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ON THE APPROXIMATION OF FINSLER METRICS ON
EUCLIDEAN DOMAINS

by G. BARBATIS
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We prove that Finsler metrics on Euclidean domains can be approximated in a certain sense by so-called
Finsler-type metrics. As an application we improve upon previous estimates on the fundamental solution of
higher order parabolic equations.
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1. Introduction

The aim of this paper is to prove that Finsler metrics on Euclidean domains can be
approximated, in a way to be made precise, by a certain class of Finsler-type metrics.
While this is a geometrical problem, it is motivated by a problem in the spectral theory
of higher order elliptic operators. We describe that first.

Let H be a self-adjoint elliptic differential operator of the form

}, (1)
| l | = m

acting on a Euclidean domain Q and subject to Dirichlet boundary conditions on dCl.
Let a(x, £) — J^ a*p(x)C+^, xeQ, £ e RN, be its principal symbol. Under some
regularity assumptions (see definitions below) there is canonically associated with the
symbol a Finsler metric d(x, y) given by

where £ is the class of all Lipschitz continuous functions 0 on Q that satisfy
a(z, V</>(z)) < 1 for a.e. z e fl. This metric is of importance in the study of the
associated parabolic equation

du
— (x,i) = -Hu(x,t), x e Q , t > 0 . (2)
at

It is proved in [18] that if Q = RN, if the coefficients [atfi] are real and smooth and if
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590 G. BARBATIS

the symbol a(x, E) satisfies the so-called strong convexity condition (see Definition 3)
then the fundamental solution K{t, x, y) of (2) has short-time asymptotics given by

provided x and y are close enough. Here

am = (2m - l)(2m)-ln/(2m-1) sin(7t/4m - 2).

In fact the formula obtained in [18] also contains some subexponential terms, which
we have omitted here.

While heat kernel estimates for higher-order operators on Euclidean domains or
manifolds have been studied for many years (see [11] for a detailed account), the
problem of obtaining sharp bounds has only been addressed recently. The estimates
obtained in [4] are valid for operators with measurable coefficients and were obtained
by means of comparison with the model operator (—A)m. They are sharp as long as one
restricts one's attention to the Euclidean distance. That paper was followed by [5],
where it is shown that if H is an operator of the above form acting on an arbitrary
Euclidean domain Q and with coefficients in the Sobolev space Wm°°{Q) then, under
some additional technical assumptions, it has a fundamental solution K(t, x, y) that
satisfies

dH(x y)2"1^-1' |
C y)\ < ce.r»^exp - ( ,„ - e) * ,%._„ + c't (4)A-(.em-<

for all £, fi > 0 and all x, y 6 Q, t > 0. Here [df(-, •)} is a family of Finsler-type metrics
depending on a large parameter /? and defined by

d,(x, y) =

where

£e = {(l>e Cm(Q), a(z, V0(z)) < 1, \D"<t>\ < jSw, 2 < |«| < m).

It is immediate that d(x, y) > d^{x, y) for all /? > 0 and all x, y e Q. The conjecture
was put forward in [5] that

d(xy)
, as/?- .oo (5)

uniformly in x and y, provided some regularity is imposed on the boundary. This
would allow one to improve the sharpness of (4) by replacing d^{x, y) by d{x, y). For
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Q = RN this would agree with the asymptotics of [18] and no further improvement
would be possible other than weakening the regularity assumptions. Modulo the
regularity condition, this would therefore be the higher order analogue of a well known
result of Davies [9].

A proof of the above conjecture is a corollary of our main theorem, Theorem 2.
However, for the sake of greater generality as well as greater clarity, we prefer to work
in the more abstract context of a general Finsler metric on a Euclidean domain fi.
The results obtained depend on two regularity assumptions on the metric, hypotheses
(HI) and (H2). Examples are given that provide sufficient conditions for them to be
valid. In the preliminaries section we have also included the necessary background
material so as to make the paper self-contained and available to those unfamiliar with
Finsler metrics. Finally, we mention that (5) has already been proved in [15] for the
special case where H — (—A)"1 and Q is a bounded domain with C2 boundary.

Acknowledgements. I thank E. B. Davies for several useful discussions and Z. Shen
and Eu. Shargorodsky for helpful comments. The work was carried out with EPSRC
support under grant number GR/K.00967.

2. Preliminaries and examples

Notation. Given a multi-index a — ( a , , . . . , aN) we write |a| := a, H \-ccN a n d
a! = a,! ...ajy!; we use the standard notation D* for the differential operator
(3/ax,)*1 ...(d/dxNyN. For any positive integer r we denote by Cr

b(Qi) the space of all
functions on Q all of whose derivatives of order up to r are continuous and bounded
on (I. The symbol c will denote a constant whose value may change from line to line.

A Finsler metric on a manifold is the assignment of a length to tangent vectors.
Unlike the Riemannian case, this length is given by a norm - not an inner product. Let
Q be a domain in RN with (possibly empty) boundary 3Q.

Definition 1. A Finsler metric on fi is a map

such that

(i) For any (x, £) e Q x RN we have p(x, £) > 0, with equality holding iff f = 0;

(ii) p(x, A£) = |A|p(x, 0 , (x, 0 6 Q x R", A 6 R;

(iii) For x e Q there exists s(x) > 0 such that {g,y} := {\^^} > s(x)I in the sense of
matrices.

The above conditions imply [17, p. 7] that p(x, f) is convex in £,, so that ^ i-» p(x, £)
is a norm for each x e Q.
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Definition 2. We say that the Finsler metric p(-, •) belongs to the class
m e Z+> if

(i) there exists a constant c > 1 such that

c - ' | £ l<p (x .S )<c i a all x e fi, { e R";

(ii) there exists a constant c such that for any two multi-indices a, /? with
1 < |a| + |/J| < m + 1 we have

\D%D\p(x, O\ < clfl1-"1 all x e fi, ^ 6 R*\{0};

(iii) the constant s(x) in (iii) above can be taken to be independent of x e Q.

A Finsler metric p e Fm(Q) induces a distance d(-, •) on Q as follows: Given an
absolutely continuous path y(t), t e [0, 1], contained in Q, we define its length l(y) by

Jo

The distance of two points x and y is then defined to be

d(x, y) = inf/GO, (6)
y

where the infimum is taken over the set of all absolutely continuous paths y in Q that
join the points x and y. This defines a distance on O, with length element ds — p(x, dx).
It is an immediate consequence of part (i) of Definition 2 that

c~xdEu£x, y) < d(x, y) < cdEuc{x, y), x,yeQ, (7)

where dEuc(x, y) denotes the distance on Q induced by the Euclidean metric, i.e. by the
metric p£uc(x, 0 = 1̂ 1-

Of course, a Finsler metric of the form p(x, f) = ( £ u = 1 a ^ x ) ^ ) " 2 ' s a ' s o a

Riemannian metric. Going back to the connection between Finsler metrics and elliptic
operators, we point out that Riemannian metrics correspond not only to second order
operators but also to those higher order operators whose principal symbol is an integer
power of the symbol of a second order operator. This is an immediate consequence
of Proposition 1 below.

Given a Finsler metric p(-, •) we define
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Conditions (i)-(iii) of Definition 1 then imply that p.(-. •) is also a Finsler metric with
[17, p. 22]

where {a°(x, £)} »s t n e inverse matrix of {g^x, £)}. It follows from (8) that any
differentiability properties of p(-, •) are also valid for p,(x, <J) and, in particular, that
p(-, •) belongs to Tm(Cl) if and only if p.(-> •) does. We also note the reflexivity relation,
P.. = P-

We next define the class of elliptic operators to which our main theorem will be
applied.

Definition 3. Let H be a uniformly elliptic, self-adjoint operator of the form (1),
satisfying Dirichlet boundary conditions on d(l. We say that H belongs to the class
va(m if

(i) the coefficients a^(x) are real and belong to C"+I(O);

(ii) {Hf.f) > C||(-A)7||2, V/ e C?(O);

(iii) the relation p.(x, £) = a(x, ^)l/2m defines a Finsler metric p 6 .^(Q);

(iv) the principal symbol of H is strongly convex1.

Example. Consider the operator //, on Q c R2 with symbol a{x, £,) = ao£*+
^ 2 ,^2+ a4^2, where a, are functions in Cj(Q). It can be seen

that (iii) is satisfied if and only if the values of the polynomial
2(ooa3 — ala2)u

i + (ooa4 + 2a,a3 — 3a2)u2 + 2(a,a4 — a2a^)\x + (a2a4 — a2) are bounded away
from zero. Moreover, (iv) is satisfied if and only if the matrix

f

a, a2 a3

\ <*2 ^3 fl4 j

is positive semi-definite for all x e fi.

Example. Let H2 on fi c R2 have symbol £ ' = 6 (*)ar(x)^"r^2, where a, e C£(fi). It is
not difficult to see that H e 2?3(Q) if and only if (i) values of the polynomial p(w) =
{a^a2 - afyu* + 4(aofl3 — a^a^u1 + 2(3a0a4 + 2a,a3 — 5a2)u

6 + 4(01,05 + 4a,a4 — 5a2a3)u5+
(oo06 + 14a,a5 + 5a2a4 — 20a3)u

4 4- 4(a,a6 + 4a2a5 — 5a3a4)u
3 + 2(3a2a6 + 2a3a5 — 5a4)u

2 +
4(a3a6 — a4as)u + {aAa6 — a2) are bounded away from zero and (ii) the matrix

1 The symbol a(x, {) is strongly convex if it has the form a(x, £) = 5ZW=2«
 c?a,(x)£'< where {a,+f)w=lf.=m is a

positive semi-definite matrix. Here cj" = (2m)!/y!.
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A1{x) :=

a, a2

a4

«5

is positive semi-definite for all x e Q .

We shall need the following result:

Proposition 1. (a) For fixed y e Q the function x >-> d{x, y) is Lipschitz continuous
and we have

p.(x, Vxd(x, y)) < 1

at all points x e fi where Vxd(x, y) is defined.
(b) We have

d(x, y) = sup{0(>O - <Kx) | <j> e £}

where £ = {<f> \ <p is Lipschitz continuous on Q and p.(z, V0(z)) < 1 a.e. z 6 Q}.

Proof. This is Lemma 1.3 of [2]. •

A (parametrized) path y(t) in Q is called a geodesic if it locally realizes the infimum
in (6), that is if given any point x0 = y(t0) on the path, there exists e > 0 such that
for any point x = y(t) that satisfies d(x0, x) < e we have d(x0, x) = f^ p(y(s), y(s))ds.
Geodesies satisfy the geodesic equation:

t,^ = 0, fc=l,...,JV. (9)

The functions T*(x, <J) are induced by the gt/s in the same way (formally) as in the
Riemannian case. Note that while in the Riemannian case they only depend on x, in
general they depend on the full line element (x, £).

Given x e Q there exists e > 0 small enough such that for any q eRN, |»/| = 1, the
geodesic equation (9) subject to the initial conditions

y(0) = x, (10)

has a unique solution on the interval [0, e]. Let us denote that solution by yxn(t). The
exponential map expx is defined for \£\ < e by
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I p̂  0 = x.
It clearly satisfies

d(x.expx0 = p(x,0. al l |£ |<£. (11)

The assumption p(-, •) e Fm(Q) together with theorems on the dependence of the
solution of initial value problems on the initial data [7, p. 131] implies that expx is a
Cm-diffeomorphism of the set {<!; e R" | 0 < |^| < e} onto its range, which is a
neighbourhood of x minus {x}. (By Cm-diffeomorphism we mean a map that is 1-1,
onto, of class Cm, whose inverse is also Cm.) At the point £ = 0 it is not C" but only
Lipschitz continuous, due to the singularity of the functions {F*} at that point. For
detailed proof of the above statements we refer to Section 1.6.2 of [1].

We introduce two basic hypotheses on p(-, •).

Hypothesis (HI). There exists a domain Q' with Q' DD Q and such that p(-, •)
extends to a Finsler metric p'(-, ) e

Hence we have two distances: the original distance d(x, y) on Q and the distance
d'(x, v) on Q'; their restrictions on il of course do not coincide. We shall omit the
primes however from p'(x, <!;) and p^(x, <!;) and write p(x, £) and p,(x, £) instead. Of
course, (HI) may well be satisfied without any regularity assumptions on 9Q. The next
example provides a sufficient condition which depends on boundary regularity.

Example. Let Q be a bounded domain with Cm+I boundary and assume that p(-, •)
lies in TJQL). Assume that for each ^ € RN the function p{(x) := p(x, <!;), x e Q, belongs
to Cm+1(fi). By [12, Ch. 5, Prop. 4.8] there exists a linear extension map E that extends
each function / e Cm+1(Q) to a function Ef =:f on a neighbourhood fi' of fl, and such
t h a t / G Cm+1(fi'). We claim that p(x, f) := p{(x) is then a Finsler metric in FJp).
Indeed, we have

p-(x, K) = (EPitXx) = E(\MP()(x) = \X\p\x, 0-

Moreover, the validity of (i)-(iii) of Definition 2 on Q combined with the fact that p
lies in C""+1(fl') implies that those properties are also valid on Q', by making Q' smaller
if necessary. Hence p e TJ&) and (HI) is satisfied.

It follows from (HI) that there exists 5, > 0 small enough so that the neighbourhoods

Q, := (xefi'l d(x, Q)<5), 0 < 5 < <5,,

are compactly contained in ft'. On each Qs, 0 < 5 < S,, we let ^ ( x , y) denote the
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Finsler distance induced by p(x, £). Similarly to (7), there exist positive constants
kl, fc2 such that

fc,4t(x,y)<^(x)y)<fc2d
(
£t(x,3'). O<<5<5,, x,yeQs (12)

(Here we have denoted by e^Puc(x, y) the Euclidean geodesic distance on (ls.) The
constants k,, k2 in (12) can be taken to be independent of 5 since they can only become
better as the domains Cl6 shrink to Q. To simplify our notation and without any loss
of generality we assume that k2 — 1 so that

y)<<tL(x,y\ O<S<SX, x,yeQt (13)

We state a second hypothesis:

Hypothesis (H2). There exists v e (0, 1] and <5', < <5, such that

(1 - cSv)d(x, y) < <P\x, y) < d{x, y) (14)

for all 0 < 5 < 5\ and all x, y e Q.

By making <5, smaller if necessary, we may assume that 5\ — <5,, and we do so.

Examples. (A) If Q is geodesically convex, i.e. if any two points can be connected
by a geodesic, then (H2) is valid with v = 1.

(B) If Q is bounded and star-shaped, around the origin, say, then (H2) is valid with
v = 1. This is seen as follows: given a path y in Q4, define a path y, in Q by
y, = (1 + S)~ly. Then p(y.. ft) = (1 + 5ylp(yl, y). Moreover

IP(7I . V) - P(y. 7)1 S c\y - y, \p(y, y) < c5p(y, y),

for 5 small enough. Combining the above we obtain p(y,, y,) < (1 +c'd)p(y, y). This
implies (H2) with v = 1.

(C) If the Finsler metric is Riemannian and Q has a boundary which is uniformly
C2 then (H2) is valid with v = 1. This has been shown in [15] for the Euclidean metric;
with minor modifications the proof carries through in the general case: given a path y
contained in Qs one constructs a path y, contained in fi and given by y^t) = T(y(t)),
where TX is equal to x when x e Q and equal to the orthogonal projection of x onto 3fi
when x 6 ilt\£l. Then one compares the lengths of the two paths. The argument does
not hold for a general Finsler metric, despite the underlying Euclidean structure. The
point, of course, is that a (Euclidean) orthogonal projection Pt, of a tangent vector £,
does not necessarily satisfy p(x, P£) < p(x, £).

(D) Suppose Q is bounded with C1 boundary. Then (H2) is valid with v = 1/2. This
is proved in Proposition 8.
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3. Main estimates

We fix a positive integer m > 2 and a Finsler metric p e !Fm{Cl). We assume that
(HI) and (H2) are satisfied. Given /? > 1 we define the set

£f = {4>e Cm(Q) | p.(x, V0(x)) < 1 and \D*4>(x)\ < 0N, x e Q, 2 < |a| < m]

and the Finsler-type distance

dfc, y) = sup{(K)/) - 4>(x) | tf> € £,).

It is immediate from Proposition 1 that df(x, y) < d(x, y); our aim is to prove the
following

Theorem 2. Assume that p e FJQL) and that (HI) and (H2) are valid. Then there exist
constants c, /?0 > 0 such that for fi > /?„ we have

(*. y) < <*,(*. y) < d(x, y). (15)
/or a// x, y 6 SI.

The theorem has an application in the theory of higher order elliptic operators.
The estimate in the following corollary is sharp, as can be seen by comparing with the
short-time asymptotics of [18] which, however, are only valid for Q = RN and for x
and y sufficiently close. It improves upon the estimates of [5], subject however to
stronger hypotheses. Let am = (2m - l)(2m)"2m/(2m"1) sin(7t/4w - 2).

Corollary 3. Let H be an operator in Vm(Cl), 2m > N, and assume that the induced
Finsler metric p(-, •) satisfies (HI) and (H2). Then given e > 0 there exists cc < oo such
that the fundamental solution K(t, x, y) of the parabolic equation dujdt = —Hu, satisfies

{ d(x IA 2 ""/ ' 2 " 1 - ' ) I

-(g.-e) l ',%,_„ +ct\ 06)

for all t > 0 and x, y e Q.

Proof. Let e > 0 be given. Corollary 9 of [5] states that given r] > 0 (small) and
fi > 0 (large) there exists a constant c, fi such that

\K(t, x, y)\ < C ^r^exp(- (a B - r,)^*' ^'^ °

for all t > 0 and x , y e f i . It follows from Theorem 2 that we can find n > 0 small
enough and /? large enough so that (pm - r\)d^{x, y) > (am - e)d(x, y) for all x, y e Q.
The result then follows. •
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Remark. It is not possible to remove the e in (16), as it compensates for sub-
exponential terms that we have omitted from the RHS of (16). See [18].

Let B{f) denote the open Euclidean ball of radius r and centered at the origin. Let
k(z) be a non-negative smooth function with support in B(l) and such that f k(z)dz = 1.
For 0 < 8 < <5,, where <5, is as in (HI) and (H2), let

k6(z) = 8-Nk(z/8).

Given yeQ and z e B{8), we note from (13) that the Euclidean ball with centre
yeQ and radius \z\ is compactly contained in Q' for \z\ smaller than a certain 8",
which, for the second and last time, we may assume is <5, itself by making <5, smaller if
necessary. Hence d'Euc(y, y + z) = \z\ and therefore, by (13),

d'(y, y + z) < d'Euc{y, y + z)=\z\< 8,

which implies y + z e Qs.
Hence given a fixed point x0 e fi and 0 < 8 < <5,/2, the functions

(f>5(y)= I cPS){xa,y + z)ki{z)dz, yeQ, (17)
J B(S)

are well defined and smooth on Q.

Lemma 4. There exist constants c,ct < oo such that for 0 < 8 < S{/2

(0 P»(y. V^iiy)) — 1 + ci<5> all y e Q;

(ii) I D W J O I < c8'M+l, all2<\y\<m,yeQ.

Proof. Let yeQ and e e R " , |e| = 1, be fixed and let r > 0 be sufficiently small so
that y + z + re e Qn for all z e B{8). Using the triangle inequality for d*M)(-, •) we have

y + re) - Uy) = f [^(*o. y + re + z)- d™(xQ, y + z)]ks(z)dz

< / I P(y + z + tre, re)kb{z)dtdz.
JBtS) JO

Dividing both sides by r, using the homogeneity of p in the second variable and letting
r -*• 0 we conclude that
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< f [
JB{5) JO

p{y + z, e)k,(z)dtdz

= f p(y + z,e)ks(z)dz.
JB(S)

Since

p(y. e) - z,e)ki(z)dz < / \p(y,e)-p(y + z,e)\ki(z)dz

< sup \p(y, e)-p(y + z, e)\
lz\<6

we conclude that

< cS

e<p(y,e) + c5

where the constant c is independent of both y and 5, as well as the point x0 used in
the definition of the function $a. Therefore

V ^ ( y ) - e i + cS

p(y. e) p(y. e)

< 1+CjS.

Taking the supremum of both sides over all e € SN~l we conclude that

P.(y.V<^(y)) < 1 + cx6, y e n . (18)

Now, let a be any multi-index with 0 < |<x| < m - 1 and let h be a vector in RN of
small length. For y e Q we have

\D\ < f
< f

JBt

, z + y)\ \D'k5(z)\dz

If \h\ is small enough we have

dw(x, x + h) < c\h\, allxeQ,,,

where the constant c is independent of x e Qdl and h e Rw (with \h\ small). Letting
\h\ ->0we conclude that
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JB
m s u p U mMdz
1*1-0 W JB(S) (19)

= c5~w.

It follows that if y is a multi-index with |y| = |a| + 1, then |Dy< (̂y)| < c5Hyl+1 as
required. D

Lemma 5. There exists /?, > 0 and a constant c > 0 such that

dp(x, y) > (1 - c/T V V , v) - cjT' • (20)

for all 0 > /?, anrf a// x, y e Q.

Proof. Let the family {<j)s} be as above and define

^ ( y ) = (i + c , r ' r V r > ( y ) . y e a

where c, is as in (18). Then

P ( y , V ^ ) ) < l , y e n , (21)

and for any multi-index a with 2 < |a| < m we have

|PWy)l< f --,. y e a (22)

for all )S large and all y € Q. It follows from (21) and (22) that 4>fi e £p provided fl is
large enough.

We now estimate the difference <^(y) - (^(x) for given and fixed x,y eQ. We take
the point x0 from which distances are measured, in (17), to be the point x. Using the
triangle inequality we have

> f [dM-\x, y) - S^'Xy, y + z)- d™~\x, x + z)]kim(z)dz
JBl\/(B))

> cPr \x, y) - 2 sup sup dP9 \u, u + z)
u€(l |r|<l/(ffl

provided /? is large enough. We conclude that
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> S2"~\x, y) -

as required. •

Lemma 6. (i) For every x, y e O^,^ with cfs'\x,y) < 5i/2 there exists a geodesic y
joining x andy, contained in ilSl, and such that l(y) = tf>]\x, y).

(ii) For fixed x e fi4l/2 the function y *-* ^ ' ' ( x , y) is Cm when restricted on the set
[y e Qi{ | 0 < ^ ( x , y) < SJ2) and, further, there exists a constant M such that

, y)\ < M (23)

for all x e Qh/2, ally such that 5J10 < d?l\x, y) < 5,/3 and all 2 < |a| < m.

Proof. It follows from the Hopf-Rinow theorem for Finsler spaces [1, Theorem
1.6.9] that any geodesic in QSi can be extended until it "hits" 30^. Hence for x 6 ^ l / 2 ,
expxij is defined (and lies in QSl) for all £ such that p(x, £) < <5,/2 (recall (11)). From
our earlier remarks on the exponential map we conclude that

expx : {£ e RN | 0 < p(x, £) < 6^2} ^ {y e Q'\0 < S^\x, y) < 5,/2} (24)

is well defined and is a Cm-diffeomorphism. This proves (i). Moreover, by (11), we
have

for all y with 0 < d ^ x , y) < <5,/2. By the properties of continuous functions on
compact sets and the fact that p e ^ .(Qi,) we conclude that there exists a constant M
such that

sup |D^ '»(x , )<)| < M, 2 < |a| < m. (25)

The size of the constant M depends on L°°-estimates of p(-, •) and its derivatives in
the 5,-neighbourhood of x. The fact that p(-, •) e FJQ^) implies that those estimates
are uniform with respect to x e Qi]/2 and therefore that M may be taken to be
independent of x e Oil/2. •

Lemma 7. Given x0 e QJ| /2 there exists a function TIXO € C™(fi) such that
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(i) P.(X,VTIX0(X))< 1, x e Q ,

(ii) \D"nX0(x)\ <c, x e Q, 2 < \<x\ < m;

(iii) ifSJZ < ^{XQ, X) < 5,/4, then 7txo(x) = ^'^Xo, x);

moreover, the constant c can be taken to be independent ofx0 6 Q5l/2-

Proof. Let ip : R+ -*• R be a smooth function satisfying

0 < il/'(s) < 1, all s e R+,

as well as

(1/8)-10"2 if 0 < s < 1/10

s if 1/8 < s < 1/4

(1/4)+ 10"2 if s > 1/3.

Let s o t n a t 0

{(1/8) - 10-2}(5, if 0 < s < 5./10

s if <5,/8 < s < 5,/4

{(l/4) + 10~2}<5, ifs><5,/3.

There also exists a positive constant c such that

\*l/f\s)\ < c, all 2 < k < m, s e R+. (26)

Given x0 e Qa|/2 let 7rxo(x) = ^(^'' '(x,,, x)), x e f i . Since \j/\ vanishes outside the interval
[<5,/10, 5J3], we conclude from (25) and (26) that i//l e C"(Q) and that there exists a
constant c such that |Da7txo(x)| < c for all 2 < |a| < m and x e Q . Moreover

V*xo(x) = W ' ^ X o , x))Vx^''(x0, x)

and therefore, by homogeneity and part (a) of Proposition 1,

p.(x, Vrcjx)) = . / ^ ( x o , x))p.(x, Vx^'>(x0, x))
< 1

for all x € 0. Finally, it is immediate that if c5,/8 < cfSt\x0, x) < 5,/4 then 7rxo(x) =
^ , , , x). D

We can now prove the main theorem of the paper.
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Proof of Theorem 2. Let x, y e Q be given and r\ e (0,1) be fixed. We assume that
/? is at least large enough so that /T' < <5,/8. From Lemma 5 and (H2) we then have
that if also 0 > /?, then

> (1 - c/T'){(l - cr)d(x, y)} - c/T1

>{l-cT)d(x,y)-c(}-\

and therefore

4»(*. y) > (1 - c'^-v - cF^Mx, y), if d(x, jO > / T . (27)

Suppose now that d(x,y)<0~\ Then ^ ' ' (x, y) < ^(x.y) < fT* < 5,/8 and therefore,
by (24), there exists £ e RN defined by expx ij = y. Let

This is well defined and lies in Qil/2, again by (24). Let (p(z) — nX(j(z), where nxo is as
in Lemma 7. From the fact that ^a|)(x0, x) = SJ4 follows that

4>{x) = d<*')(x0, x). (28)

The fact that y lies on the geodesic with endpoints x and x0 implies that

Since we also have

™O<o. y) > ^'>(x0, x) - dt«'>(x, y)

>5x/4-d{x,y)

we conclude that

<P(y) = ̂ - ' (x 0 , y). (29)

From Lemma 7 it follows that <f> e £fi provided fi is large enough. Moreover, using
(28) and (29), we have for such j?
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The fact that y is a geodesic that passes from x, y and x0 (in that order) implies that
<£6i\x, x0) = £h\x, y) + dih\y, x0). Hence for jS > 02 we have

dfa, y) > <fis>\x, y). (30)

Now, let p — d'(x, y) [Recall that d\-, •) is the distance function on Q']. Since the ball
[z e Q' | <f(x, z) < 2p] is contained in Q2p, there exists a minimizing geodesic joining x
and y and contained in Q2p- Hence further increasing Q2p will not make the distance of
x and y any smaller, that is

d^Xx, y) = <fi'\x, y) (= d'(x, y)), all s > 2p. (31)

We have already assumed that /J is large enough so that fl~* < 5,/8. Hence
p = d'(x, y) < d(x, y) < fF < <5,/2 and therefore, by (31), d^\x, y) = ̂ ' ' (x , y). Hence,
using the fact that 2p < 2^ together with (H2), we have

d£x, y) > ^''(x, y) = d^"\x, y) > df^\x, y) > (1 - c^)d{x, y).

Combining this with (27) completes the proof upon choosing rj — 1/(1 + v). •

Remark. It follows from (30) that if J? is sufficiently large, if x and y are bounded
away from 3Q and sufficiently close to each other, then dp(x, y) = d(x, y). Moreover, it
is easily seen that hypotheses (HI) and (H2) are not needed in that case.

The next proposition provides a sufficient condition for (H2) to be valid, with
v = 1/2. We conjecture that a more sophisticated way of retracting curves from il6 into
Q would in fact yield the same result with v = 1.

Given two curves y, and y2 defined on [a, b] and [c, d] respectively and such that
y,(fc) = y2(c), we denote by y, © y2 the curve on [a, b + d — c] which results from uniting
y, and y2, that is the curve that equals y,(t) for t e [a, /?] and equals y2(c — b + t) for
te\fi.b + d-c].

Proposition 8. Let Q be a bounded domain with C1 boundary and let p(-, •) be a Finsler
metric in !F\(Q). Assume that (HI) is satisfied. Then there exist constants c, d0 > 0 such
that for 5 < <50 we have

(1 - c5l/1)d(x, y) < d»(x, y) < d(x, y), (32)

for all x, y e Q.

Proof. We first prove the following

Claim. We have

d'(x,y) = p(x,y-x) + O(\y-x\2), (y -> x) (33)

uniformly in x e Q.
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Proof. Given x e Q and £, with p(x, £)= I, let y{ be the geodesic parametrized by
arc length and satisfying y(0) = x, y(0) = £. Then y(s) has a Lipschitz continuous second
derivative and therefore

where the 0 is uniform in t, e Rw of unit length and in x e Q. Let y e fl' and near x
be given and let £ be such that y^{d'(x, y)) — y. Substituting (and taking s = d(x, y)) we
get

and the claim follows by applying p(x, •) to both sides.

The assumption 3fl e C1 means that there exist closed rectangles Vx Vs that cover
9fi and have the following properties: each rectangle V, has the form V, = U, x [—ry, r\]
for some (Af — l)-dimensional rectangles U, and some small, but fixed, number rj
independent of / e {1 , . . . , r}; using local coordinates (z\ zN) on each V, (so z' € [/, and
zN e [—>;, ?;]) there exist C1 functions p, defined on Ut and such that

/ = l , . . . , r,

(There is a certain inconsistency in this notation since zN also denotes the Nth
Euclidean coordinate.) We shall call the axis of zN the normal axis for the rectangle.
By making the rectangles smaller if necessary, we may assume that the angle between
the normal axis of each rectangle V, and the (inward) normal at each z e V, n 9Q does
not exceed a small fixed number, such as n/100.

There exists 50 > 0 such that if d(x, y) < 50 and if the distances of both x and y from
dCl is smaller than <50> then there exists a rectangle V = U x [—rj, rj\ in the above
collection that contains both x and y; we assume that x and y are such and write
x = (x\ xN), y = (y\ yN) in the local coordinates of V. Let p be the function on U which
represents 9Q in V. Then the numbers a :— xN — p(x') and /? := yN — p(y') are both
positive. We define a curve y by

y(0 = (x' + t(y - x'), p(x' + t ( / - x')) + a + tO? - a)), t e [0, 1],

and note that it lies entirely in Q and satisfies y(0) = x and y(l) = y. We also have

y(0 = ( / - x\ ( / - x'

But ( / - x') • (Vp)(x' + t(y - x')) = p(/) - p(x') + 0(1/ - x'|2), where the big 0 is
uniform with respect to x and y (and t) by a simple compactness argument. Hence
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y(t) = y - x + O(\y - x|2).

From this follows easily that

P(KO. 7(0) = P(*. y-x) + O(\y - x|2),

and therefore

c y) < f
Jo

d(x,y)< / p(y(t), y(t))dt < p(x, y - x) + c\y - x\\
Jo

Recalling (33) we conclude that d(x,y) < cfi)(x,y) +c\y — x\2 and therefore, using
the equivalence with the Euclidean distance, that

d(x, y) < d»(x, y)(l + c5m)

for all x and y in Q that satisfy d(x, y) < 51'2, provided 5 is sufficiently small, smaller
than <50, say. Hence (32) is proved in the case d(x, y) < <51/2. We next consider the
complementary case.

Let y{i), t e [0,1], be a path contained in Qs and joining the points x, y e O. We
define the closed intervals 7, = [a,, /?,], i = 1, . . . , r, by requiring that (i) they are disjoint
(ii) aj+1 > pt and (iii) y(t) e Oa\Q iff t e u;=1/,. Let y, = y|/(, i = 1, . . . , r. The trace of
each y, then lies entirely in Uj=1 V, and outside SI. For every i— 1 , . . . , r we choose a
finite sequence (ViA, Vi2,..., Viri), contained, as a set, in {V/}f=], and such that (i)
y(a,) e ViA and (ii) each VUj is added to the sequence when y, enters its interior. This
implies in particular that y(/?,) e Viri. (If y enters two or more rectangles at the same
time, we simply choose one of them.) This induces a partition

«i =: A.o < 0i.i < < A,,., < K := Pi

of the interval /, by setting

fiu = inf {t 6 /,- | 7(0 € ViJ+l}, j = 1, . . . , r, - 1.

Let 7,; = [/?,,;_,, ftj], 7 = 1 , . . . , r,, and let y{j = y|/(/. Then (the trace of) each yi;. lies
entirely in the rectangle V{i. For 5 sufficiently small we define a new curve 6ii} by
shifting the curve y, - by 25/fe, (where fc, is as in (13)) in the direction of the normal axis
of the rectangle Vi}. That is, if the curve y, y is given, in the local coordinates of Vtj,
by 7IJ(0 = W0. K0), we define

If z 6 n^\n, then the Euclidean distance of z from Q is not greater than <5//c, by (13).
Hence, from our assumption that the normal axis of Vxi is very close to the inward
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normal at any point of Vtj n 3Q, it follows that 0,; is a curve contained in fi and we
also have, since |0i ; — y,J = 25/fe,,

\W.i) - /(yu)l < / W,r hi) ~ P^,;- y,j)\dt <
Jh,i

Now, let si;, j — \ r, - 1, be the straight segments that join fyjO?,,;) and &i%H.x(J}ii}).
The Euclidean length of each stj does not exceed 45/fc, by the triangle inequality.
Then

0, := 0U es ( i , e 0 U e s l i 2 ® • • • ©s,,.._, © 0 i r .

is an absolutely continuous curve since the initial point of each curve in the string
coincides with the final point of the previous one. Moreover, for i = 1, . . . , r,

1/(0.) - f(y,)l < E W - '(Tw)l + E 'K/)

T34)

Now, let Jo = [0, a,], Jt = [fit, ai+1], i = 1, . . . , r - 1, Jr = [ar, 1] and let & = yl/,. For
each i = 1 , . . . , r we consider straight segments s, and s\ by means of which we connect
(i) the final point of the curve £,_, to the initial point of the curve 0f and (ii) the final
point of the curve 0, to the initial point of the curve £,- Each one of these segments has
Euclidean length equal to 2<5/fc, by construction. We then define the curve

0 := Co © s, © 0, © s7, © C, © • • • © sr © 0r © s; © {,.

The curve 0 is then absolutely continuous and, by construction, lies entirely in fi and
has the same endpoints as y. Moreover, since y = Co © Vi © Ci © "?i © • • • © Cr-i © TV © Cr»
we have

< cdl(y) + crS[\ + max r.].

Hence
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1(9) < (1 + cd)l(y) + cr5[l + max r,]. (35)

Now, let (yj be a sequence of absolutely continuous curves in ils such that

/(Vn)<^(x,y) + (l/n). (36)

To each yn correspond numbers r(n) and r,(n) as described above. A simple application
of the Arzela-Ascoli theorem shows that, by replacing (yn) by a subsequence if
necessary, there exists a constant c, such that

supr(n) < c,, supr,(n) < c,. (37)
n n

Moreover, the constant c, can be taken to be independent of the endpoints x and y
by the compactness of Q. Now, let 9n be curves in Q produced from the yn's in the way
described above. It then follows from (35) and (37) that there exists a constant c such
that

+ c5, n = l , 2

Combining this with (36) yields

d(x, y) < /(0J < (1 + c5)[d«\x, y) + (1/n)] + c5

and hence, letting n —*• oo,

d(x, y)<(l+ cS)S\x, y) + cd (38)

for all 8 sufficiently small and all x, y e Q. This implies (32) when d(x, y) > dl/2.
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