 = Γ 2
31 = Γ 3

12 = Γ 3
21 = 0,

Γ 1
33 = ς2

2
∂Q
∂x1 , Γ 1

31 = Γ 1
13 = ςQ

∂

∂x3

(
1
ςQ

)
,

Γ 2
33 = −Q

2
∂

∂x2

(
1
Q

)
, Γ 3

11 = −Q
2
∂

∂x3

(
1

ς2Q2

)
,

Γ 3
22 = −Q

2
∂

∂x3

(
1
Q

)
, Γ 2

23 = Γ 2
32 = Q

2
∂

∂x3

(
1
Q

)
,

Γ 3
13 = Γ 3

31 = Q
2
∂

∂x1

(
1
Q

)
, Γ 3

23 = Γ 3
32 = Q

2
∂

∂x2

(
1
Q

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C1)
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