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Abstract

In this paper we obtain central limit theorems for generalized Pólya urn models with
L ≥ 2 colors where one out of K different replacements (actions) is applied randomly at
each step. Each possible action constitutes a row of the replacement matrix, which can
be nonsquare and random. The actions are chosen following a probability distribution
given by an arbitrary function of the proportions of the balls of different colors present
in the urn. Moreover, under the same hypotheses it is proved that the covariance matrix
of the asymptotic distribution is the solution of a Lyapunov equation, and a procedure
is given to obtain the covariance matrix in an explicit form. Some applications of these
results to random trees and adaptive designs in clinical trials are also presented.
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1. Introduction

In the classical urn model we consider balls of two colors. The replacement policy consists
in drawing a ball from the urn, observing its color, and putting it back along with a number
of balls of either color. This policy can be described through a replacement matrix R = (rij )

where rij , i, j = 1, 2, denotes the number of balls of color j that must be added to the urn when
a ball of color i has been extracted. For instance, the classical Pólya urn has the replacement
matrix

R =
(

a 0
0 a

)
.

In other words, the rows indicate the different actions that may be taken and the columns
represent the number of balls of each color to be added depending on the action taken.

Several generalizations of this model can be found in the probability literature (for a brief
account see, for instance, [7]) and have been useful in several applications, such as performing
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adaptive design (see, for instance, [18]) or studying the asymptotic behavior of some data
structures used in computer science (see, for instance, [21]).

In this paper we consider the following generalized Pólya urn model. An urn initially
contains balls of L different colors. The proportion of balls of each color is represented at
each step n by the L-dimensional random vector Xn = (Xn1, Xn2, . . . , XnL)�. We have K

different possible actions and at each step one of them is chosen at random with a probability
given by some (rather arbitrary) function, G, of the proportions of the balls of different colors
that are present in the urn (G will be called the urn function). If the action i, i = 1, . . . , K ,
is applied, we add rnij balls of each color j , j = 1, . . . , L. The entries rnij can be random
variables. We represent this replacement policy using a rectangular matrix Rn = (rnij ), called
the replacement matrix, where each row represents an action and each column, a color.

The classical Pólya urn model described above turns out to be a particular example of this
where the number of actions equals the number of colors, the function G is the identity function,
and R is a constant matrix. More complicated examples exist in this framework. For instance,
in [22] an urn with two different colors, say black and white, and three possible actions was
proposed. The components of the function G in this case are equal to the three probabilities of
a double extraction, i.e. extracting two white balls, one white and one black ball, or two black
balls. More details are given in Section 4.1 of this paper.

The aim of this paper is to establish conditions that guarantee the existence of a central limit
theorem (CLT) for the urn model and to give a procedure to obtain explicit expressions for
the covariance matrix of the asymptotic distribution. To the authors’ knowledge, there are no
CLTs for generalized Pólya urn models with nonsquare replacement matrices. The effect of
urn functions has only been treated in [8], where strong laws were obtained for urns with two
colors, and in [1], where a CLT for fixed diagonal replacement matrices was obtained.

There exist several papers that provide a CLT when the urn function is the identity function.
In [2, Chapter V] CLTs were obtained using the theory of branching processes and, in [6], using
martingale theory.

In [20] it was assumed that all the replacement matrices have the same mean value H

and that H1 = s1, where s is a positive real number. In this setting, CLTs were obtained
under the following assumptions for the eigenvalues and eigenvectors of H : (i) for each
nonprincipal eigenvalue λj , Re(λj ) < s/2; (ii) all eigenvalues are simple and two distinct
complex eigenvalues do not have the same real part, except for conjugate pairs; and (iii) all the
eigenvectors are linearly independent.

In [3] the rows of the replacement matrices {Rn} were chosen to add to the same value,
s = 1. CLTs were obtained using martingale techniques when there exists a matrix H such that∑∞

i=1 αi/i < ∞ with αi = ‖E[Ri] − H‖ (where ‖ · ‖ denotes the matrix norm – see below),
and, for each nonprincipal eigenvalue λj , Re(λj ) < s/2. Using similar techniques, in [4] the
previous results were extended to a wider setting where the matrices {Rn} have conditional
mean matrices Hn such that all the rows add to the same value, s = 1, and

∑∞
i=1 αi/

√
i < ∞

with αi = ‖Hi − H‖.
In [9] CLTs were obtained using the theory of branching processes, and a procedure was

presented to obtain explicit expressions for the covariance matrix of the asymptotic distribution.
Also, in [9, p. 207] a more extensive discussion was presented about the results obtained hitherto
in this topic.

In this paper we follow the approach presented in [7]. We prove that the process {Xn} evolves
as does a Robbins–Monro stochastic approximation scheme (see, for instance, [11, Chapter 5]).
Under some extra assumptions, a CLT is obtained for {Xn}. These assumptions include that the
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rows of the replacement matrices {Rn} add up to the same value, s > 0, and a second condition
which, in the particular case of square matrices and an identity urn function, is equivalent to
requiring that, for each nonprincipal eigenvalue λj of the matrix limit H , Re(λj ) < s/2.

The paper is organized as follows. In Section 2 we describe the model and the assumptions
in detail, and we state the almost sure (a.s.) convergence results in this particular setting. In
Section 3 we obtain our main result, a CLT for the process {Xn}. In Section 4 three applications
are presented. In the first we obtain a CLT for an urn model with double extraction where G

is not the identity function and the replacement matrix is nonsquare. The asymptotic behavior
of this model was presented as an open problem in Remark 4.5 of [9]. Moreover, in [22] inter-
esting applications of this model in computer science were presented. The second application
illustrates the procedure to obtain the covariance matrix of the asymptotic distribution in a CLT
for a random bucket tree presented in [12]. In the third application we present an adaptive
design that can be applied in a clinical trial.

2. Generalized Pólya urn model and strong laws

In what follows, the matrix norm ‖R‖ = supi

∑
j |rij | will be used. If x ∈ R

n then ‖x‖ =∑n
i=1 |xi |, and the row vector will be denoted by x�. Column vectors of 0s or 1s will be

denoted by 0 or 1, respectively.
We consider an urn that initially contains T0 balls of L different colors. Each color is iden-

tified by a number i = 1, . . . , L, and X0 = (X01, . . . , X0L)� indicates the initial proportion
of balls of each color. For each n, the random vector Xn represents the proportion of balls of
each color after the nth replacement. Therefore, Xn takes values in the (L − 1)-simplex set:
�L−1 = {x ∈ R

L : ∑L
i=1 xi = 1, xi ≥ 0}. Let Tn be the total number of balls in the urn after

the nth replacement. Thus, the number of balls of different colors at step n is given by the
vector TnXn.

The replacement policy in each step n is associated with a random matrix, Rn = (rnij ),
which takes values in a set RK×L = {(rij )i=1,...,K, j=1,...,L : rij ∈ R,

∑L
j=1 rij > 0}, and each

row represents an action and each column represents a color. So, the element rnij indicates the
number of balls of color j that we add when the action i is applied at the nth replacement.

At each step n, one of K different replacements (actions) is randomly applied. The action
applied is represented by a random vector δn that takes values in the natural basis of R

K , denoted
{ei}i=1,...,K . If δn = ei , then the ith row of the replacement matrix is applied. Thus, the balls
added are given by the vector R�

n δn. Consequently, Tn+1Xn+1 = TnXn + R�
n+1δn+1 and the

evolution of the process {Xn} is represented by means of the recurrence equation

Xn+1 = Xn + (I − Xn1�)R�
n+1δn+1

Tn+1
. (2.1)

The process {Un}, where Un = (Xn, δn, Rn), n ≥ 1, will be called a generalized Pólya urn
model. In what follows we will consider the natural filtration {Fn}withFn = σ(Ui, 1 ≤ i ≤ n),
n ≥ 1.

We will assume the following hypotheses to hold in the rest of the paper.

(A1) There exists a constant b > 2 such that E[‖Rn‖b | Fn−1] < M , where M is a positive
constant.

(A2) Rn1 = s1 for a constant s > 0.
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(A3) There exists a function G : �L−1 → �K−1 with components Gi , i = 1, . . . , K , such
that

P(δn+1 = ei | Fn, Rn+1) = Gi(Xn), i = 1, . . . , K. (2.2)

(A4) R�
n δn + Tn−1Xn−1 ≥ 0.

(A5) There exists a matrix H ∈ RK×L such that

‖Hn − H‖ → 0, a.s.,

where Hn := E[Rn | Fn−1].
Remark 2.1. Note that, under Assumption (A2), the process {Tn} is deterministic, with Tn =
T0 + ns for each n ≥ 1. The entries of the replacement matrix can be negative and they can
demand impossible removals. Assumption (A4) guarantees that the process does not get stuck.

The process {Xn} can be written within a Robbins–Monro scheme, following the lines of [7].

Theorem 2.1. Consider the generalized Pólya urn model {Un} under assumptions (A1)–(A5).
The process {Xn} then satisfies

Xn+1 = Xn + 1

Tn+1
(F (Xn) + εn+1 + βn+1), (2.3)

where

1. F(x) = (I − x1�)H�G(x),

2. {εn} is a sequence of martingale differences with respect to {Fn}, with εn = R�
n δn −

H�
n G(Xn−1),

3. βn = (Hn − H )�G(Xn−1) and βn → 0, a.s.

Proof. Observe that

Xn+1 = E[Xn+1 | Fn] + Xn+1 − E[Xn+1 | Fn].
From (2.1) and (2.2), we have

E[Xn+1 | Fn] = Xn + 1

Tn+1
(I − Xn1�)H�

n+1G(Xn)

= Xn + 1

Tn+1
[(I − Xn1�)H�G(Xn) + (I − Xn1�)(H�

n+1 − H�)G(Xn)]

and

Xn+1 − E[Xn+1 | Fn] = 1

Tn+1
(I − Xn1�)(R�

n+1δn+1 − H�
n+1G(Xn)).

Finally, we obtain (2.3) with

F(x) = (I − x1�)H�G(x),

εn+1 = (I − Xn1�)(R�
n+1δn+1 − H�

n+1G(Xn)) = R�
n+1δn+1 − H�

n+1G(Xn),

βn+1 = (I − Xn1�)(Hn+1 − H )�G(Xn) = (Hn+1 − H )�G(Xn).

As G(x) ∈ �K−1, we then see that βn+1 converges to 0 a.s.
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Many criteria ensure the almost-sure convergence of {Xn} towards a zero of F(x) (see [17]
and the references therein). We use [5, Theorem 2.III.4] to obtain sufficient conditions that are
suitable for our applications. Assumption (A5) must be strengthened as follows.

(A5′) There exist a matrix H ∈ RK×L and a constant ρ > 0 such that

‖Hn − H‖ = O(n−ρ) a.s.,

where Hn := E[Rn | Fn−1].
In addition, F(x) in (2.3) must satisfy the next assumption.

(A0) Let F(x) = (I − x1�)H�G(x) with G ∈ C1, and assume that there exist a vector u in
�L−1 and a constant A > 0 such that F(u) = 0 and (x − u)�F(x) ≤ −A‖x − u‖2 for
x ∈ �L−1.

Theorem 2.2. Consider the generalized Pólya urn model {Un} under assumptions (A1)–(A4),
(A5′), and (A0). We have

Xn → u a.s.

Proof. From Theorem 2.1 it follows that the process follows the Robbin–Monro scheme
in (2.3), whose steps are 1/Tn+1 with Tn = T0 + ns. Therefore,

∑∞
n=0 1/Tn+1 = ∞ and∑∞

n=0 1/T 2
n+1 < ∞. From (A5′) we have

∑∞
n=0 ‖βn‖2/Tn < ∞. Finally, from (A1) it

follows that E[‖εn‖2 | Fn−1] is bounded, so we are in the framework of [5, Theorem 2.III.4(b)]
with V (x) = ‖x − u‖2 and � = �L−1. The gradient of V (x) is 2(x − u)�, and ‖F(x)‖2 ≤
B(1 + V (x)) in �, for a constant B. Therefore, the conditions of [5, Theorem 2.III.4(b)] hold
and we see that ‖Xn − u‖2 and

∑∞
n=0 ‖Xn − u‖2/Tn+1 converge a.s. Thus, Xn → u a.s.

Remark 2.2. If Hn = H a.s. then βn = 0 a.s. in (2.3) and we are in the framework of [5,
Theorem 2.III.4(a)]. Condition (A0) can be weakened as follows.

(A0′) Let F(x) = (I − x1�)H�G(x) with G ∈ C1, and assume that there exists a vector u

in �L−1 such that F(u) = 0 and (x − u)�F(x) < 0 for x ∈ �L−1 \ {u}.
When F(x) is linear, a different set of conditions for the almost-sure convergence of the

process {Xn} can be established using the ordinary differential equation method.

Theorem 2.3. Consider the generalized Pólya urn model {Un} under assumptions (A1)–(A5).
Assume that F(x) in (2.3) has a unique zero, u ∈ �L−1, and can be written as F(x) = a+Ax,
x ∈ �L−1, where a is a constant vector and the matrix A has a simple eigenvalue associated
with the left eigenvector 1�, its other eigenvalues having strictly negative real parts. Then

Xn → u a.s.

Proof. Since F(u) = 0, a = −Au and F(x) = A(x − u) for all x ∈ �L−1. Hence, (2.3)
can be written as

Xn+1 − u = Xn − u + 1

Tn+1
(A(Xn − u) + εn+1 + βn+1). (2.4)

Let m be the simple eigenvalue of A associated with the left eigenvector 1�. Let J be the
real canonical Jordan representation of the matrix A such that P −1JP = A, where

J =
(

m 0�
0 J̃

)
.
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From the assumptions it follows that that J̃ is a stable matrix, that is, its eigenvalues all have
negative real parts. The first row of P can be taken to be 1�. The other rows form an (L−1)×L

matrix P̃ such that

P =
(

1�
P̃

)
.

Observe that, for each n, we have 1�(Xn − u) = 0 and 1�εn = 0, whence 1�βn = 0. Hence,
from (2.4) we have the following recurrence equation for Z̃n := P̃ (Xn −u), where ε̃n := P̃ εn

and β̃n := P̃ βn:

Z̃n+1 = Z̃n + 1

Tn+1
(J̃ Z̃n + ε̃n+1 + β̃n+1).

As J̃ is stable, 0 is a globally asymptotically stable solution to the system of differential
equations ẋ = J̃ x (see, for instance, [10, Theorem 3.5]). We now invoke [11, Theorem 5.2.3],
to conclude that Z̃n → 0 a.s. Since

P (Xn − u) =
(

0
Z̃n

)
,

we conclude that Xn → u a.s.

Remark 2.3. The previous theorem is useful in the following setting, provided that assump-
tions (A1)–(A5) hold. If K = L and G(x) = x then F(x) = Ax, where A = H� − sI .
Then, from assumption (A2), we have 1�A = 0�. If H is irreducible and all its off-diagonal
entries are nonnegative, from [19, Theorem 2.6] it follows that A has a unique right eigenvector
u ∈ �L−1 associated to the eigenvalue 0, and that its other eigenvalues have strictly negative
real parts.

3. A central limit theorem for {Xn}
Stochastic approximation theory will be the framework we use to obtain central limit

theorems for the process {Xn}. Some extra hypotheses will be needed. First, assumption (A5)
must be again strengthened, as follows.

(A5′′) There exists a matrix H ∈ RK×L such that, as n → ∞,

‖Hn − H‖ → 0 a.s. and n E[‖Hn − H‖2] → 0.

We also make four further assumptions.

(A6) Let Rjn be the j th row of the replacement matrix Rn, with j = 1, . . . , K . There exist
deterministic matrices Aj such that, for j = 1, . . . , K ,

E[R�
jnRjn | Fn−1] → Aj a.s.

(A7) Let F(x) = (I − x1�)H�G(x) with G ∈ C2, and assume that u is the unique vector
in �L−1 such that F(u) = 0. Let m be a simple eigenvalue of the Jacobian matrix
evaluated at u, JF(u), associated with the left eigenvector 1�. We assume that the other
eigenvalues have real parts less than −s/2.
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(A8) The following matrix has a simple zero eigenvalue:

C =
K∑

j=1

AjGj (u) − H�G(u)G(u)�H .

(A9) Xn → u a.s.

Remark 3.1. Note that F(x) must be defined in an open set containing �L−1 in order to obtain
the Jacobian matrix JF(x). As Xn ∈ �L−1, F(x) can be extended in any suitable way outside
�L−1. Although the value of m depends on the extension of F(x), the other eigenvalues (and,
hence, the property about them in (A7)) do not depend on the chosen extension. Some examples
of this procedure will be seen in the next section.

Remark 3.2. The almost-sure convergence Xn → u can be established under, for instance,
the hypotheses of Theorem 2.2 or Theorem 2.3.

Theorem 3.1. Consider the generalized Pólya urn model {Un} under assumptions (A1)–(A4),
(A5′′), and (A6)–(A9). We have

√
ns(Xn − u)

d−→ N(0, V ),

where V is a singular symmetric matrix such that(
JF(u) + s

2
I

)
V + V

(
JF(u) + s

2
I

)�
= −C

and ‘
d−→’ denotes convergence in distribution.

Proof. As G ∈ C2, the Taylor expansion of F(x) can be written as

F(x) = F(u) + JF(u)(x − u) + θ(x − u), (3.1)

where ‖θ(x − u)‖ = O(‖x − u‖2). From Theorem 2.1 and (3.1) we have

Zn+1 = Zn + 1

Tn+1
(JF (u)Zn + εn+1 + βn+1 + θ(Zn)), (3.2)

where Zn := Xn − u. Observe that, for each n, we have

1�JF(u) = m1�, 1�Zn = 0, 1�εn = 0, 1�βn = 0, (3.3)

and, thus, 1�θ(Zn) = 0.
Let J be the real canonical Jordan representation of the matrix JF(u) such that P −1JP =

JF(u), where

J =
(

m 0�
0 J̃

)
.

According to (A7), J̃ contains the Jordan blocks of the eigenvalues of JF(u) that have negative
real parts, so J̃ is a stable matrix. The first row of P can be taken to be 1�. The other rows
form a matrix P̃ such that

P =
(

1�
P̃

)
.
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From (3.2) and (3.3) we obtain the following recurrence equation for {Z̃n} := {P̃Zn}:

Z̃n+1 = Z̃n + 1

ns
(J̃ Z̃n + ε̃n+1 + r̃n+1 + θ̃ (Zn)). (3.4)

Here, with an := (n − 1)s/Tn for each n, we have

ε̃n+1 = an+1P̃ εn+1, r̃n+1 = an+1P̃ βn+1 + (an+1 − 1)J̃ Z̃n, θ̃(Zn) = an+1P̃ θ(Zn).

In order to apply [17, Theorem 1] to the recurrence scheme (3.4), we must check that its
conditions hold.

As {an} is a bounded deterministic sequence, we have ‖θ̃ (Zn)‖ = O(‖Zn‖2). From
Theorem 2.1, {ε̃n} is a sequence of martingale differences, and from (A1) it follows that,
for some b > 2,

E[‖ε̃n+1‖b | Fn] < ∞.

On the other hand, from (A5′′) it follows that n E[‖r̃n‖2] → 0.

Let Cn+1 := E[εn+1ε
�
n+1 | Fn]. From Theorem 2.1 we have

εn+1 = R�
n+1δn+1 − H�

n+1G(Xn)

and, therefore,

Cn+1 = E[R�
n+1δn+1δ

�
n+1Rn+1 | Fn] − H�

n+1G(Xn)G(Xn)
�Hn+1

= E[R�
n+1diag(G(Xn))Rn+1 | Fn] − H�

n+1G(Xn)G(Xn)
�Hn+1

=
K∑

j=1

E[R�
j,n+1Rj,n+1 | Fn]Gj(Xn) − H�

n+1G(Xn)G(Xn)
�Hn+1,

where diag(x) denotes the diagonal matrix whose components form the vector x. From (A5′′),
(A6), and (A9) we have

Cn+1 → C =
K∑

j=1

AjGj (u) − H�G(u)G(u)�H a.s.

Now observe that

PCnP
� = P E[εnε

�
n | Fn−1]P �

= E

[(
0

P̃ εn

) (
0 ε�

n P̃ �) ∣∣∣∣ Fn−1

]

=
(

0 0�
0 C̃n

)

→
(

0 0�
0 C̃

)
≡ PCP � a.s.

As P is a real, nonsingular matrix, the matrices C and PCP � are congruent and thus have the
same number of positive eigenvalues (counting multiplicities). From (A8), C has 0 as a simple
eigenvalue, so C̃ is positive definite.
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Finally, E[ε̃nε̃
�
n | Fn−1] = a2

n+1C̃n converges almost surely to C̃. Therefore, from [17,
Theorem 1] it follows that √

nsZ̃n
d−→ N(0, Ṽ ),

where (
J̃ + s

2
I

)
Ṽ + Ṽ

(
J̃ + s

2
I

)�
= −C̃. (3.5)

Moreover, we observe that

√
ns(Xn − u) = P −1√ns

(
0
Z̃n

)
d−→ N

(
0, P −1

(
0 0�
0 Ṽ

)
(P −1)�

)
.

Let

V := P −1
(

0 0�
0 Ṽ

)
(P −1)�.

As (
J + s

2
I

) (
0 0�
0 Ṽ

)
+

(
0 0�
0 Ṽ

) (
J + s

2
I

)�
= −

(
0 0�
0 C̃

)

and J = PJF(u)P −1, we have

P

(
JF(u) + s

2
I

)
P −1

(
0 0�
0 Ṽ

)
+

(
0 0�
0 Ṽ

)
(P −1)�

(
JF(u) + s

2
I

)�
P � = −

(
0 0�
0 C̃

)
.

Therefore, V is the solution to the matrix equation(
JF(u) + s

2
I

)
V + V

(
JF(u) + s

2
I

)�
= −C.

Remark 3.3. As C̃ is positive definite and J̃ + (s/2)I is a stable matrix, the unique solution
to (3.5) is

Ṽ =
∫ ∞

0
exp

((
J̃ + s

2
I

)
x

)
C̃ exp

((
J̃ + s

2
I

)�
x

)
dx. (3.6)

See, for instance, [10, Theorem 3.6].

Before stating a corollary to Theorem 3.1, we introduce one more assumption.

(A8′) H has maximum rank L, G(u) is strictly positive, and Rn is Fn−1-measurable.

Corollary 3.1. Consider the generalized Pólya urn model {Un} under assumptions (A1)–(A4),
(A5′′), (A7), (A8′), and (A9). We have

√
ns(Xn − u)

d−→ N(0, V ),

where V is a singular symmetric matrix such that(
JF(u) + s

2
I

)
V + V

(
JF(u) + s

2
I

)�
= −C

with
C = H�(diag(G(u)) − G(u)G(u)�)H .
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Proof. For each n, Hn = Rn. Then, as in Theorem 3.1,

Cn+1 = H�
n+1(diag(G(Xn)) − G(Xn)G(Xn)

�)Hn+1.

Therefore, from (A5′′) and (A9) we have Cn → C a.s., where

C = H�(diag(G(u)) − G(u)G(u)�)H .

Let � := diag(G(u)) − G(u)G(u)�. As G(u) is strictly positive, it follows that −� is a
symmetric matrix in which all the off-diagonal entries are positive. As all the rows add to the
same value, 0, it follows from [19, Theorem 2.6] that � has a simple zero eigenvalue and that
the other eigenvalues are positive. Then, from (A8′), it follows that C = H��H is positive
semidefinite with 0 as a simple eigenvalue. Thus, (A8) holds in Theorem 3.1, and the result
follows.

Remark 3.4. When K = L and G(x) = x, we deal with the particular case of a linear function
F(x) in the Robbins–Monro scheme. In the framework of Remark 2.3, assumption (A9) is
no longer necessary in order to apply Theorem 3.1. Moreover, assumption (A7) is equivalent
to the following: u is the unique left eigenvector of H in �L−1 associated with the simple
eigenvalue s, and the other eigenvalues of H have real parts less than −s/2.

Remark 3.5. If, in (A7), m is not simple, but there exists a real, nonsingular matrix P with 1�
as its first row and such that P −1JP = JF(u) with

J =
(

m 0�
0 J̃

)
,

then Theorem 3.1 and Corollary 3.1 still hold, provided that m < −s/2.

Remark 3.6. It is worth noting that the proof of Theorem 3.1 provides a simple procedure to
calculate the covariance matrix of the asymptotic distribution, provided that all the conditions
hold. With the notation used in the proof of Theorem 3.1, the steps are as follows.

1. Obtain the solution, u, to F(x) = 0, where x ∈ �L−1.

2. Obtain the eigenvalues of JF(u) and the real matrix P such that P −1JP = JF(u).

3. Consider the matrix P̃ and obtain Ṽ by solving (3.6).

4. Obtain V .

4. Applications

4.1. Pólya urn with double extraction

We consider a Pólya urn with balls of two types. The replacement policy consists in drawing
and replacing two balls sequentially. Three possible actions can be applied: if we obtain two
balls of type 1 then the first row of the replacement matrix is applied; if we obtain one ball of
type 1 then the second row is applied; and if we obtain no balls of type 1 then the third row is
applied. The replacement matrix,

R =
⎛
⎝a b

c d

e f

⎞
⎠ , a + b = c + d = e + f = s, eb > 0,
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is fixed, nonnegative, and has rank two. It follows from the replacement policy that G(Xn) =
(X2

1n, 2X1nX2n, X
2
2n) and Hn = R, for all n. This urn is of practical use in the study of the

asymptotic behavior of a kind of data structure in computation known as a random forest. In
[22] a particular case was studied and the open problem of how to deal with Pólya urns with
double extraction was presented.

In order to apply Theorem 2.2 we observe that, for any x = (x1, x2) ∈ �1, we have F(x) =
(f1(x1), −f1(x1)), where f1(x1) = αx2

1 +βx1 + e and α := a + e − 2c and β := 2c − 2e − s.
In order to obtain the vector u = (u1, u2) ∈ �1 such that F(u) = 0, we follow [7, Example
2.1] and, under the assumption that eb > 0, find the following scenarios.

(S1) If α = 0 then the only root of f1(x1) in (0, 1) is u1 = e/(b + e).

(S2) If α �= 0 then the only root of f1(x1) in (0, 1) is u1 = (−β − √
β2 − 4αe)/(2α).

Now observe that (x − u)�F(x) = 2(x1 − u1)f1(x1) for any x ∈ �1 and u ∈ �1 with
F(u) = 0. So, in scenario (S1) this expression is equal to −2(b + e)(x1 − u1)

2, and (A0)
is obviously satisfied. In scenario (S2), 2(x1 − u1)f1(x1) = 2α(x1 − u1)

2(x1 − r), where
r = (−β + √

β2 − 4αe)/(2α) /∈ [0, 1]. Observe that if α > 0 then β < 0 and, so, r > 1. If
α < 0 then r < 0. Therefore, there exists a constant A > 0 such that α(x1 − r) ≤ −A for
all x1 ∈ [0, 1] and (A0) thus also holds. As the conditions in Theorem 2.2 hold, it follows that
Xn → u a.s.

In order to apply Corollary 3.1, let D be an open set that contains �1 and consider, for all
x ∈ D,

G(x) = (x2
1 , 2x1x2, x

2
2 )� and F(x) = (I − x1�)R�G(x).

We then have
JF(x) = (R� − sx1�)JG(x) − sI for all x ∈ �1. (4.1)

Observe that, for any x ∈ D, we have JG(x)x = 2G(x). From (4.1), it thus follows that

JF(u)u = −su, (4.2)

where u ∈ �1 and F(u) = 0. Expression (4.2) will be useful in simplifying some calculations
in this example. We compute JF(u), and obtain

JF(u) =
(

M − s N

−M −N − s

)
, M = 2(au1 + cu2 − su1), N = 2(cu1 + eu2 − su1).

When M �= N , the eigenvalues are −s, associated with the left eigenvector 1 (up to constants),
and M − N − s, associated with the left eigenvector (M, N)� (up to constants). Now, in
scenarios (S1) and (S2), if M − N < s/2 then the conditions of Corollary 3.1 hold and we
obtain a central limit theorem for Xn.

We can follow the steps of Remark 3.6 in order to obtain an explicit expression for the
covariance matrix of the normal distribution. First we compute P and P −1:

P =
(

1 1
M N

)
, P −1 = 1

M − N

(−N 1
M −1

)
.

From (4.2) we have P̃ u = 0, where P̃ = (M, N). Then, as F(u) = 0, we obtain the relation
P̃R�G(u) = 0. As we are working under the assumptions of Corollary 3.1, C̃ is a positive
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real number that is obtained as follows:

C̃ = P̃R�(diag(G(u)) − G(u)G(u)�)RP̃ �

= P̃R�diag(G(u))RP̃ �

= (aM + bN)2u2
1 + 2(cM + dN)2u1u2 + (eM + f N)2u2

2.

From (3.5) we have

Ṽ = −C̃

2(M − N − s/2)
.

Finally we have
√

nsP̃ (Xn − u)
d−→ N(0, Ṽ ) and, thus,

√
ns(Xn − u)

d−→ N(0, V ) with

V = P −1
(

0 0
0 Ṽ

)
(P −1)� = Ṽ

(N − M)2

(
1 −1

−1 1

)
.

In particular, in scenario (S1) M − N = a − e and

Ṽ

(M − N)2 = (a − e)2eb

(b + e)2(4(b + e) − 2s)
.

When M = N , from (4.2) we have M = N = 0. In scenario (S1) this can only happen when
a = c = e, and {Xn} is thus a deterministic process. In scenario (S2) we are in the situation
described in Remark 3.5, because −s is not a simple eigenvalue of JF(u) but the matrix R has
rank two, u1 = c/(b + c) > 0, and the other conditions of Corollary 3.1 hold. Furthermore,
a �= c. If we choose for P the regular matrix

P =
(

1 1
−b c

)
,

then P̃ u = 0 and we obtain

V = c2(c − a)2

(b + c)2s

(
1 −1

−1 1

)
.

4.2. Random trees

A random tree is a data structure for storage organization in computers. The knowledge of the
asymptotic behavior of a random tree is therefore useful in estimating its memory requirements
and the complexity of algorithms that manipulate data, such as searching and sorting algorithms.

In [21] and [12] generalized Pólya urn models were revealed to be indispensable tools in
the study of the asymptotic properties of random trees. The generalized Pólya urn model used
considers a fixed replacement matrix A, and the colors of the balls represent different kinds
of nodes. It satisfies conditions (A1)–(A5) and the process {Xn} evolves according to the
Robbins–Monro recurrence scheme

Xn+1 = Xn + 1

ns + 1
[(A� − sI )Xn + A�(δn+1 − Xn)];

we are thus in the framework of Remark 2.2, and Theorem 2.3 can be applied. If conditions (A7)
and (A8′) hold for A, then Corollary 3.1 can also be applied. The covariance matrix of the
asymptotic distribution is then the solution, V , to the Lyapunov equation(

A� − s

2
I

)
V + V

(
A − s

2
I

)
= −C,

where C = A�(diag(u) − uu�)A.

https://doi.org/10.1239/jap/1165505199 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505199


950 I. HIGUERAS ET AL.

These models are of the standard linear type studied in [2, Chapter V], [9], and [21], and the
central limit theorem can be obtained using known theorems.

In [12, Section 8.3] it was indicated that recursive bucket trees present several peculiarities
that mean special methods are required to obtain the covariance matrix of the limit distribution
explicitly, and its computation is considered rather lengthy. The case with node capacity two
was studied in [13]. We consider the case with node capacity three, where the replacement
matrix is

A =
⎛
⎝−1 2 0

0 −2 3
1 0 0

⎞
⎠ .

From Theorem 2.3 we have Xn → u = ( 3
11 , 2

11 , 6
11 )� a.s., the left eigenvector associated with

the eigenvalue s = 1 of the matrix A. From Corollary 3.1 we have the following central limit
theorem:

√
nsP̃ (Xn − u)

d−→ N

⎛
⎝0,

⎛
⎝ 936

605

√
2592
14641√

2592
14641

516
605

⎞
⎠

⎞
⎠ .

Thus,

√
n(Xn − u)

d−→ N

⎛
⎜⎝0,

⎛
⎜⎝

114
605 − 12

121 − 54
605

− 12
121

168
605 − 108

605

− 54
605 − 108

605
162
605

⎞
⎟⎠

⎞
⎟⎠ .

Here the covariance matrices are obtained by following Remark 3.6.

4.3. Adaptive designs in clinical trials

Randomized urn models are used to perform adaptive design (see, for instance, [18] and
the references therein). The play-the-winner rule is a pioneering adaptive design in clinical
trials (see [23]) and the asymptotic behavior of the associated urn model has been widely
studied (see, for instance, [14] or [9, Example 7.3]). Several extensions of the classical play-
the-winner rule have been studied in the statistical literature. For instance, in [15] an adaptive
design with prognostic factors, more than two treatments, and urn functions was studied. In [15,
Remark 4.1] a central limit theorem was obtained for the urn model associated with an extension
of the play-the-winner rule that includes prognostic factors in the design and an urn function.
In all these cases the replacement matrices associated with the urn models have the property
that all the rows add to the same value, s, so we are in the framework of this paper.

In [16] an adaptive design was considered and modeled as a generalized Pólya urn such that,
for each n, the replacement matrix considered, Rn = (rnij ), i, j = 1, . . . , L, has entries

rnij =
{

Zni if i = j,

µ̂n−1,ij (1 − Zni) if i �= j,

where, for each i = 1, . . . , L, {Zni} is a sequence of continuous, positive, independent, and
identically distributed random variables bounded by 1, with mean µi , 0 < µi < 1, and variance
σ 2

i > 0, and µ̂n−1,ij is an estimator of a function of µi that uses the information available up
until the response of the (n − 1)th patient.

An urn function must be considered in order to satisfy (A3). For instance, let G(x) =
(G1(x), . . . , GL(x)) with Gi(Xn) = α + (1 − Lα)Xni for i = 1, . . . , L and 0 < α < 1/L.
Then G(x) = Bx with B = α11� + (1 − Lα)I . This allocation rule guarantees that the
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probability of allocation of each treatment is not less than the fixed quantity α. We thus
compromise between the play-the-winner philosophy, which tends to assign more patients to
better treatments, and the classical philosophy, which balances the patients between treatments.

When, for each n, Rn1 = 1 and the statistic µ̂n−1,ij converges a.s. to a constant αij for
i, j = 1, . . . , L, we are in the framework of Theorem 2.3 with F(x) = (H�B−I )x. Therefore,
(A9) holds. Moreover, if n E[(µ̂n−1,ij − αij )

2] → 0 for i, j = 1, . . . , L, then (A5′′) holds.
That (A6) holds is immediate. Finally, if (A7) and (A8) hold, then Theorem 3.1 can be applied
and a central limit theorem is obtained for the associated urn model.
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