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ON THE CLOSURE OF THE LINEAR SPAN OF A
WEIGHTED SEQUENCE IN 270, )

JAMIL A. SIDDIQI

1. Let {A,} be an increasing sequence of positive numbers. The question of
the closure in L?(0, ©) (1 < p < ) of the linear span of the sequence
A = {e"x™} has been considered by several authors, notably by Boas (1)
and Fuchs [3;4]. (We shall find it a convenient abuse in language to talk of
the closure of A in L¥(0, o0 ) in the sense of the closure in %4(0, 00 ).) Fuchs [4]
has shown that if {A,} is a sequence of positive numbers such that A1 —
A, = ¢ > 0, then A is total in L2(0, 0 ) if and only if

1) “D 4y -,

where ¢ is defined as follows:

) P ifr <Ay
@) log y(r) = )" =
23 N ifr > A

a<lr

He has further proved that condition (1) is also sufficient for the sequence A
to be total in 2?(0,0) (1 < p < ).

In this paper, we show first that if the integral in (1) converges, A is not
total but is topologically linearly independent in L?(0,00) (1 < p < ).

It is known (cf. Nachbin [6]) that in a locally convex space E a subset
{e,} ver is topologically linearly independent if and only if there exists in the
dual space E* a subset { f,},¢; such that {e,, f,} is a biorthogonal system in the
sense that fu.(e,) = 84, and then { f,},c; is called an orthonormal system
associated with {e,},c;. Moreover, {e¢,},c; remaining topologically linearly
independent, such an orthonormal system { f,},c; is unique if and only if
{e,} er is total. If {e,},¢; is topologically linearly independent and x belongs
to the closed linear span of {e,},cs, then x = lim; 3 ¢,%, implies that for all
vel

lim¢,” = f,(x) = c,,
j
where { f,},cr is an orthonormal system associated with {e,},c;. The ¢,’s are

uniquely determined independently of the choice of approximating finite
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linear combinations ) ¢,%,. The formal expansion
®) ZG; frx)e,

of x corresponding to the biorthogonal system {e,, f,},c; does not, in general,
characterize x in the sense that if the formal expansions of two elements
x and y in the closed linear span of {e,},¢; coincide, then x = y.

Next, we construct explicitly an orthonormal system { f;} associated with
the topologically linearly independent sequence A when

4) ‘I;mi;(gr—)-dr <

and show that each function in the closed linear span of A in L?(0, ) is
characterized by its formal expansion with respect to the orthonormal system

{ fi}.

The results which we obtain here improve those established earlier by the
author in {8].

2. We begin by proving the following theorem.

TueorEM 1. If {\,} s a sequence of positive numbers such that Nyy1 —
M =c¢c>0and

4) j;w %—g—) dr < o0,

where Y is defined as in (2), then the sequence A = {e~*x*} is not total and is
topologically linearly independent in L?(0,0) (1 £ p < ).

In order to prove this theorem, we need the following lemmas due to
Fuchs [4] (cf. Boas {2], Mandelbrojt [5]). The constants appearing here and
in the subsequent sections may be different at each appearance.

LeEMMA 1. The function G defined by

e

6@ =1l P tep@/h) @ =x+i),

is holomorphic and satisfies

IG2)| = {4¥(}*,
and

IG)| = {BY(r)}*,
outside circles of radius c/3 with centres at the A,.

LeMMA 2. If (4) holds, there exists a function g holomorphic and without zeros
inx = Rez > 0 such that

lg@@)| = {x/¥ ()}
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This function is defined by setting g = exp(—u + ), where

_ 2 ¥ (t)
u(x 3’) T J:w x2 + (t _ y)Z dtv

with ¢ (—t) = ¢(¢) and v is the harmonic conjugate of u.

Proof of Theorem 1. Let g be the function as described above. Following
Fuchs [4], we define a function J by

(5) J(i@) = 242"z + 1)H(z)4~1 (z = x + 1y),

where £ = 2 4 2¢7!, H is the function derived from G on replacing every \,
by A,* = A\, 4+ 1 and z by 2 4 1, and 4 is a positive constant as in Lemma 1.
The function J possesses the following properties in x = a > —1:
(1) J is holomorphic and J # 0;
(i) J(\,) =0for v =1,2,... and J does not have any other real zeros
besides these;
(iii) J is such that

(6) V()| = (& + 1) {(x + 2)% + 27,
and
(7) V') = Blx + 1) (x + 2)% + y*} 72 (r).

All the assertions in (i) and (ii), except (7), follow from Lemma 2 if we
observe that, in view of Lemma 1, H is holomorphic in x Z —1 and satisfies
the inequality

|H ()| = {4y ()} @z —1).
Taking the derivative of the logarithm of J, we get

J'(2) k gl+1)  H)

8 = — —log 4.
® T " T @Fe e+ D T HE ¥
Since g is holomorphic for x > 0, so is the function log g. Hence
g _ _du_ o __ du_ .du
g(z) ax+$ax— ox 'y’

Using the inequality ¢ (Au) < CA¥%(u) (A > 1) and (4), we get

<2 ¢(t)

au|

Thus we have for x > —1,

9) lg'(z + 1)/g(z + 1)| = Cy(r).
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Taking the derivative of the logarithm of H, we have

HG) e 1
He) ~ 2t L D 5D

so that forx = —1

O <2+ 1S, e e(26 + 1/0w + 1,
where
1,6) = [1 52 5 el26 + D/0v + D).

It is easily seen that

|H,(2)] = {G¥(n)} @z —1),
so that

’ 2 z+1 = 1

But for x = —1, the series on the right is majorized by the series D g1 A, 2

which converges since A1 — A, = ¢ > 0. Hence forx = a > —1
(10) [H'(z)] = {CY(r)}=H.
It follows from (8), (9) and (5) thatforx = ¢ > —1

'@ = T@BY () + |H (2)/H ()| + C}
= By )| + |z + 27 H (2)llg (= + 1|4

Using (6) and (10) and the fact that

lg + 1] < {xtp'(';)l}m,

we have
|7/ (z)| £ Blz + 2|7 (x + 1)=*1y(r)
+ |z + [ Y () (x + 1)/ ()} A—t
< B(x + 1)*"z + 2[7y (),
where A is suitably chosen, which establishes (7).
Let

(11) @) = ¢t f_m T + i)t "dy x>a>-—1).

It follows from (6) that the integral on the right exists and is independent
of x and hence defines the function £ unambiguously for all ¢ € (0, ). The
same inequality shows that the function J,: J,(y) = J(x 4+ 7y) belongs to
LP(—o0,0) foralll = p = .
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We now prove that forallx =2 ¢ > —1

(12) T nola < 4,6+ D 1< <o)

EYR @) < w@ + 17 (g = 0),

where p~! + ¢! = 1. If we denote by J, the Fourier transform of J,, then
(12) can be written as

(12) [[To]le € A(x + 1)*H12, (1 < g < ).

We first consider thecase 1 £ p <2 (2 < ¢ £ ). Since J, € L?(—w0, )
for 1 < p = 2, the function J, € LY(—o0,0) and by the Parseval-Riesz
formula, we have

Valle = @0l < @ + 172 (2 £ ¢ < o),
where A4, is some positive constant depending on ¢. Since J, € L(—o0, o),
(13) Vel S 7 4 1)71172,

We next consider the case 2 < p £ 0 (1 = ¢ < 2). It follows from (7)
that J,/ € L*(—o0,00) for all x = a > —1, where J,/(y) = J'(x 4 iy) and
that

a3k < B@+Dm{£W@+2f+ﬁ*Wm@T

< Clx + )72
Since J, € L(—,00) and (6) holds, on intergrating by parts, we get

1o =2 " ey = i

an<[jMJL@WJW+[j@Jmeﬂ%

Applying Hélder’s inequality, Plancherel’s theorem and (13"), we get

n=|J I
? lelz1 t dt
. (2—q) /2¢
S ] R
1121

= A, |7 < 4, + 1)1,

proving (12') since a similar inequality holds for Iy, in view of (13').
If 1 £ ¢ < oo, putting gx + ¢ — 1 = #, it follows from (12) that

n+1/2
(14) fmt"|k(t)|“dt<Aq(n—q'_1) .
0

and
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If 1 < g < o0, then
o a3 _ - __1 fm n q
J; e |h(t)|‘dt = n§=0, ol Jo t*|n(t)|‘dt

= 0( > o o +n1!)n+l/2)

= O(WZ.:Q0 (e/Pq)”) =0(1),

using Stirling’s formula.
Consequently we have for 1 < ¢ < ©

(15) fme“[h(pgt)]th < o0,
0
If ¢ = 1, 00, using (14), we similarly get
(16) fwellh(at)wt < ©
0

and
17) e'h(at) € L*(0,0)
respectively, where o > e. Let

_ Je'h(pgt) whenl < g < o0,
(18) J® = {e‘h(at) when ¢ = 1 or ®.

Since (12) holds, by Mellin’s inversion formula, we get

J() = —%th(t)fdt &>a>—1).

J(\,) = 0 and consequently, by (18), we have

fm @A = 0,f € LU0, 0) (1 <q <o)

(19) ’

f:e_‘tx”dF(t) =0,F ¢ V(,) (g=1)
forn =1,2,..., where
(20) F(@) = J:f(u)du, f € L(0,0).

Since J # 0, the functions f and F are also not identically zero. Thus A is not
total in L?(0,0) (1 < p < 0).

J does not have any real zeros besides {y,}. Hence the equations (19)
and (20) are not satisfied by any \ outside the given sequence. It follows
that if x > 0, x % N\, for » = 1,2,..., ¢ 't* does not belong to the closed
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linear span of A in L?(0,0) (1 < p = ). In particular, none of the elements
e~'t™ belongs to the closed linear span of the rest. Thus A is topologically
linearly independent.

We note that when the sequence A is total in L?(0,0) (1 = p < ), it
remains total if we suppress any one of its elements. Hence, in this case, each
element depends on the others.

Theorem 1 taken in conjunction with the theorems of Fuchs stated in the
beginning of § 1 enables us to assert the following theorem.

THEOREM 2. If (1) holds, then the sequence A = {e~*xM} 1is total and is topo-
logically linearly dependent in each L?(0,00) (1 < p < ). If (4) holds, the
sequence A is not total but is topologically linearly independent in each L? (0, o0 )
(1=p=w)

3. We now proceed to construct in L?(0, ) (1 < p < ) an orthonormal
system associated with the sequence A = {e~"x™}, assuming that (4) holds.

Let

J(2) .
Julz) = TG —N) (z = x + 1y),
where J is defined by (5). It follows from Lemmas 1 and 2 that J, possesses
the following properties in x = a > —1:
(1) J. is holomorphic and J, # 0;

(i1) Ju(N\y) = by for p,v = 1,2, ... and J, does not possess any other real
zeros besides {u,} y;

(iii) [u()] = [T W) + )" (x + 2)% + y2=¢F072,

Forx = a > —1, if we set

a0 = [ I+ iy

and repeat the reasoning used in the proof of Theorem 1, we first obtain the
inequalities:

fw B, ()t < AT + DPF? (1< g < o)
@1 *°
[ R (0] < 7| T 4 1) (g =)

valid for x = a > —1 and these, in turn, lead to the following inequalities:

J e maa < 40700t <0 @ <q<)

I

22) f:e'lh,,(at)uz <TI0 <o (g=1)

lehu(et)| < AL|T' ()T <0 (g =),
where a > e.
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Set

A+l
(M) e, (pgt) when 1 < g < o0

(23) fu®) =

)\+1

e'h,(at) when ¢ = 1 or .
It follows from (22) that f,t € L0, ) for 1 < ¢ =< oo and that
(24) [ fulle = AgH| T[T (1S ¢S o),

wherek = pgif 1 <g< o andk =aifg=1, 0.
For f, € L(0, ©), define

(25) B = | feas.

We assert that

Jreroa s, a<q<w
(26) "

f e AF, () = 8, (g =1).
0

In fact, since J*: J*(y) = Ju.(x 4+ 7y) belongs to L?(—o0,00) for all
1 < p < 0 and (21) holds, by Mellin’s inversion formula, we get

T.(s) = él;fhﬂ(t)t’dt ®>a> —1).

Hence

[ (pa M+t
I(P ) f b (pgt)dt = b, 1<g<ow)
0
Tu0) = i
Mt
2 f Mhy (at)dt = 8, (g =1,00),
which proves (26) in view of (23) and (25).

4. Let A?(A) denote the closed linear span of A = {¢~%x*} in L?(0, )
(1 = p = ). If (4) holds, then A is topologically linearly independent and,
therefore, every G € A?(A) has a formal expansion Y. f;(G)e%x** correspond-
ing to the associated orthonormal system { f;} as constructed in § 3. Using a
technique developed by L. Schwartz in [7], we establish the following represen-
tation theorem which enables us to affirm the uniqueness of this expansion.

TuareorREM 3. Under the conditions of Theorem 1 each function G belonging to
the closed linear span of the sequence A = {e~"x*} in L?(0,0) (1 £ p < )
possesses the following properties:
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(1) G is analytic 1n (0, 00) and G can be continued analytically to a function
G whose principal branch is holomorphic in the entire z-plane (z = x + 1y)
except perhaps for the negative real axis (—o0, 0].

(2) G can be expanded 1n a convergent series

@
G@) =e*Yy, o2,
k=1

where the ¢;'s are determined by G and by the topologically linearly independent
sequence A.
(8) G satisfies the inequality

66 < 4w ( 5 1Bo001 ) - 61,
where B > 0 4s an absolute constant depending on A.
In order to prove the theorem we need the following lemma.
Levma 3. If (4) holds, the function J defined by (5) satisfies the inequality
'Oz (B WD,
where B 1s a positive constant.

Proof. Since

J'(2) k get+1)  H)

T@) T TRt T+ D) T HE g4
we have
20, + 1) 20
> e"p{— r Jo M) P d‘}
X (27T | "Jr; “+ 5| expl2(r, + 2)/ 0 + 1)

In the above inequality, the first factor on the right is bounded below by
B! and by Lemma 1, the second factor is bounded below by {Cy(\,)}*
Hence the result follows.

Proof of Theorem 3. If G € A?(A), there exists a sequence

{Z Cx (n) —Z )\k}

27) Gx) = llmz crMe i

N k=

such that
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in the norm of L?(0,00) (1 £ p < ). Since A is topologically linearly

independent,
lim Ck(n) = Cx
n->co
exists. If we construct the orthonormal system { f;} and {dF,} associated with

A as described in § 3 above, we get

(28) 6 = fo " G )fs ()dx.
Hence, for 1 < p < o0,

29 G Ay il

(29) leel < Gl fille < [] o7 [1Gll,,

where p~! + ¢! = 1.
Consider the series D 51 ;2. Using (29) and Lemma 3, we get

> lallsP < 4, 161 35 s
If > M\t = o0, the series
=1 B‘P()\k)} Z

converges for all z and it converges uniformly in each circle {z: |z| £ R}. In
fact, since \,, = ¢n, given any z, there exists a positive integer N such that for
allk > N

S el LT ar < S o

0 1By < 71 o}

and from this the assertion follows.

If we put Gi(z) = > w1 cre~ 2™, then G; is a function defined for all values
of z and its principal branch is holomorphic in the entire z-plane except
perhaps for the negative real axis (—o0, 0]. Hence

(30) G1@)] < A X (BUOW ™ - (Gl

We now show that G;(x) = G(x) a.e. Since for 1 < k& < m,

Cy — cl(-) — j:yfk (x){G(x) _ Ck(n)e—zx)\,,}dx
= J:ofk (x){G(x) — i‘; Cp(")e_”x“}dx,

and for k& > m,

o= [ r@6wis = | mfk(x>{G<x> - m; cyme—rx»}dx,
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we have forx = 0

mn
<Z lck _ Ck(n)le—z Ak + Z lckie—z Ak

mn+1

{By (M)} “)

<A

It follows that the sequence of polynomials

mn N
Z Ck(n) e k

converges pointwise to G; and hence G; = G a.e.

If 3 M\ < o, we can enlarge the sequence {A;} into {\;} in such a way
that the new sequence satisfies (4) and > \/~! = 0. If G € 4?(A) is given
by (27), then G € A?(A’), where A’ = {e~*x*!} and (28) is replaced by

Gi(x) — > ™
k=1

”M?

k=1

P 1/p
ldeg .

G(x) — Z Ck(n)
k=1

= wa(x)f,k(x)dx,

{ fi} being an orthonormal system associated with A’ as described in § 3. A
repetition of the preceding analysis from this point onwards enables us to
establish the properties (1) to (3) of Theorem 3. We need only observe that
the inequality

ol < E iy NGl

which holds when ¢ is defined with respect to {\;/}, holds a fortior: when ¢ is
defined with respect to its subsequence {\;}.
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