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Abstract

In this paper we introduce discrete-time semi-Markov random evolutions (DTSMREs)
and study asymptotic properties, namely, averaging, diffusion approximation, and
diffusion approximation with equilibrium by the martingale weak convergence method.
The controlled DTSMREs are introduced and Hamilton–Jacobi–Bellman equations are
derived for them. The applications here concern the additive functionals (AFs), geometric
Markov renewal chains (GMRCs), and dynamical systems (DSs) in discrete time. The
rates of convergence in the limit theorems for DTSMREs and AFs, GMRCs, and DSs are
also presented.
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1. Introduction

Random evolution is a very powerful technique to study stochastic evolutionary systems;
see, e.g. [13], [14], [18], [19], [28], and [47]. Discrete-time random evolutions, induced by
discrete-time Markov chains, are introduced in [17] (see also [38] and [49]) and discrete-time
semi-Markov random evolutions are introduced in [23]. Swishchuk and Wu [47] and Koroliuk
and Limnios [18] introduced discrete-time random evolutions induced by the embedded Markov
chain of continuous-time semi-Markov processes. This is equivalent to discrete-time Markov
random evolution stopped in random time (see also Remark 2.1 below).

Discrete-time semi-Markov chains (SMCs) have only recently been used in applications,
specifically, in DNA analysis, image and speech processing, reliability, etc.; see [5] and the
references therein. These applications have stimulated a research effort in this area. However,
while the literature in discrete-time Markov chains theory and applications is huge, there is
only a very small number of works on SMCs and most of these are in hidden semi-Markov
models for estimation.

In this paper we consider the general case of discrete-time semi-Markov random evolution
with value in a Banach space, say B, and we present their limit theory in series (functional)
scheme. In particular, we obtain weak convergence theorems in Skorokhod space DB[0, ∞) for
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Discrete-time semi-Markov random evolutions 215

càdlàg stochastic processes; see, e.g. [15] and [21]. We consider both averaging and diffusion
approximation limit theorems, with the latter being of two kinds: equilibrium about a point and
equilibrium about a function (or stochastic process) obtained by the averaging limit. We present
some results on convergence rates of the above limit theorems, and some additional results on
controlled discrete-time semi-Markov random evolutions. Finally, we give some applications of
the above results for particular well-known stochastic systems: additive functionals, geometric
Markov renewal chains, and discrete-time dynamical systems switched (driven) by SMCs. It
is worth noting that dynamical systems have been considered in continuous- and discrete-time
cases by Skorokhod [37] and Skorokhod et al. [38], respectively, but, in both cases, with Markov
switching and by direct methods. Integral functionals were considered via direct methods by
several authors in the semi-Markov case; see, e.g. [35]. Applications of geometric Markov
renewal processes in finance have been considered in [43], [44], and [45]. Optimal stopping
of geometric Markov renewal processes and pricing of European and American options for
underlying assets modeled by geometric Markov renewal processes have been studied in [46].

Results presented here are new and concern discrete-time semi-Markov random evolutions
on Banach spaces (see, e.g. [22]). The method used in the proofs is based on the martingale
representation and on the convergence of transition operators of the extended SMC via singular
perturbation techniques. The tightness of the family of processes is proved via Sobolev’s
embedding theorems and martingale representation [2], [39]. It is worth noting that, as in
the Markov case, the results presented here cannot be deduced directly from the continuous-
time case. Of course, alternative techniques to prove these results for the particular systems
considered in this paper can be found in, e.g. [4], [15], [25], [27], [32], [35]–[37], and [38].

The results presented in this paper could also be useful for many applications where the
SMC is the supporting model. For example, the additive functionals in performance analysis;
the geometric Markov renewal processes in finance, insurance, and reliability; the dynamical
systems in fatigue crack growth modeling [10], etc.

The paper is organized as follows. The definition and properties of discrete-time
semi-Markov random evolutions (DTSMREs) are given in Section 2. Averaging, diffusion
approximation, and diffusion approximation with equilibrium of DTSMREs are considered in
Section 3. In Section 4 we give three applications of the above asymptotic properties: additive
functionals (AFs), geometric Markov renewal chains (GMRCs), and dynamical systems.
Section 5 contains the rates of convergence in the limit theorems for DTSMREs, AFs, and
GMRCs. In Section 6 we present controlled DTSMREs and derive Hamilton–Jacobi–Bellman
equations for them. Optimal control problems for controlled AFs and GMRCs are also studied
in this section. In Section 7 we give the proofs of the theorems presented in the previous
sections. In Section 8 we conclude the paper and indicate some future work.

2. Definition and properties

Let N be the set of nonnegative integer numbers, let R+ := [0, ∞), and let B+ be the
Borel sets of R+. Let (E, E) be a measurable space with a countably generated σ -algebra
and (�, F , (Fn)n∈N, P) be a stochastic basis on which we consider a Markov renewal process
(xn, τn, n ∈ N) in discrete time k ∈ N, with state space (E ×R+, E ⊗B+). The semi-Markov
kernel q is defined by (see, e.g. [5] and [23])

q(x, B, k) := P(xn+1 ∈ B, τn+1 − τn = k | xn = x)

for x ∈ E, B ∈ E , and k, n ∈ N.
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216 N. LIMNIOS AND A. SWISHCHUK

We will also define q(x, B, �) = ∑
n∈� q(x, B, n), where � ⊂ N. The process (xn) is the

embedded Markov chain of the Markov renewal process (xn, τn) with transition kernel P(x, dy)

given by P(x, B) := q(x, B, N). The semi-Markov kernel q is written as

q(x, dy, k) = P(x, dy)fxy(k),

where fxy(k) := P(τn+1 − τn = k | xn = x, xn+1 = y), the conditional distribution of the
sojourn time in state x given that the next visited state is y.

Define also the counting process of jumps νk = max{n : τn ≤ k}, and the discrete-time SMC
zk by zk = xνk

for k ∈ N. Define the backward recurrence time process γk := k − τνk
, k ≥ 0,

and the filtration Fk := σ(z�, γ�; � ≤ k), k ≥ 0. The process (zk, γk), k ≥ 0, is a Markov
chain.

Let us consider a separable Banach space B of real-valued measurable functions defined on
E × N, endowed with the sup norm ‖ · ‖, and denote by B its Borel σ -algebra. The Markov
chain (zk, γk), k ≥ 0, has the following transition probability operator P � on B:

P �ϕ(x, k) = 1

H̄x(k)

∫
E\{x}

q(x, dy, k + 1)ϕ(y, 0) + H̄x(k + 1)

H̄x(k)
ϕ(x, k + 1). (2.1)

Its stationary distribution, if it exists, is given by

π�(dx × {k}) = ρ(dx)H̄x(k)

m
,

where

m :=
∫

E

ρ(dx)m(x), m(x) =
∑
k≥0

H̄x(k),

and ρ(dx) is the stationary distribution of the embedded Markov chain (xn), Hx(k) := q(x, E,

[0, k]), and H̄x(k) := 1 − Hx(k) = q(x, E, [k + 1, ∞)). The probability measure π defined
by

π(B) := π�(B × N) =
∫

B

ρ(dx)m(x)

m

is the stationary probability of the SMC (zk). It is worth noting that the existence and uniqueness
of the stationary probability π� is provided by the uniform ergodicity of the Markov chain
(zk, γk); see below. Define the rth moment of holding time in state x ∈ E as

mr(x) :=
∑
k≥1

krq(x, E, k), r = 1, 2, . . . .

Of course, m(x) = m1(x) for any x ∈ E.
Define the stationary projection operator � on the null space of the (discrete) generating

operator Q� := P � − I as

�ϕ(x, s) =
∑
�≥0

∫
E

π�(dy × {�})ϕ(y, �)1(x, s),

where 1(x, s) = 1 for any x ∈ E and s ∈ N. This operator satisfies the equation

�Q� = Q�� = 0.
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The potential operator of Q�, denoted by R0, is defined by

R0 := (Q� + �)−1 − � =
∑
k≥0

[(P �)k − �].

Let us introduce a family of linear bounded contraction operators D(x), x ∈ E (i.e.
‖D(x)ϕ‖ ≤ ‖ϕ‖), defined on B, where the maps D(x)ϕ : E → B are E -measurable and
ϕ ∈ B [33]. Denote by I the identity operator on B. Let �B = N (Q�) be the null space, and
let (I −�)B = R(Q�) be the range (value space) of the operator Q�. We will suppose here that
the Markov chain (zk, γk, k ∈ N) is uniformly ergodic, that is, sup‖ϕ‖≤1 ‖((P �)n − �)ϕ‖ → 0
as n → ∞ for any ϕ ∈ B. Note that this condition implies the exponential ergodicity of the
Markov chain [26]. In that case, the transition operator is reducible-invertible on B. Thus, we
have B = N (Q�) ⊕ R(Q�), the direct sum of the two subspaces. The domain of an operator
A on B is denoted by D(A) := {ϕ ∈ B : Aϕ ∈ B}.

Let us now define a DTSMRE.

Definition 2.1. A (forward) DTSMRE 
k, k ∈ N, on B is defined by


kϕ = D(zk)D(zk−1) · · · D(z2)D(z1)ϕ, k ≥ 1, 
0 = I, (2.2)

for any ϕ ∈ B0 := ⋂
x∈E D(D(x)). Thus, we have 
k = D(zk)
k−1.

For example, consider an additive functional of the SMC zk , i.e. αk := u + ∑k
�=1 a(z�)

for k ≥ 1 with α0 = u. Define a family of operators D(x), x ∈ E, on B by D(x)ϕ(u) =
ϕ(u + a(x)). Then we can write 
kϕ(u) = ∏k

�=1 D(z�)ϕ(u) = ϕ(u + ∑k
�=1 a(z�)) = ϕ(zk).

Remark 2.1. The important difference with the discrete-time random evolution considered
in [18], [19], and [47] concerns the embedded Markov chain xn (of a continuous-time semi-
Markov process [29], [30], [31], [34], [41]) instead of the SMC zk , defined on the calendar
time k, which is not Markov. Concerning the above example, for the corresponding discrete-
time formulation of the case referred to here, we take αk := u + ∑νk

n=1 a(xn), which is just the
Markov case.

The process Mk defined by

Mk := 
k − I −
k−1∑
�=0

E[
�+1 − 
� | F�], k ≥ 1, M0 = 0, (2.3)

on B is an Fk-martingale. The random evolution 
k can be written as


k := I +
k−1∑
�=0

[D(z�+1) − I ]
�,

and then martingale (2.3) can be written as

Mk := 
k − I −
k−1∑
�=0

E[(D(z�+1) − I )
� | F�]

or

Mk := 
k − I −
k−1∑
�=0

(E[D(z�+1) | F�] − I )
�.
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218 N. LIMNIOS AND A. SWISHCHUK

Finally, as E[D(z�+1)
�ϕ | F�] = (P �D(·)
�ϕ)(z�, γ�), we take

Mk := 
k − I −
k−1∑
�=0

[P �D(·) − I ]
�.

3. Average and diffusion approximation

In this section we present average and diffusion approximation results for the DTSMRE, as
well as the diffusion approximation with equilibrium.

Let DB[0, ∞) be the Skorokhod space of B-valued measurable functions defined on R+
which are right continuous having left-hand limits, and let CB[0, ∞) be the B-valued continuous
functions defined on R+. On these spaces we denote by ‘⇒’ the weak convergence. Let C0(R)

be the space of bounded continuous functions defined on R vanishing at ∞, and let Wl,2(R)

be a Sobolev space.

3.1. Averaging

Let us set k := [t/ε], and consider the continuous-time process Mε
t :

Mε
t := M[t/ε] = 
ε[t/ε] − I −

[t/ε]−1∑
�=0

[P �Dε(·) − I ]
ε
�.

We will prove here asymptotic results for this process as ε → 0.
The following assumptions are needed for averaging.

(A1) The Markov chain (zk, γk, k ∈ N) is uniformly ergodic with ergodic distribution π�(B ×
{k}), B ∈ E and k ∈ N.

(A2) The moments m2(x), x ∈ E, are uniformly integrable.

(A3) The perturbed operators Dε(x) have the following representation on B:

Dε(x) = I + εD1(x) + εDε
0(x).

Here the operators D1(x) on B are closed and B0 := ⋂
x∈E D(D1(x)) is dense in B,

B̄0 = B. The operators Dε
0(x) are negligible, i.e. limε→0 ‖Dε

0(x)ϕ‖ = 0 for any ϕ ∈ B0.

(A4) We have
∫
E

π(dx)‖D1(x)ϕ‖2 < ∞.

(A5) There exist Hilbert spaces H and H ∗ which are compactly embedded in Banach spaces
B and B

∗, respectively, where B
∗ is a dual space to B.

(A6) The operators Dε(x) and (Dε)∗(x) are contractive on Hilbert spaces H and H ∗, respec-
tively.

We note that if B = C0(R) then H = Wl,2(R) is a Sobolev space, and Wl,2(R) ⊂ C0(R), with
this embedding compact (see [33] and [39]). For the spaces B = L2(R) and H = Wl,2(R),

the situation is the same.

Theorem 3.1. Under assumptions (A1)–(A6), the weak convergence


ε[t/ε] ⇒ 
̄(t) as ε → 0
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holds, where the limit random evolution 
̄(t) is determined by the equation


̄(t)ϕ − ϕ −
∫ t

0
L̂
̄(s)ϕ ds = 0, 0 ≤ t ≤ T , ϕ ∈ B0, (3.1)

or, equivalently,
d

dt

̄(t)ϕ = L̂
̄(t)ϕ,

where the limit contracted operator is then given by

L̂ = D̂1 =
∫

E

π(dx)D1(x).

This result generalizes the classical Krylov–Bogolyubov averaging principle [20] on Banach
spaces.

3.2. Diffusion approximation

For the diffusion approximation, we will consider a different time scaling and some additional
assumptions.

(D1) Let us assume that the perturbed operators Dε(x) have the following representation in
B:

Dε(x) = I + εD1(x) + ε2D2(x) + ε2Dε
0(x).

Here the operators D2(x) on B are closed and B0 := ⋂
x∈E D(D2(x)) is dense in B,

B̄0 = B; the operators Dε
0(x) are negligible operators, i.e. limε→0 ‖Dε

0(x)ϕ‖ = 0.

(D2) The following balance condition holds:

�D1(x)� = 0. (3.2)

(D3) The moments m3(x), x ∈ E, are uniformly integrable.

Theorem 3.2. Under assumptions (A1), (A5), (A6), and (D1)–(D3), the weak convergence


ε
[t/ε2] ⇒ 
0(t) as ε → 0

holds, where the limit random evolution 
0(t) is a diffusion random evolution determined by
the generator

L = �D2(x)� + �D1(x)R0D1(x)� − �D2
1(x)�.

3.3. Diffusion approximation with equilibrium

It is worth noting that averaged semi-Markov random evolutions can be considered as the
first approximation to the initial evolutions. The diffusion approximation of the semi-Markov
random evolutions determines the second approximation to the initial evolution, since the first
approximation under the balance condition appears to be trivial.

Here we consider the algorithms for constructing the first and second approximations in the
case when the balance condition in the diffusion approximation scheme is not fulfilled. We
introduce the deviated semi-Markov random evolution as the normalized difference between
the initial and averaged evolutions. In the limit, we obtain the diffusion approximation with
equilibrium of the initial evolution from the averaged one.

Let us consider the DTSMRE 
ε[t/ε], the averaged evolution 
̄(t) (see Section 3.1), and the
deviated evolution

Wε
t := ε−1/2[
ε[t/ε] − 
̄(t)]. (3.3)
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Theorem 3.3. Under assumptions (A1), (A5), (A6), and (D3), with operators Dε(x) in (A3),
instead of (D1), the deviated semi-Markov random evolution Wε

t weakly converges, when
ε → 0, to the diffusion random evolution W 0

t defined by the generator

L = �(D1(x) − D̂1)R0(D1(x) − D̂1)�.

4. Applications on particular systems

In this section we give three applications of the above results: (i) to additive functionals,
which have many applications, e.g. in storage, reliability, and risk theories (see, e.g. [5], [18],
[19], and [24]), (ii) to geometric Markov renewal processes, which also have many applications,
including finance (see, e.g. [43], [44], [45], and [46]), and (iii) to dynamical systems (see, e.g.
[10]).

4.1. Additive functionals

Let us define the following additive functional (AF):

yk =
k∑

l=0

a(zl), k ≥ 0, y0 = y.

If we define the operator D(z) on C0(R) by

D(z)ϕ(y) := ϕ(y + a(z)),

then the DTSMRE 
kϕ has the representation


kϕ(y) = ϕ(yk).

Result 4.1. (Averaging of the AF.) Define the continuous-time process

yε
t := ε

[t/ε]∑
l=0

a(zl).

Then, from Theorem 3.1, it follows that this process has the weak limit y0(t) = limε→0 yε
t , given

by
y0(t) = y + ât,

where â = ∫
E

π(dz)a(z). We suppose that
∫
E

π(dz)|a(z)| < +∞.

Result 4.2. (Diffusion approximation of the AF.) Let us consider the continuous-time process

ξε
t := ε

[t/ε2]∑
l=0

a(zl), ξ ε
0 = y.

Then, under the balance condition
∫
E

π(dz)a(z) = 0 and
∫
E

π(dz)|a(z)|2 < +∞, the weak
limit process ξ0(t) = limε→0 ξε

t has the form

ξ0(t) = y + bwt ,

where b2 = 2â0 − â2, â0 := ∑
�≥0

∫
E
π#(dz × {�})a(z)R0a(z), â2 = ∫

E
π(dz)a2(z), and wt

is a standard Wiener process.
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Result 4.3. (Diffusion approximation with equilibrium of the AF.) Let us consider the
normalized additive functional

wε
t := ε−1/2[yε

t − ât].
Then this process converges weakly to the process σwt , where

σ 2 =
∑
�≥0

∫
E

π#(dz × {�})(a(z) − â)R0(a(z) − â)

and wt is a standard Wiener process.
In this way, the AF yε

t may be presented in the following approximated form:

yε
t ≈ ât + √

εσwt .

4.2. GMRCs

The GMRC is defined as (see [43], [44], and [46])

Sk := S0

k∏
l=1

(1 + a(zl)), k ∈ N, S0 = s.

We suppose that
∏0

k=1 = 1.

If we define the operator D(z) on C0(R) by

D(z)ϕ(s) := ϕ(s(1 + a(z))),

then the DTSMRE 
kϕ has the representation


kϕ(s) = ϕ(Sk).

It is worth noting here that we are using Sε
t instead of ln Sε

t in order to be consistent with
the discrete models for stock prices in mathematical finance proposed by Cox et al. [11] and
Aase [1].

Result 4.4. (Averaging of the GMRC.) Define the following sequence of processes:

Sε
t := S0

[t/ε]∏
k=1

(1 + εa(zk)), t ∈ R+, S0 = s.

Then, under averaging conditions, the limit process S̄t has the form

S̄t = seât ,

where â = ∫
E

π(dz)a(z).

Result 4.5. (Diffusion approximation of the GMRC.) Define the following sequence of
processes:

Sε(t) := S0

[t/ε2]∏
k=1

(1 + εa(zk)), t ∈ R+, S0 = s.

Then in the diffusion approximation scheme, we have the limit process

S0(t) = se−t â2/2eσaw(t),
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where

â2 :=
∫

E

π(dz)a2(z), σ 2
a := 1

2

∫
E

π(dz)a2(z) +
∑
�≥0

∫
E

π#(dz × {�})a(z)R0a(z).

This means that S0(t) satisfies the stochastic differential equation

dS0(t)

S0(t)
= 1

2
(σ 2

a − â2) dt + σa dwt,

where wt is a standard Wiener process.

Result 4.6. (Diffusion approximation with equilibrium of the GMRC.) Let us consider the
normalized GMRC

wε
t := ε−1/2

[
ln

(
Sε

t

S0

)
− ât

]
.

It is worth noting that in finance the expression ln(Sε
t /S0) represents the log-return of the

underlying asset (stock for example) Sε
t .

Then this process converges weakly to the process σwt , where

σ 2 =
∫

E

π(dz)(a(z) − â)R0(a(z) − â)

and wt is a standard Wiener process.
In this way, the GMRC Sε

t may be presented in the following approximated form:

Sε
t ≈ S0eât+√

εσwt .

4.3. Dynamical systems

We consider here discrete-time dynamical systems (DSs) and their asymptotic behavior in
the series scheme: the average and diffusion approximation (see [23]).

Let us consider the difference equation

yε
k+1 = yε

k + εC(yε
k ; zk+1), k ≥ 0, yε

0 = u,

switched by the SMC (zk).
The perturbed operators Dε(x), x ∈ E, are now defined by

Dε(x)ϕ(u) = ϕ(u + εC(u, x)).

Result 4.7. (Averaging of the DS.) Under averaging assumptions, the weak convergence

yε[t/ε] ⇒ ȳ(t) as ε → 0

holds, where ȳ(t), t ≥ 0, is the solution of the (deterministic) differential equation

d

dt
ȳ(t) = C̄(ȳ(t)) and ȳ(0) = u,

where C̄(u) = ∫
E

π(dx)C(u, dx).
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Result 4.8. (Diffusion approximation of the DS.) Under diffusion approximation conditions,
the weak convergence

yε
[t/ε2] ⇒ xt as ε → 0

holds, where xt , t ≥ 0, is a diffusion processes with initial value x0 = u, determined by the
operator

Lϕ(u) = a(u)ϕ′(u) + 1
2b2(u)ϕ′′(u),

provided that b2(u) > 0, and drift and diffusion coefficients are defined as

b2(u) := 2C̄0(u) − C̄2(u), a(u) := C̄01(u) − C̄1(u),

with

C̄0(u) :=
∑
�≥0

∫
E

π#(dx × {�})C0(u, x), C0(u, x) := C(u, x)R0C(u, x),

C̄01(u) :=
∑
�≥0

∫
E

π#(dx × {�})C01(u, x), C01(u, x) := C(u, x)R0C
′
u(u, x),

C̄1(u) :=
∫

E

π(dx)C1(u, x), C1(u, x) := C(u, x)C′
u(u, x),

C̄2(u) :=
∫

E

π(dx)C2(u, x).

5. Rates of convergence in the limit theorems

In this section we present the rates of convergence of the DTSMRE in the averaging, diffusion
approximation, and diffusion approximation with equilibrium schemes ((A1)–(A3)), and we
give the rates of convergence for AFs and GMRCs in the corresponding limits as corollaries.

Proposition 5.1. The rate of convergence of the DTSMRE in the averaging scheme has the
form

‖E[
ε[t/ε]ϕ] − 
̄(t)ϕ‖ ≤ εA(T , ϕ, ||R0||, ‖D1‖),
where A(T , ϕ, ‖R0‖, ‖D1‖) is a constant and 0 ≤ t ≤ T .

The proof of this proposition is given in Section 7.4.

Proposition 5.2. The rate of convergence of the DTSMRE in the diffusion approximation
scheme takes the form

‖E[
ε
[t/ε2]ϕ] − 
0(t)ϕ‖ ≤ εD(T , ϕ, ‖R0‖, ‖D1‖, ‖D2‖),

where D(T , ϕ, ‖R0‖, ‖D1‖, ‖D2‖) is a constant and 0 ≤ t ≤ T .

Proposition 5.3. The rate of convergence of the DTSMRE in the diffusion approximation with
equilibrium scheme has the form

‖E[Wε
t ϕ] − W 0

t ϕ‖ ≤ √
εN(T , ϕ, ||R0||, ‖D1‖, ‖D2

1‖),
where N(T , ϕ, ‖R0‖, ‖D1‖, ‖D2

1‖) is a constant and 0 ≤ t ≤ T .
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The proofs of Propositions 5.2 and 5.3 are similar to that of Proposition 5.1. In Corollaries 5.1
and 5.2 below we give some rate of convergence results concerning applications to particular
systems.

Corollary 5.1. (i) The rate of convergence of the AF in the averaging scheme has the form

‖Eyε
t − y0(t)‖ ≤ εa(T , ‖R0‖, κ1),

where a(T , ‖R0‖, κ1) is a constant, with κ1 := supx∈E |a(x)|, and 0 ≤ t ≤ T .

(ii) The rate of convergence of the AF in the diffusion approximation scheme has the form

‖Eξε
t − ξ0(t)‖ ≤ εd(T , ‖R0‖, κ1, κ2),

where d(T , ||R0||, κ1, κ2), with κ2 := supx∈E |a2(x)| is a constant, and 0 ≤ t ≤ T .

(iii) The rate of convergence of the AF in the diffusion approximation with equilibrium scheme
has the form

‖EWε
t − wt‖ ≤ √

εn(T , ‖R0‖, κ1, κ2),

where n(T , ‖R0‖, κ1, κ2) is a constant and 0 ≤ t ≤ T .

Corollary 5.2. (i) The rate of convergence of the GMRC in the averaging scheme has the form

‖ESε
t − S̄t‖ ≤ εa(T , ‖R0‖, κ1),

where a(T , ‖R0‖, κ1) is a constant and 0 ≤ t ≤ T .

(ii) The rate of convergence of the GMRC in the diffusion approximation scheme has the form

‖ESε
t − S0(t))‖ ≤ εd(T , ‖R0‖, κ1, κ2),

where d(T , ‖R0‖, κ1, κ2) is a constant and 0 ≤ t ≤ T .

(iii) The rate of convergence of the GMRC in the diffusion approximation with equilibrium
scheme has the form

‖EWε
t − σwt‖ ≤ √

εn(T , ‖R0‖, κ1, κ2),

where n(T , ‖R0‖, κ1, κ2) is a constant and 0 ≤ t ≤ T .

6. Optimal control and the Hamilton–Jacobi–Bellman equation for DTSMREs

In this section we consider the optimal control of the DTSMRE and derive the Hamilton–
Jacobi–Bellman (HJB) equation in this case. The derivation is based on Dynkin’s formula and
the boundary value problem for random evolutions (see [42]). We also present examples of
Dynkin’s formulae and boundary value problems for controlled additive functionals (CAFs)
and controlled geometric Markov renewal chains (CGMRCs). In the literature a CAF is usually
called the Markov decision process (see, for example, [3], [7], [8], and [9]). We also mention
that the discrete-time case of the stochastic optimal control has been considered in [6].
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6.1. Controlled DTSMREs and Dynkin’s formula, and their boundary value problem

Let U denote a compact Polish space representing the control, and let uk be a U -valued
control process, which we suppose to be a Markov chain. We note that we can define the process
uνk

which is a semi-Markov control process, considered in many papers (see, e.g. [16] and [48]).

Definition 6.1. A controlled DTSMRE (CDTSMRE) 
u
k, u ∈ U and k ∈ N, on B, is defined

by

u

kϕ = D(zk, uk)D(zk−1, uk−1) · · · D(z2, u2)D(z1, u1)ϕ

for k ≥ 1, 
u
0 = I, u0 = u ∈ U , and any ϕ ∈ B0 := ⋂

x∈E,u∈U D(D(x, u)). Thus, we have

k = D(zk, uk)
k−1.

We note that the process (zk, γk, uk) is a Markov chain on E × R+ × U adapted to the
filtration Fk := σ(z�, γ�, u�; � ≤ k), k ≥ 0. We also note that (
u

kϕ, zk, γk, uk) is a Markov
chain on B × E × R+ × U.

Example 6.1. (CAF or Markov decision chain.) Let us define the following CAF:

yu
k =

k∑
l=0

a(zl, ul), k ≥ 0, y0 = y.

If we define the operator D(z, u) on C0(R) by

D(z, u)ϕ(y) := ϕ(y + a(z, u)),

then the CDTSMRE 
u
kϕ has the form


u
kϕ(y) = ϕ(yu

k ).

Example 6.2. (CGMRC.) The CGMRC is defined as

Su
k := S0

k∏
l=1

(1 + a(zl, ul)), k ∈ N, S0 = s.

We suppose that
∏0

k=1 = 1.

If we define the operator D(z, u) on C0(R) by

D(z, u)ϕ(s) := ϕ(s(1 + a(z, u))),

then the CDTSMRE 
u
kϕ has the form


u
kϕ(s) = ϕ(Su

k ).

To the best of the authors’ knowledge, this process has not been defined in the literature and
the notion of CGMRCs is new.

Let us define the following processes: zk := zνk
, γk := k − τνk

, and 
u
kϕ := 
u

νk
ϕ (see

Section 2). We also use the notation

yk := (zk, γk), y0 := y = (z, 0).
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The following process (
u
kϕ, zk, γk) is a Markov process on B × E × U with infinitesimal

generator:

Luϕ = P �ϕ +
∫

E

P �(z, dv)[D(v, u) − I ]ϕ. (6.1)

Here P � is the transition operator defined in (2.1).
The following two results follow from general results for multiplicative operator functionals

(MOFs) (it is easy to understand from the definition that the DTSMRE is a MOF) and the proofs
may be found in [42].

Result 6.1. (Dynkin’s formula for the CDTSMRE.) Let τ be a stopping time such that
Eτ < +∞. Then the following formula is valid for the CDTSMRE:

Ey,u[
u
τϕ(yτ , τ )] = ϕ(y, k)

+ Ey,u,k

[ τ∑
i=k


u
i

{
P � +

∫
E

P �(z, dv)[D(v, ui) − I ]ϕ(yi, i)

}]
.

Example 6.3. (Dynkin’s formula for the CAF.) From Example 6.1 and Dynkin’s formula for
the CDTSMRE, it follows that Dynkin’s formula for the CAF is given by

Ey,z,u,k[f (yu
τ , zτ , τ )] − f (y, z, k)

= Ey,z,u,k

τ∑
i=k

{
P �f (yu

i , zi, i) +
∫

E

P �(z, dz)[f (yu
i + a(z, ui), z, i) − f (yi, z, i)]

}
,

where τ is a stopping time such that Ey,z,uτ < +∞.

Example 6.4. (Dynkin’s formula for the CGMRC.) From Example 6.2 and Dynkin’s formula
for the CDTSMRE, it follows that Dynkin’s formula for the CGMRC is given by

Es,z,u,k[f (Su
τ , zτ , τ )] − f (s, z, k)

= Es,z,u,k

τ∑
i=k

{
P �f (Su

i , zi, i) +
∫

E

P �(z, dz)[f (Si(1 + a(z, ui)), zi, i) − f (Su
i , zi, i)]

}
,

where Su
0 := s.

Result 6.2. (Boundary value problem for the CDTSMRE.) The solution of the CDTSMRE
boundary value problem (BVP)

P �H(ϕ, z, u, k) +
∫

E

P �(x, dv)[D(v, u) − I ]H(ϕ, z, u, k) = −K(ϕ, z, u, k), y ∈ G0,

H(ϕ, z, u, k)|∂Ḡ = b(y, z, k),

where G is a closed set with interior G0 and boundary ∂G, is given by

H(ϕ, z, u, k) = Eϕ,z,u,k

τG∑
i=k

K(
u
i ϕ, zi, ui, i) + Eϕ,z,u,k[b(
u

τG
ϕ, zτG

, τG)],

where τG := inf{i : yi �∈ G}.
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Example 6.5. (BVP for the CAF.) The solution of the BVP for the CAF

P �H(y, z, u, k) +
∫

E

P �(z, dv)[H(y + a(v, u), v, u, k) − H(y, v, u, k)]
= −K(y, z, u, k), y ∈ G0,

H(y, z, u, k)|∂Ḡ = b(y, z, k),

is given by

H(y, z, u, k) = Ey,u,k

τG∑
i=k

K(yi, zi, ui, i) + Ey,u,k[b(yτG
, zτG

, uτG
, τG)].

Example 6.6. (BVP for the CGMRC.) The solution of the BVP for the CGMRC

P �H(s, z, u, k) +
∫

E

P �(z, dv)[H(s(1 + a(v, u)), v, u, t) − H(s, v, u, k)]
= −K(s, z, u, k), y ∈ G0,

H(y, z, u, k)|∂Ḡ = b(y, z, k),

is given by

H(y, z, u, k) = Ey,u,k

τG∑
i=k

K(Su
i , zi, ui, i) + Ey,u,k[b(Su

τG
, zτG

, uτG
)].

6.2. Optimal control of the CDTSMRE

Let G be a compact set in B with a smooth boundary ∂G. Let G0 denote the interior of G,

and suppose that G is the closure of its interior. Define the stopping time τG by

τG := inf{k : 
u
kϕ �∈ G0}.

We suppose that EτG < +∞.

Also, letK(ϕ, z, u, k) andb(ϕ, z, k)be two real-valued bounded functions on B×E×U×R+
and B × U × R+, respectively. Let the cost functional for the CDTSMRE be defined as

C(ϕ, z, u, k) := Ez,k

[ τG∑
i=k

K(
u
i ϕ, zi, ui, i) + b(
u

τG
ϕ, zτG

, τG)

]
,

and let the optimal cost function for the CDTSMRE be defined as

C0(ϕ, z, k) := inf
u

C(ϕ, z, u, k).

We call the functions K(ϕ, z, u, k) and b(ϕ, z, k) the current payments (or current cost) and
the final payments (or final cost) functions, respectively.

Theorem 6.1. The optimal cost function satisfies the equation (we call it the HJB equation for
the CDTSMRE)

inf
u

[LuC0(ϕ, z, k) + K(ϕ, z, u, k)] = 0, ϕ ∈ G0,

C0(ϕ, z, k) = b(ϕ, z, k), ϕ ∈ ∂G,

where the operator Lu is as defined in (6.1).

The proof of this theorem follows from the BVP for the CDTSMRE (see Section 7.5).
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6.3. Optimal control of the CAF and CGMRC

We present here the HJB equations for the CAF and CGMRC. These results follow from
Section 5.1.

6.3.1. HJB equation for the CAF. The optimal cost function C0(y, z, t) for the CAF satisfies
the HJB equation

inf
u

[LuC0(y, z, t) + K(y, z, u, t)] = 0, ϕ ∈ G0,

C0(y, z, t) = b(y, z, t), ϕ ∈ ∂G,

where the operator Lu is defined as

Luf (y, z, t) = P �f (y, z, t) + [P �f (y + a(z, u), z, t) − f (y, z, t)]
and P � is as defined in (2.1).

6.3.2. HJB equation for the CGMRC. The optimal cost function C0(s, z, t) for the CGMRC
satisfies the HJB equation

inf
u

[LuC0(s, z, t) + K(s, z, u, t)] = 0, ϕ ∈ G0,

C0(s, z, t) = b(s, z, t), ϕ ∈ ∂G,

where the operator Lu is defined as

Luf (s, z, t) = P �f (s, z, t) + [P �f (s(1 + a(z, u)), z, t) − f (s, z, t)]
and P � is as defined in (2.1), s := S0.

7. Proofs

In this section we prove the weak convergence limit theorems via the martingale represen-
tation and singular perturbing problems in two steps. In the first step, we prove the relative
compactness of the family of processes by establishing the compact containment condition
and then the relative compactness of �(
ε

t ), where � ∈ B
∗, a dual space of B which separates

points. In the second step, we prove the convergence of the perturbed transition operator of the
extended semi-Markov renewal chains.

7.1. Proof of Theorem 3.1

We first prove the relative compactness of the DTSMRE in the average scheme. Let us
consider the DTSMRE 
ε[t/ε]ϕ, as defined by relation (2.2) which is weakly compact in
DB[0, ∞) with limit points into CB[0, ∞), the space of B-valued continuous functions defined
on [0, ∞). The proof is based on the following lemmas.

Lemma 7.1. Under the conditions of Theorem 3.1, the family of processes 
ε[t/ε]ϕ, ϕ ∈ B0,
satisfies the compact containment condition, and its limit points, as ε → 0, belong to CB[0, ∞).

Proof. We note that, from conditions (A5) and (A6), it follows that the DTSMRE 
kϕ is
a contractive operator in H and, hence, ||
kϕ||H is a supermartingale for any ϕ ∈ H, where
‖ · ‖H is a norm in the Hilbert space H (see [19] and [23]). Obviously, the same properties
satisfy the family 
ε[t/ε]. Using Doob’s inequality for the supermartingale ‖
ε[t/ε]‖H , we obtain

P{
ε[t/ε]ϕ ∈ K�} ≥ 1 − �,
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where K� is a compact set in B and � is any small number. This means that the sequence

ε[t/ε]ϕ satisfies the compact containment condition in B. Taking into account assumptions
(A1)–(A6), we find that the DTSMRE 
ε[t/ε] is weakly compact in DB[0, +∞) with limit
points in CB[0, +∞), ϕ ∈ B0.

Let

J ε
t := J

(

ε[t/ε];

[
t

ε

])
:= sup

k≤[t/ε]
‖
ε[t/ε]+kϕ − 
ε[t/ε]ϕ‖,

and let K� be a compact set of B but with the compact containment condition given in the
relation above. That is, � gives the bound 1 − �. It is sufficient to show that J ε

t weakly
converges to 0. This is equivalent to the convergence of J ε

t in probability as ε → 0.
From the very definition of J ε

t and (A3), we obtain

J ε
t 1K� ≤ ε sup

k≤[t/ε]
sup
ϕ∈S�

(‖D1(zk)ϕ‖ + ‖Dε
0(zk)ϕ‖),

where 1K� is the indicator of the set K�, and S� is the finite δ-set for K�. Then, for δ < �,
we have

Pπ (J ε
t 1K� > �) ≤ Pπ

(
sup

k≤[t/ε]
Dk >

� − δ

ε

)

=
[t/ε]∑
i=1

Pπ

({
sup

k≤[t/ε]
Dk >

� − δ

ε

} ⋂
Di

)

≤ ε2
[

t

ε

]
sup
ϕ∈S�

[(P �)[t/ε](‖D1(x)ϕ‖2 + 2‖D1(x)ϕ‖‖Dε
0(x)ϕ‖

+ ‖Dε
0(x)ϕ‖2)],

where Dk := supϕ∈S�
(‖D1(zk)ϕ‖ + ‖Dε

0(zk)ϕ‖) and

Di := {ω : Dk attains the maximum for the first time on the variable Di}.

It is worth noting that the operator (P �)k is bounded when k → ∞. This is also the case for
(P �)[t/ε] when ε → 0.

Letting both ε and δ go to 0 gives the result of the lemma.

Let us now consider the continuous-time martingale

Mε
t := Mε[t/ε] = 
ε[t/ε] − I −

[t/ε]−1∑
k=0

Eπ [
ε
k+1 − 
ε

k | Fk]. (7.1)

Lemma 7.2. The process

Mε
t := 
ε[t/ε] − I −

[t/ε]−1∑
�=0

[P �Dε(·) − I ]
ε
�

is an F[t/ε]-martingale.
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Proof. As long as

Mε
k := 
ε

k − I −
k−1∑
�=0

[P �Dε(·) − I ]
ε
�

is anFk-martingale, Mε
t = Mε[t/ε] is anF[t/ε]-martingale. Here we have Eπ [Mε

k+1 | Fk] = Mε
k ,

which can be easily checked.

Lemma 7.3. The family �(
∑[t/ε]

k=0 Eπ [
ε
k+1ϕ − 
ε

kϕ | Fk]) is relatively compact for all
� ∈ B

∗
0, the dual of the space B0.

Proof. Let

Nε
t :=

[t/ε]∑
k=0

Eπ [(
ε
k+1 − 
ε

k)ϕ | Fk].

Then

Nε
t =

[t/ε]∑
k=0

[P �Dε(·) − I ]
ε
kϕ.

As long as 
ε
k+1 = Dε(zk+1)


ε
k, we obtain

Eπ [
ε
k+1ϕ | Fk] = Eπ [Dε(zk+1)


ε
kϕ | Fk].

Then∣∣∣∣ �

( [(t+η)/ε]∑
k=[t/ε]+1

Eπ [
ε
k+1ϕ − 
ε

kϕ | Fk]
) ∣∣∣∣ =

∣∣∣∣ �

( [(t+η)/ε]∑
k=[t/ε]+1

[P �Dε(zk+1) − I ]
ε
kϕ

) ∣∣∣∣

≤ ε‖�‖
([

t + η

ε

]
−

[
t

ε

]
− 1

)

× ‖P �(D1(zk+1) + Dε
0(zk+1))ϕ‖

≤ ε‖�‖η

ε
‖P �(D1(·) + Dε

0(·))ϕ‖
= η‖�‖‖P �(D1(·) + Dε

0(·))ϕ‖
→ 0 as η → 0,

since ‖P �(D1(·) +Dε
0(·))ϕ‖ is bounded for any ϕ ∈ B0. Thus, the family

�

([t/ε]∑
k=0

Eπ [
ε
k+1ϕ − 
ε

kϕ | Fk]
)

is relatively compact for any � ∈ B
∗
0.

Lemma 7.4. The family �(Mε[t/ε]ϕ) is relatively compact for any � ∈ B
∗
0 and any ϕ ∈ B0.

Proof. It is worth noting that the martingale Mε[t/ε] can be expressed in terms of martingale
differences:

Mε[t/ε] =
[t/ε]−1∑

k=0

Eπ [
ε
k+1ϕ − Eπ [
ε

k+1ϕ | Fk]].

Then, using the equality

Eπ [
ε
k+1ϕ | Fk] = Eπ [Dε(zk+1)


ε
kϕ | Fk],
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we obtain

Mε
[(t+η)/ε]ϕ − Mε[t/ε]ϕ =

[(t+η)/ε]∑
k=[t/ε]+1

[Dε(zk+1)

ε
kϕ − Eπ [Dε(zk+1)


ε
kϕ | Fk]]

=
[(t+η)/ε]∑
k=[t/ε]+1

[Dε(zk+1)

ε
kϕ − P �Dε(zk+1)


ε
kϕ]

=
[(t+η)/ε]∑
k=[t/ε]+1

[Dε(zk+1) − P �Dε(zk+1)]
ε
kϕ

for any η > 0. Now, from the above, we obtain

Eπ |�(Mε
[(t+η)/ε]ϕ − Mε[t/ε]ϕ)|

≤
([

t + η

ε

]
−

[
t

ε

])
ε

× Eπ [‖D1(zk+1)ϕ‖ + ‖Dε
0(zk+1)ϕ‖ + ‖P �D1(·)ϕ‖ + ‖P �Dε

0(·)ϕ‖]
≤ 2η(‖P �D1(·)ϕ‖ + ‖P �Dε

0(·)ϕ‖)
→ 0 as η → 0,

which completes the proof.

Proof of Theorem 3.1. From Lemmas 7.1–7.4 and representation (7.1), it follows that the
family 
ε[t/ε]ϕ satisfies the compact containment condition, and that the family �(
ε[t/ε]ϕ) is
relatively compact for any � ∈ B

∗
0 and any ϕ ∈ B0. Hence, the relative compactness of the

family 
ε[t/ε]ϕ is established.
Let L

ε(x), x ∈ E, be a family of perturbed operators defined on B by

L
ε(x) := ε−1Q� + P �D1(x) + P �Dε

0(x).

Then the process

Mε
t = 
ε[t/ε] − I − ε

[t/ε]−1∑
�=0

L
ε
ε

�

is an F ε
t -martingale.

The singular perturbation problem for the nonnegligible part of the compensating operator
L

ε, denoted by
L

ε
0(x) := ε−1Q� + P �D1(x),

given by
L

ε
0ϕ

ε = Lϕ + εθε,

on the test functions ϕε(u, x) = ϕ(u) + εϕ1(u, x), has the solution (see [18, Proposition 5.1])
ϕ ∈ N (Q�), ϕ1 = R0D̃1ϕ, with D̃1(x) = P �D1(x) − D̂1, D̂1 = ∫

E
π(dx)D1(x), and θε(x) =

P �D1(x)R0D̃1(x)ϕ.
The limit operator is then given by

L� = �D1(·)�,

https://doi.org/10.1239/aap/1363354109 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354109


232 N. LIMNIOS AND A. SWISHCHUK

from which we get the contracted limit operator

L̂ = D̂1. (7.2)

It is worth noting that martingale Mε
t has the asymptotic representation

Mε
t = 
ε[t/ε] − I − ε

[t/ε]−1∑
�=0

L̂
ε
� + Oϕ(ε), (7.3)

where ||Oϕ(ε)|| → 0 as ε → 0. The families l(M[t/ε]) and l(
∑[t/ε]−1

�=0 [P �Dε(·) − I ]
ε
�) are

weakly compact for all l ∈ B
∗
0 in a dense subset B

∗
0 ⊂ B. This means that the family l(
ε[t/ε]) is

also weakly compact. In this way, the sum ε
∑[t/ε]−1

�=0 L̂
ε
�ϕ converges as ε → 0 to the integral∫ t

0 L̂
̄(s)ϕ ds. The quadratic variation of the martingale l(Mε
t ϕ) tends to 0 when ε → 0; hence,

Mε
t ϕ → 0 when ε → 0 for any f ∈ B0 and any l ∈ B

∗
0. Passing to the limit in (7.3), when

ε → 0, we obtain 
ε[t/ε]ϕ → 
̄(t)ϕ as ε → 0, where 
̄(t) is defined in (3.1).
In the average scheme, the limit M0

t for the martingale Mε
t has a quadratic variation equal

to 0. In fact, the quadratic variation is

〈�(Mε[t/ε])〉 =
[t/ε]∑
k=0

Eπ [�2(Mε
k+1ϕ

ε − Mε
kϕε) | Fk], (7.4)

where ϕε(x) = ϕ(x) + εϕ1(x). Hence,

�(Mε
k+1ϕ

ε − Mε
kϕε) = �((Mε

k+1 − Mε
k )ϕ) + ε�((Mε

k+1 − Mε
k )ϕ1)

and

Mε
k+1 − Mε

k = 
ε
k+1 − 
ε

k − Eπ [
ε
k+1 − 
ε

k | Fk].
Therefore,

�(Mε
k+1ϕ

ε − Mε
kϕε) = �((D(zk+1)

ε − I )
ε
kϕ) − Eπ [(Dε(zk+1) − I )ϕ | Fk]

+ ε�((Dε(zk+1) − I )ϕ1) − Eπ [(D(zk+1)
ε − I )ϕ1 | Fk]

= ε�((D1(zk+1) + Dε
0(zk+1))ϕ) − εEπ [(D1(zk+1) + Dε

0(zk+1))ϕ | Fk]
+ ε2�((D1(zk+1) + Dε

0(zk+1))ϕ1)

− ε2
Eπ [(D1(zk+1) + Dε

0(zk+1))ϕ1 | Fk]. (7.5)

From (7.4) and (7.5) and the boundedness of the operators in (7.5) with respect to Eπ , it follows
that 〈�(Mε[t/ε])〉 goes to 0 when ε → 0.

The limit martingale M0
t equals 0. So, the limit equation for Mε

t has the form (3.1). As long
as the solution of the martingale problem for the operator L̂ is unique, then it follows that the
solution to (3.1) is unique as well [12, Chapter 4], [40, Chapter 7]. It is worth noting that the
operator L̂ is a first-order operator (D̂1; see (7.2)). Finally, since the operator L̂ generates a
semigroup, we have 
̄(t)ϕ = exp[L̂t]ϕ, which is unique.
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7.2. Proof of Theorem 3.2

We can prove the relative compactness of the family 
ε
[t/ε2] by following the same steps as

above. However, in the case of the diffusion approximation, the limit continuous martingale
M0(t) for the martingale Mε

t has quadratic variation that is not 0. That is,

M0(t)ϕ = 
0(t)ϕ − ϕ −
∫ t

0
L̂
0(s) ds

and 〈�(M0)〉 �= 0 for � ∈ B
∗
0.

Furthermore, the operator L̂ defined in Theorem 3.2 is a second-order operator since it
contains the operator D̂2 and �D1R0P

�D1� (compare with the first-order operator L̂ in (7.2)).
Let L

ε(x), x ∈ E, be a family of perturbed operators defined on B by

L
ε(x) := ε−2Q� + ε−1P �D1(x) + P �D2(x) + P �Dε

0(x).

Then the process

Mε
t = 
ε[t/εε] − I − ε2

[t/ε2]−1∑
k=0

L
ε
ε

k

is an F ε
t -martingale with mean value 0.

For the nonnegligible part of the compensating operator L
ε, denoted by

L
ε
0(x) := ε−2Q� + ε−1P �D1(x) + P �D2(x),

consider the singular perturbation problem

L
ε
0ϕ

ε = Lϕ + εθε(x),

where ϕε(u, x) = ϕ(u) + εϕ1(u, x) + ε2ϕ2(u, x). The solution to this problem is given by the
vectors (see [18, Proposition 5.2])

ϕ1 = R0P
�D1(x)ϕ, ϕ2 = R0Ãϕ,

with Ã(x) := A(x) − Â, and the negligible term

θε(x) = [P �D1(x) + εP �D2(x)]ϕ2 + P �D2(x)ϕ1.

Of course, ϕ ∈ N (Q�).
Now the limit operator L is given by

L = P �D2(·) + P �D1(·)R0P
�D1(·),

from which the contracted operator on the null space N (Q�) is

L̂ = D̂2� + �D1(x)R0P
�D1(x)�.

Using the balance condition (3.2), we get the limit operator.
We note that, from conditions (A5)–(A6) and (D1)–(D2), it follows that the DTSMRE


ε
[t/ε2]ϕ is a contractive operator in H and, hence, ‖
ε

[t/ε2]ϕ‖H is a supermartingale for any
ϕ ∈ H, where ‖ · ‖H is a norm in the Hilbert space H (see [19] and [23]). Using Doob’s
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inequality for the supermartingale ‖
ε
[t/ε2]‖H , we obtain

P(
ε
[t/ε2] ∈ K1

�) ≥ 1 − �,

where K1
� is a compact set in B and � is any small number. Then, under conditions (A5)–(A6)

and (D1)–(D2), the sequence Mε
t is tight and is weakly compact in DB[0, +∞) with limit

points in CB[0, +∞).

Also, under conditions (A5)–(A6) and (D1)–(D2), the martingale Mε
t has the asymptotic

representation

Mε
t ϕ = 
ε

[t/ε2]ϕ − ϕ − ε2
[t/ε2]−1∑

k=0

L̂
ε
kϕ + Oϕ(ε), (7.6)

where ‖Oϕ(ε)‖ → 0 as ε → 0. The families l(Mε
t ϕ) and l(ε2 ∑[t/εε]−1

k=0 L̂
ε
kϕ) are weakly

compact for all l ∈ B
∗ and ϕ ∈ B0. This means that 
ε

[t/ε2] is also weakly compact and has a

limit. If we set 
0(t) to be this limit then the sum ε2 ∑[t/εε]−1
k=0 L̂
ε

kϕ converges to the integral∫ t

0 L̂
0(s)ϕ ds. Let M0(t) be a limit martingale for Mε
t when ε → 0. Then, from the previous

steps and (7.6), we see that

M0(t)ϕ = 
0(t)ϕ − ϕ −
∫ t

0
L̂
0(s)ϕ ds. (7.7)

As long as the martingale Mε
t has mean value 0, the martingale M0(t) also has mean value 0.

Taking the mean value of both sides of (7.7) yields

0 = E
0(t)ϕ − ϕ −
∫ t

0
L̂E
0(t)ϕ ds. (7.8)

Solving this, we obtain

E
0(t)ϕ = exp[L̂t]ϕ.

This means that the operator L̂ generates the semigroup U(t) := E
0(t)ϕ = exp[L̂t]ϕ. The
uniqueness of the limit evolution 
0(t) in the diffusion approximation scheme follows from the
uniqueness of the solution to the martingale problem for 
0(t) (uniqueness of the limit process
under weak compactness). As long as the solution of the martingale problem for the operator
L̂ is unique, then it follows that the solution of (7.8) is unique as well [12], [40].

7.3. Proof of Theorem 3.3

We note that Wε
t in (3.3) has the form

Wε
t = ε−1/2

{[t/ε]∑
k=1

[Dε(zk−1) − I ]
ε
k −

∫ t

0
D̄1
̄(s) ds

}
. (7.9)

Since �(D1 − D̂1) = 0, the diffusion approximation algorithm (see Section 3.2) may be
applied to the right-hand side of (7.9) using the operators D2 = 0 and (D1(z) − D̄1)

instead of D1(z). We note that the sequence Wε
t is weakly compact, completing the proof

(see Sections 7.1–7.2).
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7.4. Proof of Proposition 5.1

The problem is to estimate

‖Eπ [
ε[t/ε]ϕε] − 
̄(t)ϕ‖

for any ϕ ∈ B0, where ϕε(x) = ϕ(x) + εϕ1(x).
We note that

(P � − I )ϕ1(x) = −(D̂1 − P �D1(x))ϕ. (7.10)

As long as �(D̂1 − P �D1(x))ϕ = 0, ϕ ∈ B0, the solution to (7.10) is in the domain R(P �−I ),
ϕ1(x) = R0D̃1ϕ. Then

Eπ‖ϕ1(x)‖ ≤ 2‖R0‖
∫

E

π(dz)‖P �D1(z)ϕ‖ =: 2C1(ϕ, ‖R0‖), (7.11)

where R0 is the potential operator of Q� := P � − I . From here we obtain

Eπ‖(
ε[t/ε] − I )ϕ1‖ ≤ 4C1(ϕ, ‖R0‖), (7.12)

since the 
ε
k are contractive operators.

We also note that

∥∥∥∥Eπ

[
ε

[t/ε]∑
k=0

L̂
ε
kϕ −

∫ t

0
L̂
̄(s)ϕ ds

]∥∥∥∥ ≤ εC2(t, ϕ),

where

C2(t, ϕ) := 4T

∫
E

π(dz)‖P �D1(z)ϕ‖, t ∈ [0, T ].

This follows from a standard argument about the convergence of Riemann sums in the Bochner
integral (see Lemma 4.14 of [19, p. 161]).

We have

‖Eπ [
ε[t/ε]ϕε] − 
̄(t)ϕ‖ ≤ ‖Eπ [
ε[t/ε]ϕ − 
̄(t)ϕ‖ + εC1(ϕ, ‖R0‖), (7.13)

where we have used ϕε = ϕ + εϕ1. Note that 
̄(t) satisfies the equation


̄(t)ϕ − ϕ −
∫ t

0
L̂
̄(s)ϕ ds = 0.

Let us introduce the martingale

Mε[t/ε]+1ϕ
ε := 
ε[t/ε]ϕε − ϕε −

[t/ε]∑
k=0

Eπ [
ε
k+1ϕ

ε − 
ε
kϕ

ε | Fk]. (7.14)

This is a zero-mean value martingale; hence,

EπMε[t/ε]ϕε = 0, (7.15)
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which follows directly from (7.14). It also follows from (7.14) that

Mε[t/ε]ϕε = 
ε[t/ε]ϕ − ϕ + ε[
[t/ε] − I ]ϕ1 − ε

[t/ε]∑
k=0

L̂
ε
kϕ

− ε2
[t/ε]∑
k=0

[P �D1(·)
ε
kϕ1 + oϕ(1)], (7.16)

where oϕ(1) → 0 as ε → 0 for any ϕ ∈ B0.
Now, from (3.1) and expressions (7.15)–(7.16), we obtain

Eπ [
ε[t/ε]ϕ − 
̄(t)ϕ] = εEπ [
[t/ε]ε − I ]ϕ1 + Eπ

[
ε

[t/ε]∑
k=0

L̂
ε
kϕ −

∫ t

0
L̂
̄(s)ϕ ds

]

+ ε2
Eπ

[[t/ε]−1∑
k=0

Rk(ϕ1)

]
, (7.17)

where Rk(ϕ1) := P �D1(·)
ε
kϕ1 + oϕ(1). Let us estimate ‖Rk(ϕ1)‖ in (7.17). We have

‖Rk(ϕ1)‖ ≤ sup
g∈K�

(‖P �D1(z)g‖ + ‖og(1)‖) =: C3(z, g, K�), (7.18)

where K� is a compact set, � > 0, because 
ε
kϕ1 satisfies the compactness condition for any

ε > 0 and any k. In this way, from (7.17) we obtain

∥∥∥∥Eπ

[[t/ε]−1∑
k=0

Rk(ϕ1)

]∥∥∥∥ ≤ T

∫
E

π(dz)C3(z, g, K�), t ∈ [0, T ]. (7.19)

Finally, from inequalities (7.11)–(7.13) and (7.18)–(7.19), we obtain the desired rate of
convergence of the DTSMRE in the averaging scheme, i.e.

‖Eπ [
ε[t/ε]ϕε] − 
̄(t)ϕ‖ ≤ εA(T , ϕ, ‖R0‖, ‖D1‖),
where the constant

A(T , ϕ, ‖R0‖, ‖D1‖) := 5C1(ϕ, ‖R0‖) + C2(T , ϕ) + T

∫
E

π(dz)C3(z, g, K�)

and C3(z, g, K�) is defined in (7.18). This completes the proof.

Remark 7.1. In a similar way, we can obtain the rate of convergence results in the diffusion
approximation (see Propositions 5.2–5.3).

7.5. Proof of Theorem 6.1

Suppose that there is an optimal control, say ū, which is Markov. Let � > 0, and let α be
any value in U. Define ũs to be the control that uses the feedback ū for k ≥ � and uses the
control identically equal to α for k < �. Define the CDTSMRE 
̃ũ

k to be the random evolution
which corresponds to control û.
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Let τ̃ denote the time that the target set is reached under this composite control. Also, let 
u
k

and ĉ denote the solution and escape time under the optimal control ū. By definition we have

C0(ϕ, z, k) = E
ū
z,k

[ τ∑
i=k

K(
u
i ϕ, zi, ui, i) + b(
u

τϕ, zτ , τ )

]
,

where k ∈ N. The optimality of C0(ϕ, z, k) implies that

C0(ϕ, z, k) ≤ E
ũ
z,k

[ τ∑
i=k

K(
u
i ϕ, zi, ui, i) + b(
u

τϕ, zτ , τ )

]

= E
ũ
z,k

[τ∧�∑
i=k

K(
u
i ϕ, zi, ui, i) + b(
u

τϕ, zτ , τ )1{τ<�}
]

+ E
ũ
z,k

[ τ∑
i=k

K(
u
i ϕ, zi, ui, i) + b(
u

τϕ, zτ , τ )1{τ≥�}
]
. (7.20)

By the very definition of ũ, the optimality of ū, inequality (7.20) may be written as

C0(ϕ, z, k) ≤ E
ũ
z,k

[τ∧�∑
i=k

K(
u
i ϕ, zi, ui, ) + b(
u

τϕ, zτ , τ )1{τ<�}

+ C0(

u
�ϕ, z�, u�, �)1{τ≥�}

]
.

Hence,

1

�
E

ũ
z,k

[
C0(


u
�ϕ, z�, u�, k + �) − C0(ϕ, z, k) +

τ+�∑
i=k

K(
u
i ϕ, zi, ui, i)

]

≥ 1

�
E

ũ
z,t g(τ, �, ũ)1{τ<�}, (7.21)

where

g(τ, �, ũ) := C0(

u
�ϕ, z�, �) −

�∑
τ∧�

K(
ū
i ϕ, zi, ui, i) − b(
ū

τ ϕ, zτ , τ )

is bounded uniformly by �.
If we assume that P

ũ
z,k(τ < �)/� → 0 as � → 0 then the right-hand side of (7.21) tends

to 0 as � → 0. Taking this limit yields, for any α ∈ U,

LαC0(ϕ, z, k) + K(ϕ, z, u, k) ≥ 0, ϕ ∈ G0,

where the operator Lα is defined in (6.1).
If we suppose in the calculation above that α is replaced by ū on [0, �], then the analogue

of (7.21) holds with the inequality replaced by an equality. Then we obtain the equation

LūC0(ϕ, z, k) + K(ϕ, z, u, k) = 0, ϕ ∈ G0.
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From here, it follows that

inf
α∈U

[LαC0(ϕ, z, k) + K(ϕ, z, α, k)] = 0, ϕ ∈ G0,

C0(ϕ, z, k) = b(ϕ, z, k), ϕ ∈ ∂G.
(7.22)

In this way, we obtain the HJB equation for the CDTSMRE.
Let us prove the converse result. Suppose that we have a bounded function C0(ϕ, z, k) on

Cb(G
0) and control ū such that (7.22) holds. Let us show that C0(ϕ, z, k) is indeed the optimal

cost and ū is an optimal control. Let ũ be any adapted control with 
ũ
t a CDTSMRE.

By the minimization in (7.22),

LūC0(ϕ, z, k) + K(ϕ, z, ū, k) = 0, ϕ ∈ G0,

and
LũC0(ϕ, z, k) + K(ϕ, z, ũ, k) ≥ 0, ϕ ∈ G0.

Let τ and τ̃ be the escape times under the controls u and ũ. Then, from the definitions of the
operators Lū and Lũ, we can write (which follows from Dynkin’s formula for a CDTSMRE)

−E
ū
z,kC0(


ū
l∧τ ϕ, zl∧τ , l ∧ τ) + C0(ϕ, z, k) = −E

ū
z,k

l∧τ∑
i=k

LūC0(

ū
i ϕ, zi, i)

=
l∧τ∑
i=k

K(
ū
i ϕ, zi, ūi , i), l > k, (7.23)

and

−E
ũ
z,kC0(


ũ
l∧τ ϕ, zl∧τ̃ , l ∧ τ̃ ) + C0(ϕ, z, k) = −E

ũ
z,t

l∧τ̃∑
i=k

LũC0(

ũ
i ϕ, zi, i)

≤
l∧τ̃∑
i=k

K(
ũ
i ϕ, zi, ũi , i), l > k. (7.24)

We note that

E
ū
z,kC0(


ū
l∧τ ϕ, zl∧τ , l ∧ τ) → E

ū
z,kb(
ū

τ ϕ, zτ , τ ) as l → ∞ (7.25)

and
E

ũ
z,kC0(


ũ
l∧τ̃ ϕ, zl∧τ̃ , l ∧ τ̃ ) → E

ũ
z,kb(
ũ

τ ϕ, zτ̃ , τ̃ ) as l → ∞. (7.26)

From (7.23) and (7.25), and (7.24) and (7.26), we finally obtain

C(ϕ, z, ū, k) = E
ū
z,k

[ τ∑
i=k

K(
ū
i ϕ, zi, ūi , i) + b(
ū

τ ϕ, zτ , τ )

]
= C0(ϕ, z, k) (7.27)

and

C0(ϕ, z, k) ≤ E
ũ
z,k

[ τ̃∑
i=k

K(
ũ
i ϕ, zi, ũi , i) + b(
ū

τ̃ ϕ, zτ , τ )

]
= C(ϕ, z, ũ, k), (7.28)

respectively. In this way, from (7.27) and (7.28), we show that the minimizing control ū is
optimal, completing the proof.
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8. Concluding remarks and future work

In this paper we introduced discrete-time semi-Markov random evolutions (DTSMREs)
and studied asymptotic properties, namely, averaging, diffusion approximation, and diffusion
approximation with equilibrium by the martingale weak convergence method. The controlled
DTSMREs were also introduced and Hamilton–Jacobi–Bellman equations derived for them.
Applications were given to additive functionals and geometric Markov renewal processes. The
rates of convergence in the limit theorems for DTSMREs, additive functionals, and geometric
Markov renewal chains were also presented.

In this paper we considered fixed initial points for the processes. In fact, the same results
hold when we replace this fixed condition u by yε(0), ε > 0, and the conditions yε(0)

P−→ y(0)

and supε>0 E|yε(0)| < +∞. It is worth noting that the vector case R
d can be written, starting

from the presented results, directly.
Future work will concentrate on the study of the stability of DTSMREs and applications of

the obtained results to reliability theory, DNA analysis, and other discrete-time applied models.
We will also study merging problems for DTSMREs, in particular, merging in averaging and
diffusion approximation schemes, as well as general stopping problems for DTSMREs.
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