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The influence of compressibility on shear flow turbulence is investigated within a
self-preservation framework. This study focuses on the axisymmetric jet to examine
compressibility effects in a slowly spatially evolving flow, unlike mixing layers, where
the convective Mach number remains constant. Revisiting self-preservation, an a priori
description of the compressible scaling for Reynolds stresses and higher-order velocity
moments is developed. Turbulence moments are found to scale with powers of the
spreading rate, suggesting Reynolds stress anisotropy results from compressibility effects
consistent with self-preservation of the governing equations. Particle image velocimetry
measurements for Mach 0.3 and perfectly expanded Mach 1.25 jets confirm the scaling
predictions. The attenuation function, @ (M.), describing the relationship between the
convective Mach number, M., and the spreading rate, follows a similar trend in jets
and mixing layers, where a higher M. results in reduced spreading rates. In the jet
where M, decays, the relationship between the local M, and turbulence attenuation
remains captured through @ (M,.), which scales proportionally with the spreading rate.
A new scale is introduced, where the pressure in the mean momentum equation is
substituted. The difference between the streamwise and radial-Reynolds-normal stresses
was found to be a scale which is independent of Mach number and spreading rate. Further
analysis of the Reynolds-stress-transport budget shows that internal redistribution of
energy occurs within the Reynolds-normal stresses, and the role of pressure modification
in turbulence attenuation supports previous observations. These findings confirm that
the compressible axisymmetric jet exhibits self-preservation, with scaling extending into
supersonic regimes.
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1. Introduction

Studies of compressible shear layers have focused on the influence of Mach number, M,
on turbulence. Early experimental studies of planar mixing layers revealed an inverse
relationship between the spreading rate, b, and M (Bradshaw 1977). To characterise these
effects, Bogdanoff (1983) introduced the convective Mach number, M., suggesting these
effects can be scaled by the Mach number difference of the two sides of the shear layer. The
reduction in &’ is attributed to a reduction of mixing due to the attenuation of turbulence
intensity (Vreman, Sandham & Luo 1996). The scaled Reynolds-shear stress, uv/ U,%, with
U, a suitable velocity scale, also decreases proportionally with b’ as M, increases. For
the other Reynolds-stress components and other turbulence correlations or moments, no a
priori description of the behaviour with M, is currently available (Lele 2021). Individual
Reynolds-stress components appear to scale differently, increasing Reynolds-stress
anisotropy with M, (Smits & Dussauge 2006). In this study, M, scaling effects on the
Reynolds stress, triple-velocity correlations and other turbulence correlations are consid-
ered to scale in a self-preserving manner, where it is revealed that these correlations scale
with powers of b’. While self-preservation arguments have been made previously in the
mixing layer (Pantano & Sarkar 2002; Smits & Dussauge 2006), the case of non-constant
b’ and M, as the flow develops has yet to be considered. This work considers a compress-
ible axisymmetric, or round, jet where M, decays along the jet and b’ is non-constant. This
slowly evolving flow allows for the investigation of scaling and attenuation of turbulence
moments, and provides novel insights on the effects of compressibility in shear flows.

Table 1 lists relevant studies of compressible mixing layers. The compressible mixing
layer can be self-preserving in space or time, depending on its configuration, where after
developing, the spreading rate, b’, approaches a constant value less than its incompressible
counterpart. Similar trends in the behaviour of the attenuation in the spreading rate
have been observed in mixing layers of various configurations when plotted against
M. (Smits & Dussauge 2006). Here, M, represents the propagation of disturbances
in the frame of reference of the large-scale structures (Bogdanoff 1983). An empirical
function, @ (M,), characterises these effects as the ratio between the compressible and
incompressible spreading rates,

b'(Mc)

CD(MC) = b6

(1.1)

While M, is the main parameter characterizing the attenuation, other parameters, such
as the Reynolds number, geometry and initial upstream conditions, can also influence
®(M,.). Feng & McGuirk (2016) suggest a modified behaviour in the axisymmetric
mixing layers and found @ (M,) to express suppression at lower M, compared with planar
configurations. While this also tends to agree with an earlier experiment by Lau (1981),
it is not supported in temporal mixing layers, as from Freund, Lele & Moin (2000). The
lack of data for this behaviour and the unknown physical cause of this observation motivate
further investigation. Here in the axisymmetric jet, the behaviour of @ (M.) has not yet
been described, but is likely distinct from the mixing layer due to differences in flow
structure and decaying M.. The behaviour of @ (M,) in the axisymmetric jet is expected
to resemble the axisymmetric, rather than planar, mixing layer configuration.

In addition to describing the behaviour of @ (M,), further challenges exist regarding
scaling the Reynolds-normal stresses and where the trends do not show consensus. The
scaling of uv/ U,% with Mach number has been described in the mixing layer using
self-preservation and scales proportional to @ (M,) (Vreman et al. 1996; Freund et al.
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Authors Marker Method

Planar mixing layer

Spatial
Chinzei et al. (1986) ¢ Pitot
Papamoschou & Roshko (1988) v Pitot
Samimy & Elliott (1990) * LDV
Goebel & Dutton (1991) o LDV
Debisschop et al. (1994) + LDV
Barre et al. (1994) > Pitot
Clemens & Mungal (1995) A Pitot, PLMS, PLIF
Urban & Mungal (2001) < PIV
Zhang et al. (2019) ¢ DNS
Temporal
Vreman et al. (1996) ° DNS
Pantano & Sarkar (2002) A DNS
Matsuno & Lele (2020) [ ] DNS
Axisymmetric mixing layer
Spatial
Lau et al. (1979) X LDV
Feng & McGuirk (2016) m] LDV
Temporal
Freund et al. (2000) * DNS
Axisymmetric jet
Current study - PIV

Table 1. Comparison of previous studies of compressible shear layers.

2000; Pantano & Sarkar 2002; Smits & Dussauge 2006). As for the normalised Reynolds-

normal stress, u2/U2, experiments by Goebel & Dutton (1991) and Urban & Mungal
(2001), and direct numerical simulation (DNS) by Freund et al. (2000) have shown rela-
tively constant values with M., whereas studies from Samimy & Elliott (1990), Pantano &
Sarkar (2002) and Matsuno & Lele (2020) found attenuation with increasing compressibil-
ity. These discrepancies lead to challenges in developing turbulence closure models which
are able to physically represent these effects (Sarkar & Balakrishnan 1990; Wilcox 1992).

While compressible shear flows resemble their canonical incompressible analogues,
which can be self-preserving, compressibility significantly affects the structure of
turbulence. These differences include reduced pressure-fluctuation levels (Vreman et al.
1996), a reduction in transverse turbulence length scales (Freund et al. 2000) and inhibited
pressure—strain momentum transfer (Pantano & Sarkar 2002). In these studies, the primary
cause of the decreased turbulence levels is attributed to the reduction of the pressure—strain
correlations which inhibits the redistribution of energy. This modified energy transfer
motivates analysis of effects of compressibility on turbulence energetics through the
Reynolds-stress-transport (RST) budgets. Furthermore, few experimental studies have
been performed providing real-world validation of these theories, which are heavily reliant
on observations made from DNS and are limited to lower Reynolds numbers.

Table 1 summarises the numerical and experimental techniques employed in
compressible shear layers. Experimental methods for compressible shear flows are
challenging due to the high-speed nature of the flow and sensitivity of the flow to external
probes. While pitot tube measurements have been performed, they intrude on the flow and
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introduce shockwaves; thus, laser diagnostics are the method of choice. Laser Doppler
velocimetry (LDV) offers high sampling rates, but is limited to single-point measurements,
making capturing spatial flow gradients with adequate resolution impractical. With the
advent of short inter-frame cameras and dual-pulsed lasers, particle image velocimetry
(PIV) is now widely used for compressible flows (Scarano 2008) and has been employed
previously in the mixing layer by Urban & Mungal (2001). The current study employs
PIV to provide detailed measurements of velocity-derived quantities at all locations,
allowing the mean velocity profile, the half-width, b, and Reynolds stresses and their
spatial derivatives to be measured at various M, as the jet decays.

A perfectly expanded axisymmetric free jet is studied in the current work. This
configuration, which has been historically overlooked in the literature, provides further
insight into the compressible scaling of turbulence. The incompressible axisymmetric jet
has been extensively studied (Wygnanski & Fiedler 1969; George 1989; Hussein, Capp
& George 1994; George 1995), providing insight into the scaling of higher turbulence
moments from self-preservation theory. In the compressible jet, many aspects of the
flow have been studied, including the shock structure and mixing noise (Tam 1995;
Wernet 2016). Regarding the turbulent mixing, early studies have attributed the reduction
in the spreading rate in supersonic jets to density ratio effects (Kleinstein 1964) and
little has been studied regarding the impact of the local Mach number on turbulence
mixing or self-preservation considerations. The mixing layer, where a direct relationship
between M, and b’ has been identified, is now a source of ambiguity in the jet where
M, decays when the jet expands and b’ is no longer constant. Expanding on the self-
preservation theory from George (1989), where b’ is a main scaling parameter, turbulence
scalings due to compressibility can be described using a self-preserving framework. The
explicit connection between the convective Mach number, M., and the spreading rate, &/,
established in (1.1), allows for the attenuation of each turbulence moment to be described
as a function of @ (M,).

This paper aims to establish and validate the turbulence scalings obtained from self-
preservation for compressible shear flows. The governing equations and self-preservation
analysis are introduced in § 2. Section 3 details the high-speed PIV experimental set-up
used. In §4, the mean velocity fields are analysed to characterise the compressibility
effects on the jets spreading rate, defining the attenuation function, @ (M,), for the
axisymmetric jet. In § 5, the scaling requirements are derived under the constraints of
self-preservation, extending the analysis to include triple-velocity correlations through the
RST equations. These scalings, which contain different powers of the spreading rate b/,
and consequently @ (M,), are then applied, collapsing the jet PIV data. Further insight is
provided by investigating the jet turbulence energetics. Section 6 estimates the Reynolds-
stress budgets, applying self-preservation scaling to examine the effects of compressibility
and isolating the behaviour of the pressure strain. Finally, § 7 summarises the key findings
and conclusions.

2. Background preliminaries

In compressible turbulence, fluctuating thermodynamic quantities need to be considered.
Under certain conditions, these moments can be considered to have higher-order effects,
thus simplifying the self-preservation analysis. This section reviews the governing
equations in their self-preserving form for the compressible axisymmetric jet.

2.1. Governing equations for the axisymmetric compressible jet

Numerical studies typically solve the Navier—Stokes equations in conservative form
and naturally employ mass-weighted, or Favre, averaging, where density moments are
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absorbed in the averaging procedure. When using velocimetry data from experiments,
the conventional Reynolds-averaged forms of these equations are more suitable for
comparison, but result in several additional terms containing correlations of the fluctuating
density. For sufficiently low Mach numbers, these additional correlations can be neglected.
Morkovin (1964) suggests that for flows where the total temperature fluctuations are
negligible, the magnitude of the density fluctuations can be approximated by the strong
Reynolds analogy,

- =
O LRV )

0 o U
with p the mean density, p” the fluctuating density, © the mean temperature, ®” the
fluctuating temperature, y the specific heat ratio, u; are the components (u, v, w) of
the fluctuating velocities and U; the components (U, V, W) of the mean velocities.
This relation shows p”/p is largest in regions where high Mach number and turbulence
intensity coincide. Originally derived for adiabatic flat-plate boundary layers, this has
been extended to free shear flows such as mixing layers (Bradshaw 1977). For the current
configuration where the stagnation temperature of the jet is approximately the ambient

2.1)

condition, the strong Reynolds analogy is valid, and since Vv ﬁ/ U ~0.2, ﬁ/ p <0.1

for M < 1.25. Per the Cauchy—Schwarz inequality, for example, uv < Vu2vVv2, terms
such as p”uv are an order-of-magnitude smaller than puv. This reduces the governing
equations to

Vi(pU') =0, (2.2)
pUIV,U; = V5 — Vi (puul) + V,7/, (2.3)
where i, j, k are indices reserved for spatial components, Vi is the covariant derivative,

P the mean pressure, f{ the mean stress tensor and overline indicating a temporal mean.
In this section, superscripts indicate upper indices and not exponentiation, and repeated
indices imply the Einstein summation convention. In addition, to determine the scaling
of high-order moments, the scaling behaviour of the RST equations is necessary. To
analyse the first-order scaling effects of the RST equations, only the significant terms
are considered. As the pressure—strain correlation cannot be distinguished from the
pressure-gradient term using only velocimetry measurements, it is assumed that

PV + PV > Vi w8 — w78t | 24

Thus, the pressure—diffusion terms are neglected to isolate and characterise the Mach
number scaling on the pressure—strain term, which, unlike the pressure—diffusion, has a
significant role in the Mach number suppression of turbulence. Again, terms containing
fluctuating-density correlations are neglected, under the assumptions of the strong
Reynolds analogy, and viscous diffusion is neglected for high- Re shear flows. This results
in the first-order RST equations,

[Vk(pUkWtj)] =—Vk [puiuju"] - [(pW)VkUi + (pW)VkUj]

+ [PV + 0V | = () Ve + () Vi | @9)

with p” the fluctuating pressure and (rik)” the fluctuating viscous stress tensor. This
equation consists of the terms contributing significantly to the turbulence energetics. These
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are to be analysed through self-preservation, through which the effect of M, on the scaling
of these terms can be determined. The exact forms, without approximation, of (2.2)—(2.5)
are found in Appendix A. As in the incompressible case, the terms grouped in the
square brackets correspond to the advection, diffusion, production, pressure—strain and
viscous-dissipation terms, respectively.

2.2. Self-preservation of the compressible axisymmetric jet

Self-preserving flows provide insight into the dynamical processes; self-preservation
implies a state of equilibrium of the turbulence energetics. A flow is considered self-
preserving if, when scaled, can produce collapsing profiles. For the incompressible jet,
the scales are the centreline velocity and jet width, where according to classical theory,
the jet width spreading rate, o', is considered a universal constant which ‘forgets’ its
initial conditions (Townsend 1980). George (1989) challenged these ideas and instead
classifies flows as fully, partially and locally self-preserving. The classification of which
moments that can collapse depends on the scale determined through the similarity analysis
of the governing equations. Under this classification, the incompressible jet is considered
fully self-preserving when the profiles of all individual moments can collapse with the
appropriate scale. Furthermore, George (1989) argues that the scale depends on the
individual &’ of the jet, which is not universal, and can differ depending on initial
conditions and Reynolds number. Partially self-preserving flows then refer to flows where
at least the Reynolds-shear stress collapses according to the scale U,% b’ for the jet (George
1989). Lastly, locally self-preserving refers to flows where profiles are observed when
normalised with a scale not determined through the governing equations.

For a compressible flow to be considered self-preserving, the thermodynamic quantities
and their moments must develop either consistently with the other terms or be negligible.
In the compressible mixing layer, assuming a turbulent Prandtl number Pr,~1, a
Reynolds analogy can be made such that the density and temperature scale with the
velocity (Pantano & Sarkar 2002; Smits & Dussauge 2006). After similarity analysis of
the momentum equation, the main condition for self-preservation becomes uv/U? o b/,
where U, is the velocity difference of the mixing layer. In the compressible mixing layer,
b’ is constant as the shear layer develops, which depends on the configured M., and
satisfies this condition (Vreman et al. 1996). This scaling indicates at least a partially
self-preserving flow, with full self-preservation contingent on how higher moments scale.

As opposed to the mixing layer, where compressibility effects are constant and M,
b’ and p do not vary with streamwise location, these quantities now change as the
jet develops. Following George (1989), the functional dependencies of the similarity
variables Uy, (x), pp (x), pm(x) and R;;(x) are left to be determined. Defining in physical
components,

n=r/bx), (2.6)
U=Un)fm), 2.7
p = pm(x)g(n), 2.8)
p = pm(xX)h(n), 2.9)

utul = Rij(x)rij(n), (2.10)

where 7 is the normalised radius, and f(1), g(n), h(n) and r;j(n) are shape
functions. The density profile, g(n), can be considered a function of the velocity
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using a Crocco—Busemann relation (Smits & Dussauge 2006). The momentum of the
compressible jet is conserved, as in the incompressible jet. To the first order,

o0
Jo=2m / oU?r dr, (2.11)
0

where Jy is a constant. Substituting (2.6)—(2.8) into (2.11), it can then be shown that

U, lp, b
Zm_ Pm 7 2.12)
Un 2 pm b
which provides a relationship between the density, velocity, jet thickness and their
streamwise gradients. With (2.2), (2.12), the streamwise momentum equation,

U AU 9 _ larpuv  dpu?
U— V—=—p—— - , 213
p 0x te ar Bxp r or 0x ( )
can be shown for the jet using similarity variables,
1 p, agf 1" . 8gf L
L (gﬁ - [Cariai) =5 (ar+ 2L [Ceriai
2 pm an gn n gn
__pmb" Oh p), b Ri2 ld(g”lzﬂ) Rub' d(grn)  (Riipm)
bU2pm 81 ' U2pm  bUZ7  dn bU2 T dn U2 pm
(2.14)

In this form, the mean density effects on the jet flow is contained in the first term on the
left of (2.12) and do not scale in a manner proportionally with the other terms. Therefore,
self-preservation can only be approximated if the density gradients can be neglected, such
that,

U’ b
U—m ~ 3 (2.15)
m

and will be shown in § 4.2 to hold for the current jet. Using this simplification, the first-
order, without the Reynolds-normal stresses, self-preservation equation is then

1of Rip 1d(rizn)
-f--2 / fFidi=—2 1 , (2.16)
Umb n dpn
such that the Reynolds-shear stress must satisfy the scaling,
R
b o2, 2.17)
Um

where a linear relationship between » and x is not assumed or required, and shear stress
uv/ U,%l scales with the spreading rate &', and is consistent with that observed for the self-
preserving compressible mixing layer (Vreman et al. 1996; Menaa 2003). The remaining
Reynolds-normal stress and pressure in (2.14) scale according to

Pm pwb Ru  Ryb
0'¢ X — X .

omUZ — pnUZD U2 UZb
The forms of the equations and scales recover the findings for the incompressible
round jet by George (1989), which introduced that satisfying the condition of (2.17) is

sufficient for a partially self-preserving flow, that is, the streamwise momentum equation
is satisfied to the first order. For fully self-preserving flows, the normal stresses and all
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Figure 1. Schematic of jet flow.
Case Ty (K) Ujer (ms™") Po/ Pjet Pjer/ PO Rejer
M;; =03 293 102 1.09 0.95 36000
Moy =1.25 293 375 2.70 0.51 86 000

Table 2. Jet parameters for different Mach numbers.

higher moments must behave according to the scales determined through self-preservation
analysis. As the scaling and their requirements have yet to be established for compressible
jets, it is unclear whether this condition can be met or its impact on describing the flow
physics.

3. Experimental set-up

High-speed PIV is used to allow for detailed measurements of turbulence profiles and their
streamwise developments. This section details the jet facility, as well as the PIV system
used to measure the supersonic flow.

3.1. Flow conditions

Figure 1 is a schematic describing the free jet exhausting into ambient environment.
A subsonic and supersonic case are investigated at Mach 0.3 and Mach 1.25, respectively.
Building compressed air is supplied and controlled using an Omega PRG700 pressure
regulator. The stagnation temperature, 7p, and stagnation pressure, Py, are measured
before flow enters a 0.5m long stainless steel pipe of inner diameter 10.75 mm. The
end of the pipe is fitted with a converging—diverging nozzle and is designed using
the method of characteristics with an exit-to-throat area ratio of 1.047, with a nozzle
exit diameter of 6.35 mm. Ambient laboratory conditions are also monitored, ensuring
constant ambient conditions between tests. The stagnation-to-ambient nozzle pressure
ratios are 1.87 and 2.70, corrected by 2 % and 5 %, respectively, to account for losses
in the pipe assuming adiabatic Fanno flow for the Mach 0.3 and 1.25 cases. Both jets are
considered fully turbulent, with Re &~ 36 000 and 86 000 for the Mach 0.3 and Mach 1.25
cases, respectively. The turbulence intensity exiting the converging—diverging nozzle is
estimated to be approximately 2.5 % at the jet centreline at x /d = 1 where measurements
are available.
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Figure 2. Schematic of free jet PIV experimental set-up.

3.2. Particle image velocimetry system

Figure 2 shows a diagram of the experimental set-up. Planar particle image velocimetry
(PIV) was employed to measure two-component velocity fields in the plane bisecting
the nozzle’s centre plane. Velocity measurements were captured over a streamwise range
from x/d =0 to 25, using four overlapping fields-of-view (FOVs) of approximately 50
mm x 50 mm. The nozzle was mounted on rails, allowing it to slide independently of
the laser and camera in the streamwise direction, ensuring consistent alignment between
the light sheet and the camera across different measurements. The FOVs overlapped by
10.8 mm, covering approximately 25 % of the streamwise direction to ensure seamless
data collection across the measurement region.

Both the jet and the ambient air were seeded with ~1 pm di-ethyl-hexyl-sebacat
(DEHS) particles, generated by a six-jet Laskin nozzle (7SI 9307-6). Although solid
tracers are typically used for high-speed flows, DEHS was selected due to the need to
seed the open environment of the jet flow. DEHS was preferred over solid particles due
to the difficulties in collecting solid particles in an open environment while maintaining
a suitable response time. Ragni et al. (2011) demonstrated that DEHS particles of this
size have a response time of approximately 2 s, which is comparable to solid tracers
like TiO5. This results in a Stokes number of ~0.1, and ensures that the DEHS particles
closely follow the flow’s velocity fluctuations, providing accurate measurements of both
mean velocity and turbulence quantities.

The PIV system consisted of a complementary metal-oxide—semiconductor (CMOS)
camera (FastCAM Photron SA-5) with a 20 x 20 wm sensor and a resolution of 1024 x
1024 pixels camera was equipped with a Nikon AF Micro-Nikkor 60 mm f/2.8D lens and
positioned 20 cm perpendicular to the light sheet. This results in a spatial pixel resolution
of approximately 20 pixels mm~'. The inter-frame time was set to 0.23 s, independent
of frame rate and resolution. A dual-cavity Nd:YLF laser (Photonics DM20-527-DM)
was used as the illumination source, operating at a repetition rate of up to 10 kHz and
delivering up to 20 mJ per pulse. The light sheet was formed using two spherical lenses
and a cylindrical lens with a thickness of approximately 1 mm. At the nozzle exit — where
the error due to the light-sheet thickness relative to the jet is greatest — the difference
between the chord length at the laser-sheet edge intersecting the nozzle and the nozzle
diameter is less than 1.25 %. Hence, the potential effect of an azimuthal orientation error
can be considered negligible, and the measured velocity components approximate well the
two-dimensional field along the PIV centre-plane. Measurements were conducted in dual-
pulse mode, with a pulse separation interval of 1-1.5 ws, ensuring that particles moved

1017 A36-9


https://doi.org/10.1017/jfm.2025.10475

https://doi.org/10.1017/jfm.2025.10475 Published online by Cambridge University Press

K.Y.-N. Hinh, R.J. Martinuzzi and C.T. Johansen

(a) (b)
1.00 1.00 —-—W-—-—
o :E % ) uu‘g %un 5
o . 20 o ° o ¥ "\
ry Biu ug %“
0.75 | off o 0.75 | I o
3 & . T
. ¥ |8 5 2 %
) ¥ § = £ 2
S 050 f 3 S 050t ég Y
% %
o
025t 025t
0 0@
0
n=r/b

Figure 3. Development of velocity profiles. Every second point is shown for clarity. Axial positions: x /d = 1.0
(0); 3.0 (@); 7.0 (»); 10.0 (<1); 13.0 (=>). Shaded areas show 95 % expanded uncertainty bounds in respective
colours. (a) Mach 0.3. (b) Mach 1.25.

approximately 7 pixels in the centre of the jet between image pairs. A silicon photodetector
(Thorlabs DET02AFC) was used to verify the pulse separation timing to match the trigger
signal.

The image pairs were processed using LaVision DaVis 10.2.0 software. Each test
consisted of 2700 image pairs, with Reynolds stresses converging after approximately
750 pairs. The processing employed a multi-pass strategy, refining the vector field
iteratively to improve accuracy, resulting in a 16 x 16 pixel interrogation window size with
75 % overlap. Sub-pixel accuracy when determining the particle image shift is achieved by
peak fitting a Gaussian three-point estimator. This provides roughly 40 vectors across the
jet’s exit diameter. The 95 % expanded uncertainty bounds were calculated to account for
random sampling errors (Benedict & Gould 1996) and are displayed where they exceed the
marker size. Only random errors are displayed for the velocity moments as they are large
in magnitude, hence more conservative than a posteriori uncertainty estimation methods
available from the DaVis software, which does not consider the errors associated with the
high-speed nature of the current flow.

4. Mean field characteristics

Figure 3 shows the mean velocity profiles, U/U,,, just outside the nozzle starting at
x/d = 1. The half-width b, defined at the radial location where U = (1/2)U,,, is used
as the length scale. Due to reflections of the light sheet off the nozzle, the jet-exit velocity
profile and data are unavailable for x/d < 0.8. The profiles show the jet-core region and
are found to approach the Gaussian profile distribution, indicative of self-similarity as
early as x /D = 10. This rapid development is likely due to the configuration of the current
upstream nozzle condition. Although the current jet is expelled through a convergent—
divergent nozzle, the influence of the boundary layer is expected to be significant in
accelerating the development, as is the case for jets expelled from a pipe flow. Jets expelled
from pipes have been shown to develop faster to self-preservation conditions than ‘top-hat’
jets (Nguyen & Oberlack 2024).

Figure 4 shows the collapse of the mean velocity profiles, U/ U,,, in both incompressible
and compressible cases. The vorticity thickness, which is defined as the location
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Figure 4. Self-preserving velocity profiles comparison between compressible and incompressible jets. LDV
from Hussein et al. (1994) ( ). Every fourth point is shown for clarity. (a) Mach 0.3. Axial positions:
x/d =17.5 (0) ; 20.0 (O); 22.5 (1); 25.0 (<0); 27.5 (-); (b) Mach 1.25. Axial positions: x/d = 12.5 (0); 15.5
(O); 18.5 (»); 21.5 (<0); 24.5 ().

of maximum shear rate, is commonly used in mixing layer studies. For self-similar
mean velocity profiles, the vorticity thickness is directly proportional to the half-width,
8w = 1.4b. Thus, the trends and qualitative scaling behaviour of the jet thickness are the
same using either b or §,, as length scales. The mean profiles are shown after x /d = 17.5
and 12.5, for the Mach 0.3 and Mach 1.25 jets, respectively. These locations correspond to
where the Reynolds-shear stress is self-preserving, which will be shown in the following
sections. Despite the compressibility effects of the Mach 1.25 jet, the mean velocity profile
does not significantly differ, which was observed in compressible mixing layers (Smits &
Dussauge 2006). For reference, incompressible jet data collected using LDV from Hussein
et al. (1994) are overlaid.

In incompressible jets, the profiles can be collapsed using the axial distance, x, through
the classical self-similarity scaling x o b. Due to compressibility effects in the Mach 1.25
jet, b is no longer directly proportional to x, and scaling the velocity profiles with b is
necessary. This scaling can be observed in figure 5(a), which plots the development of
b of both the Mach 0.3 and Mach 1.25 jets. Near the exit of the nozzle, Mach number
effects are significant and b develops with a varying slope not observed in the Mach 0.3
jet. Towards the end of the domain where the Mach 1.25 approaches a subsonic value,
the slopes approach a similar value, corresponding to 0.085 and 0.088 for the Mach
0.3 and Mach 1.25 jets, respectively. Although these downstream spreading rates are not
identical, the rates at the end of the domain fall within the range of 0.079-0.1, previously
reported for incompressible axisymmetric jets (Gutmark 1983). The discrepancy in slope
is attributed to sensitivity to initial conditions and parameters such as Reynolds number
(George 1989). Likewise, figure 5(b) shows differing slopes for the inverse of the
centreline velocity, where for Mach 0.3, the slope is approximately 0.016 compared with
0.014 for Mj,, = 1.25. These observations are consistent with self-similarity behaviour,

i.e. Uynocx~!. Based on 95% of the jet-exit velocity, the end of the jet potential core
is 5.2 x/d and 6.3 x /d for the Mach 0.3 and Mach 1.25 jets, respectively. The extended
length of the jet core in the Mach 1.25 is a result of the density ratio and the decreased
mixing due to Mach number effects, which is further discussed in the following section.
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Figure 5. Approximate power laws. Mach 0.3 (00) and Mach 1.25 (o). (a) b development (mm). Overlaid lines
with slope of 0.083 ( ) and 0.085 (—-—) in mm/mm; (b) U,, development. Overlaid lines with slope of
0.016 ( ) and 0.014 (— —).

4.1. Kleinstein—Witze scaling

Methods approximating the centreline velocity development for compressible axisym-
metric jets has been addressed through the Kleinstein—Witze scaling. Assuming an eddy
viscosity in the form (Ferri, Libby & Zakkay 1964)

pve = (k /D) bpmUn, 4.1)

where k is a proportionality constant, the solution of the linearised momentum equation
describes the centreline velocity decay in the form,

Un -1
=1—exp

N T
d’ \ po

where X, is a constant describing the jet core length (Kleinstein 1964). Figure 6 shows the
centreline velocity development with fitted functions of (4.2) overlaid. The constants are
found to be k =0.0796 and X, = 0.487 for Mj,; = 0.3, and k = 0.0842 and X = 0.511 for
Mje; = 1.25. The scaling was originally proposed with constants k =0.074 and X =0.7.
Witze (1974) suggests k to have some Mach number dependence. Studies by Lau, Morris
& Fisher (1979), Lau (1981) and Wernet (2016) confirm that (4.2) generally captures the
effect of density, but large scatter remains in the values reported from different studies for
k and X.. Here, the lower values of X, reflect the pipe-nozzle configuration on the jet
initial condition.
Kleinstein (1964) also shows that the total enthalpy, H, is given in the form,

, 4.2)

H — Hy -1
——=1—exp

Hir — Ho N
! 2Pt (%) <@) ~ X,
d’ \ po

, 4.3)
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Figure 6. Downstream development of Uy, / Uje; for Mach 0.3 (O0) and Mach 1.25 (o). Witze—Kleinstein
functions for Mach 0.3 ( ) and Mach 1.25 (—-—).

where Pr; =0.715 was experimentally determined by Kleinstein (1964). This relation
allows the centreline total enthalpy to be determined from the fit constants of the velocity
data. This allows further derived properties like the density, temperature and Mach number
to be estimated on the jet centreline, which are used in the following section to aid in the
scaling of the jet.

4.2. Compressibility and spreading rate

Compressibility impacts b’ through two key mechanisms: the mean density ratio and
the convective Mach number, M,.. Where the mean density gradient affects 4’ through
continuity, M, affects turbulence mixing through the attenuation of the Reynolds stresses.
These two effects have been shown to act independently (Bradbury & Riley 1967; Barre,
Quine & Dussauge 1994). Brown & Roshko (1974) compared subsonic mixing layers
of different density ratios with supersonic mixing layers having the same density ratios.
The behaviour of supersonic mixing layers could not be described by density variations
alone, unlike the behaviour observed in compressible boundary layers. Although density
variations influence the spreading rate, this effect is generally only significant at density
ratios >7 in both subsonic (Brown & Roshko 1974) and supersonic mixing layers (Menaa
2003). Therefore, at moderate density ratios, »" is mainly a function of M, in supersonic
mixing layers. Figure 7 shows the spreading rate, ', for Mj,; =0.3 and M, =1.25.
To reduce noise in the slope, a low-order polynomial fit of the half-width data is used
to calculate the rate.

The downstream development of M, is shown in figure 8, where the shaded area shows
the 95 % expanded uncertainty bounds. For an identical specific heat ratio of the gases on
both sides of the shear layer, the convective velocity is defined as

U, = M, (4.4)

am +aj
where a is the speed of sound, and the high-speed and low-speed sides are noted with
subscripts m and [, respectively (Papamoschou & Roshko 1988). In the free jet, the
centreline quantity corresponds to the high-speed side and the low-speed side ambient
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Figure 7. Downstream development of 5" in mm/mm from curve fits of b for Mach 0.3 ( ) and Mach 1.25

( ). Shaded areas show 95 % expanded uncertainty bounds in respective colours.
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Figure 8. Downstream development of M, ( ) left axis, b’ /b (- - -), U, /Uy (—-—) and (1/2)p'/p
) right axis for Mach 1.25. Shaded areas show 95 % expanded uncertainty bounds in respective colours.

(

conditions where U; = 0, where M, simplifies to the following relation,

U,
M,=—"

= 4.5
am + aj ( )

Here, a,, is approximated using the temperature determined from the total enthalpy
from (4.3) and a; from the ambient static temperature.

Figure 8 depicts the downstream development of the streamwise gradients of U, and
b as ratios U,,/U,, and —b'/b. In the region x/d >~ 10, U, /U,, and —b'/b differ less
than the experimental uncertainty, thus justifying the approximation of (2.15) and implies
P,/ p is generally small. Satisfying (2.15) implies neglecting the first term of (2.14). This
approximation extends previous observations in mixing layers (Brown & Roshko 1974;
Menaa 2003) to jets, showing that at the current density ratios, the reduction in b’ can be
attributed primarily to M, effects.

To compare the effect of compressibility on the spreading rate between the jet and
the mixing layer, @ (M,) defined in (1.1) is employed. Here, the spreading rate of the
Mje; = 1.25 jet as it decays is normalised by the value from the incompressible M, = 0.3
jet from figure 7. Unlike the mixing layer, @ (M,) in the jet changes as M. decays. Figure 9
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Figure 9. Shear layer thickness growth rate suppression. Current study in ( ) compared with (a) previous
experimental studies and (b) numerical studies. For the legend of used markers, see table 1. Axisymmetric data
coloured in red and planar data in blue. Curve from Dimotakis (1991) (—-—) and Langley experimental curve
from Kline, Cantwell & Lilley (1982) (- - -). Shaded areas show 95 % expanded uncertainty bounds.

compares the behaviour of @ (M,) in the current jet data with earlier results for mixing
layers. Similar trends between the data suggest that the local M, strongly influences
@ (M,.). Although the magnitude of the values observed in the present jet is similar to
those of the planar measurements from Papamoschou & Roshko (1988), the slope of
the jet data tends to be more similar to the annular mixing layer than the planar mixing
layer experiments. Feng & McGuirk (2016) suggests the hypothesis where axisymmetric
symmetry modifies the behaviour of @ (M.), observing that the spreading rate suppression
occurs at lower M., where the cause of this phenomenon remains unelucidated. It thus
appears that while @ (M,) is mainly a function of M., geometric effects also have an
influence.

5. Self-preservation scaling of velocity correlations

As established in § 2.2, self-preservation requires #v/ U2 to scale proportionally with the
spreading rate, where the compressibility effects are characterised by @ (M,). Although
confirmed for the mixing layer, this section verifies the scaling for the axisymmetric
compressible jet. The self-preservation arguments for the remaining Reynolds stresses and
triple-velocity correlations are made showing their scaling with compressibility effects.

5.1. Reynolds-shear stress scaling

Figure 10(a) presents the Reynolds-shear stress profiles for the Mach 0.3 jet, normalised
using the classical scaling U,%l. For comparison, the incompressible LDV data from
Hussein et al. (1994) is overlaid. From axial positions beyond x /d = 17.5, a good collapse
of the profiles is observed and agrees with the LDV measurement from Hussein et al.
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Figure 10. Reynolds-shear stress. Classical scaling with U,fl. LDV data from Hussein et al. (1994) (—).
Every fourth point shown for clarity. Shaded areas show 95 % expanded uncertainty bounds in respective
colours. (a) Mach 0.3. Axial positions: x/d = 17.5 (o) ; 20.0 (0); 22.5 (»); 25.0 (<1); 27.5 (--); (b) Mach 1.25.
Axial positions: x/d = 12.5 (0); 15.5 (0); 18.5 (»); 21.5 (<0); 24.5 ().
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Figure 11. Mach 1.25. Collapse of #v profiles with scaling U2 5. Same legend as figure 10(b). Profile
calculated from (5.1) (- - ).

(1994). The similarity of the Reynolds stresses, like the mean profiles discussed in § 4,
are observed to occur earlier upstream due to the initial conditions of the current jet. In
contrast, for Mj,; = 1.25 in figure 10(b), the collapse of the Reynolds-stress profiles is less
satisfactory and the amplitude is lower in the upstream regions where M, is larger.

In figure 11, the profiles of Reynolds stress using the self-preservation scaling, Un%b’ ,
collapse better, especially for the data upstream where M. is elevated. Using this scaling,
the Reynolds-shear stress in the Mach 1.25 jet exhibits similarity at approximately
x/d =12.5. This scaling also collapses the incompressible data. The scaled Reynolds-
shear stress profile can be calculated using the mean velocity when rearranging and
integrating (2.16) in the following manner:

R 1/" . af /;’ o\ e
=— — - — d dn. 5.1
2y nrf 27 o Sndn| dn (5.1
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Figure 12. Maximum Reynolds stress #v normalised by U2 as a function of M,. for mixing layers and the
present jet data. Samimy & Elliott (1990) (x), Goebel & Dutton (1991) (o), Urban & Mungal (2001) (<),
Debisschop, Chambers & Bonnet (1994) (+), Pantano & Sarkar (2002) (a), Freund et al. (2000) (%), current
study (-).

The Reynolds-shear stress profile calculated from (5.1) is plotted and aligns with
the data, validating the scaling and tacitly supporting the underlying assumptions
underpinning (2.1) and (2.15). Figure 12 compares the behaviour of the max Reynolds-
shear stress, uv/ Unzw as a function of M., providing a comparison to mixing layer data.
Again, a decreasing trend in amplitude with M, is observed. Collapse of the Reynolds-
shear stress indicates a form of self-preservation is observed in the compressible jet and
suggests the flow is at least partially self-preserving. Self-preservation of other turbulence
moments is unclear and is now investigated.

5.2. Reynolds-normal stress scaling

The proposed scaling of the streamwise Reynolds stress, u2, derived from the self-
preservation analysis of (2.14), is Ry ocU2. This scaling suggests that assuming
self-preservation implies that " and, therefore, compressibility do not affect this Reynolds-

stress component. Figure 13(a) plots u_z/ U,% for Mj,; =1.25, where profiles do not

collapse. Instead, the peak values of ﬁ/ U,%l increases progressively as the jet evolves
downstream, a trend also seen in the Reynolds-shear-stress profiles of uv/ Un21. With this

observation, figure 13(b) now shows the scaling % normalised by b’ Un%, which collapses
the profiles at x/d > 15. Although this scaling does not have any physical basis from a
self-preservation standpoint, it produces a more consistent collapse of the data across the
downstream locations. This scaling suggests that factors other than those predicted by
self-preservation theory influence the compressible behaviour of u?.

In figure 14(a), the maximum magnitudes, u? / U,%,, at different streamwise locations, are
compared at different M, for the jet and mixing layer. Two distinct trends emerge from the
literature. Goebel & Dutton (1991) and Freund et al. (2000) (at M, > 0.4) observed scaling
independent with M., consistent with the similarity assumption. However, Elliott &
Sarrimy (1990), Samimy & Elliott (1990) and Matsuno & Lele (2020) report a suppression
of u?/ U,% as M, increases. The current jet data trend aligns with the latter set of
studies. While some scatter and asymmetry are observed in the profiles, the measurements
remain within the 95 % uncertainty bounds shown in the shaded colours. Figure 14(b)
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Figure 13. Reynolds-normal stress u2. Axial positions: x/d =15.0 (0); 17.5 (0); 20.0 (»); 22.5 (<1); 25.0 ().
Shaded areas show 95 % expanded uncertainty bounds in respective colours. (a) Mach 1.25. Classical scaling
with U,%,; (b) Mach 1.25. Collapse of u2 profiles with scaling U,%Lb’.
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Figure 14. Maximum Reynolds stresses as a function of M, for mixing layers and present jet data. Samimy &
Elliott (1990) (x), Goebel & Dutton (1991) (o), Debisschop et al. (1994) (+), Urban & Mungal (2001) (<),
Pantano & Sarkar (2002) (A), Matsuno & Lele (2029 (m), Feng & McGuirk (2016) (00), Freund et al. (2000)

(%), current study (-). (@) Maximum Reynolds stress #2 normalised by U,%. (b) Ratio of the maximum Reynolds

stresses uv/u?.

examines the ratio of #v to u? as a function of M,. This ratio remains nearly constant

at approximately 0.6, consistent with findings in mixing layer studies reporting ﬁ/ U,fl
suppression (Samimy & Elliott 1990; Pantano & Sarkar 2002), and supports the evidence

that v and u? are attenuated by compressibility proportionally.
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Figure 15. Comparison of classical and self-preservation scaling of v2. Mach 1.25 jet. Axial positions:
x/d=15.0 (0); 17.5 (B); 20.0 (»); 22.5 (<1); 25.0 (). Shaded areas show 95 % expanded uncertainty bounds

in respective colours. (a) Classical scaling with U,%l; (b) Collapse of v profiles with self-preservation scaling
U2b2.

For ﬁ, substituting (2.6)—(2.10) yields the radial-momentum equation,

av avVv. dp 10 —
U—4+pV— ="+ —— 2), 5.2
p 0x p or or rar(rpv) (5-2)

and performing the similarity analysis results in the following normalised scalings:

Pm Ry

[0 , 53
Om Ur%tb/z Ur%bzz ( )

Const.

or v2 o U,121b/2. From figure 15(a), profiles of ﬁ/ Un% shows strong attenuation with M.
Instead, figure 15(b) plots the profiles using the self-preservation scaling from (5.3).

Now, the profiles of v2 collapse. Figure 16 compares the behaviour of the maximum of v2

with M. with the mixing layer literature. Unlike, u2 the behaviour of v2 shows a consensus
with the literature where attenuation with M, is observed.

To further investigate the scaling observed in the Reynolds-normal stresses, the pressure
term is now considered. Pressure can be estimated by integrating the radial momentum
equation from p,, where there is no turbulence to any location, ». This yields p,, — P =

pv? which is substituted into the streamwise momentum equation, resulting in

oU oU larpuv ]
U— — —(pu? — pv? 5.4
p 0x oV ar r or dx (pu Py ) 54)

To investigate the scaling of this term, the similarity substitution u 2= v (x)y(n) is

made, yielding

Rip ' v'b
— X —5—.

Uz Zb/ U2 U2

Figure 17 plots the normal stress difference, showing profiles collapse under this

scaling for the compressible jet flow. The same profile is also observed for M., =0.3.
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Figure 16. Maximum Reynolds stress v2 normalised by Un%. Same legend as figure 14.

x1072

gﬁ%
A TS
§ LY
1 LY

%

n=r/b

Figure 17. Collapse of profiles of Reynolds-normal stress difference for the Mach 1.25 jet. Marker axial
positions have the same legend as figure 15.

For the Mj,; =1.25 case, this observation is unexpected since u?, unlike vZ, did not
obey self-preservation scaling previously. Upon closer examination, the pressure in the
streamwise (2.14) and radial (5.2) momentum equations suggests different scaling. In the
streamwise equation, py, X pp, U,%, whereas in the radial equation, p,, o o, Un%b’z. The
pressure term may involve two parts and complex dynamical interactions emphasised by
compressibility. Self-preservation can be satisfied when considering the aggregate of the
Reynolds-normal stresses.

Figure 18 shows the streamwise development of the local-maximum scaled-Reynolds
stresses for the Mach 1.25 jet. It shows that when using the correct scale determined
using self-preservation arguments, the Reynolds stresses can be considered self-preserving
under Mach number effects. The scaled Reynolds-shear stress, uv/ U,%lb/ , is the first
to plateau, at approximately x/d = 12.5, whereas the normal stresses appear to plateau
further downstream, at approximately x /d = 15. The relatively early state of preservation
is due to the upstream condition of the jet as discussed previously. To further
investigate these scaling concepts, self-preservation analysis of the Reynolds-stress-
transport equations are required for higher-order turbulence moments.
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Figure 18. Development of maximum scaled Reynolds stress for Mach 1.25 jet: uv/ U,%,b’ (0); ﬁ/ U%b/
(@); v2/ U,%,b’2 <0.1 (1); (u? —0?2)/ U,fl - 10 (<0). Solid lines in respective colours represent the range where
Reynolds stresses are considered self-preserving.

5.3. Reynolds-shear stress-anisotropy parameter

The anisotropy tensor, B;; =u;u;/uxug, is commonly used to describe the effects of
compressibility on the anisotropy of the Reynolds stresses. From the self-preservation
analysis, B;; can be directly related to compressibility effects through & (M.). The
Reynolds-shear stress-anisotropy parameter, 812, can be written as

uv

Bp==—"——. (5.6)
u? +v? +w?

Using the self-preservation scalings, 70 o U2b', v2 o U2b2 and w? o U252, and the
experimentally observed scaling u? o U,%,b/ , then substituting the relations and with the
relation b’ o« @ (M), with some manipulation, the parameter B1, can be written as

1
G+ C0(Me)
where C} and C; are constants. Figure 19 plots B2 at n = 1, corresponding to the point of

maximum shear. Here, w? is approximated with v2, which from symmetry is expected to
scale similarly. The solid line represents (5.7) fitted to the data, with constants C; =4.4
and C, = 1.8, showing the suitability of the function to characterise 812. In the current jet,
the parameter 817 increases with M... Like the Reynolds stresses, various behaviours of 812
have been reported, also plotted are data from Freund et al. (2000), showing a decrease
with M., and Pantano & Sarkar (2002), where a more constant behaviour is observed.
Again, challenges are observed for turbulence models in compressible flows as there is no
consensus on fundamental scaling parameters.

P12 (5.7

5.4. Optimal spreading rate scaling

The spreading rate, b’, plays a critical role in scaling turbulence moments. A root-mean-
square-deviation (RMSD) minimisation method was developed to identify the optimal
power of b’ for each profile within the range of self-preservation. The RMSD minimisation
method provides an objective measure of profile collapse, offering a quantitative approach
to compare the degree of alignment across profiles. First, to ensure comparable errors
across normalised profiles, the Reynolds stresses and triple-velocity correlations were
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Figure 19. B2 scaling. Mach 1.25 jet (—) and fitted function ( ) from (5.7). Freund et al. (2000) (%);
Pantano & Sarkar (2002) (A).

scaled and normalised to a peak magnitude of unity using the scalings U,%b/" for the
Reynolds stresses and U2 b™ for the triple-velocity correlations. Normalising to a peak
magnitude of unity ensures that the relative error remains consistent across different
profiles, enabling more accurate comparisons. Since the data points are not on a fixed grid
after radial normalisation, the 5 axis is divided into discrete bins. The RMSD is computed
for each bin and the total RMSD for the profile is obtained by summing the individual bin
RMSDs in quadrature. A study was performed to ensure that the choice of bin size did not
affect the final RMSD value. Figure 20 shows that the minima of the RSMD curves are
close to the integer values reported for the scalings of 5.

5.5. Self-preservation of the Reynolds-stress-transport equations

The RST equations describe the production, transport and dissipation of each Reynolds
stress. In the incompressible jet, self-preservation analysis of the RST equations to
determine the scaling of higher moments were trivial as b’ is constant (George 1995).
In compressible shear flows where b’ scales with exponents and varies with M, self-
preservation analysis of the RST equations provides insight into how compressibility
affects the turbulence energetics. Again, introducing similarity variables for the pressure-
gradient, triple-velocity correlations and dissipation gives the following equations:

u'Vip" +uiV;p" = Iij(x)m;;(n), (5.8)
uiujuk = T;jr()tijk (0), (5.9)
—(t7%) Veewi — (xR Ve = Eij (x)eij (), (5.10)

with 7;; (), t;jx(n) and e;;(n) as shape functions, and I1;;, T;jx and E;j; as scaling
functions. The scaling of the remaining turbulence moments can be determined using the
scaling Rip « U,%b’ from the mean-momentum equation (2.16). With these substitutions
into the puv balance from (2.5) for example, the balance with the scaling of leading-order
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Figure 20. Error curves indicating ideal b’ scaling for Reynolds stress self-preservation scaling. Minimum n
(- - -) and self-preserving n ().

terms shown in under braces after eliminating the common factor b/ U,?,, b2,

doUuv  dpVuv 1 drpuv? uw? dpulv
0:_{p Lo }_[_p o L o0 }

ox ar r or r 0x
— ~—— ~——
o Rio o T2 ~ T133 o T2
U2b' U3b?  CU? U3l
oV —dpU —doV U 0 0
w2 % w2 s
ar ar 0x 0x or 0x
——— —— —— —_———
~ Ri» o Ry O(ﬂ ~ Ri» O( b
U2b - U2D2 U2 U2b' U3 b2

recalling that the pressure—diffusion, viscous—diffusion, viscous—dissipation terms and
terms containing density correlations are neglected.

Using the remaining RST equations, a pattern emerges from the scaling of the remaining
velocity correlations, where the power scaling of 4’ depends on the order and direction of
the correlation. The scaling of correlations only containing streamwise components follow

Rit R
o) X 3 o« Const., (512)
Um Um
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Figure 21. Similarity profiles of off-diagonal triple-velocity moments. Axial positions: x/d = 15.0 (o); 17.5
@); 20.0 (»); 22.5 (<0); 25.0 (). Shaded areas show 95 % expanded uncertainty bounds in respective
colours. (a) Profile collapse of u?v with self-preservation scaling U,f,b’ ; (b) Profile collapse of uv? with

self-preservation scaling U,?l b2
a single radial or azimuthal component follow

Rz Ri3  Rip  Rus

— X —= X —= X x b, (5.13)
Up U Uy U,

two radial or azimuthal components follow

Ry R3z Riz  Rips  Riss
— X —= X (06 (06
u, Up Uy Uy U

x b2, (5.14)

and triple-moments of radial or azimuthal components follow

Ry Ryp3 Rz Rsss

x o o xb?. (5.15
U, Uy U, Uy

For Cartesian flows, analogous scalings are observed, where the azimuthal component
is instead the spanwise component. In the previous section where the Reynolds stresses
were compared with experimental data, the scaling of R and R», appeared consistent
with (5.13) and (5.14), respectively. The scaling of Ry was to be U,%,b’ and was found not
to scale as per (5.12), and instead appears to be constrained by (5.5). Although not exact,
these findings provide a framework for the scaling of velocity correlations in compressible
shear flows. In the following section, the scalings are applied to and compared with the
triple-velocity correlation jet data.

5.6. Self-preservation scaling of the triple-velocity correlations

The compressibility scaling can be extended to the triple-velocity correlations, where
profiles are also observed with the compressible jet data. Figures 21(a) and 21(b)
present the triple-velocity correlations, u2v and uv?2, respectively, normalised using their
corresponding self-preservation scaling. By normalising with the appropriate power of the
spreading rate, b’, the profiles for u%v and uv? collapse onto a single curve. Demonstrating
that the scaling derived from the self-preservation analysis can be successfully extended
to the RST equations and applied to higher-order velocity moments.
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Figure 22. Profiles of normal triple-velocity correlations and skewness. Axial positions: x/d =15.0 (o);
17.5 (@); 20.0 (»); 21.5 (<1); 25.0 (). Shaded areas show 95 % expanded uncertainty bounds in respective

colours. (a) Profile collapse of v3 with self- -preservation scaling U,, 3b"3; (b) Profile collapse of u3 with scaling
URb2,

Figure 22(a) presents the profiles of v3, which collapse effectively when normalised
using the self-preservation scaling U, b"3. This collapse indicates that the self-preservation
scaling applies well to the triple-velocity moments in the jet. Profiles of the skewness of
v are also shown, showing collapse and consistency of the compressible scaling of the
v-velocity fluctuations with M.. Rotational symmetry, where v = w, also confirms the

scaling for w2 and uw? moments on the jet centreline. The agreement of the scaling for
these moments further supports the applicability of the similarity analysis for higher-order
velocity moments in compressible jets.

Similar to u2, the self- -preservation scaling does not yield self-similar profiles for u3.
However, as shown in figure 22(b), u3 scales with b3/ 2 consistent with the scaling found

for u2 where u o< b'!/2. This scaling indicates that neither u2 nor u3 follows the scaling
under the similarity assumption, but scale at least consistently. The skewness of u also
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Figure 23. Error curves indicating ideal b’ scaling for triple-velocity correlations self-preservation scaling.
Minimumn#n (- ) and self-preserving n (- - -).

exhibits self-similar profiles across the jet for all Mach numbers. The consistent scaling
behaviour, along with the skewness similarity, points to an underlying structure in the
velocity field that is preserved across different flow Mach numbers.

Figure 23 shows the error curves concerning the similarity of the triple-velocity
correlation data for the Mach 1.25 jet using the method introduced in §5.4. When
compared with the error curves for Reynolds stresses shown previously in figure 20, the
curves for the triple-velocity correlations exhibit a smaller depression due to increased
scatter in the data. Despite this, the minimum RMSD for the profiles aligns with the self-

preservation scaling for u?v, uv? and v3. As discussed, u3 instead scales to the b’ exponent
(3/2), such that the scale is consistent with u2. The consistency of the scaling results

between double- and triple-velocity moments increases confidence in the application of
self-preservation principles in analysing compressible shear flows.

6. Reynolds-stress-transport budgets

Having established the scaling of the triple-velocity correlations, the scaling of the
remaining Reynolds-stress-transport terms in (2.5), expanded in Appendix B, are
considered. Since b’ varies with x, the scaling is first confirmed. Next, pressure appears
to play a significant role in both the self-preservation, as previously observed in the
Reynolds-normal stresses in § 5.2, as well as a mechanism in the attenuation of turbulence
in compressible shear flows through the pressure strain.
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Figure 24. Normalised budget of #v. Red shaded areas show 95 % expanded uncertainty bounds.

6.1. Turbulence energetics

From the velocimetry data, the advection, turbulence-transport and production terms can
be calculated directly. Therefore, the pressure—strain, dissipation, molecular—diffusion and
pressure—diffusion terms are lumped as the residual of the equation. For high-Re shear
flows, the effect of molecular diffusion is negligible and pressure diffusion generally small.
To mitigate the effect due to random noise and to ensure differentiability, the turbulence
moments are curve-fitted, with radial distributions as reported by Hussein et al. (1994),
and streamwise distributions fitted with low-order polynomials. The balances are then
calculated using the fitted functions, where the fit uncertainties are propagated to indicate
95 % expanded confidence bounds in shaded areas.

The Reynolds transport equations are presented with the common factor b/ U2 b,
where n is a power determined previously through self-preservation analysis. The balance
of the uv transport equation is shown in figure 24, where the common factor is b/ U;’Z b2
The balances scale producing profiles of similar magnitude, implying they are independent

of M, after normalisation. Note that uv? is used to approximate uw? since w data
are unavailable. For high-Re incompressible jets, the Richardson—-Kolmogorov—Onsager
theory implies a separation of scales where dissipation, which occurs at the small
scales, exhibits scale locality. While compressible turbulence superficially resembles
the incompressible cascade, the exact inter-scale energy dynamics remains unclear, but
analysis from Aluie (2011) has shown scale locality and the existence of an inertial
range in compressible flows. This suggests dissipation can be approximated as isotropic
and the off-diagonal components of dissipation neglected, especially for this flow where
density effects are moderate. Therefore, the residual terms in the uv transport equation
approximate the pressure—strain component. With the primary source term production,
the major sink term is the pressure strain, indicating turbulent kinetic energy is being
redistributed to the other stress balances. Note, the shear pressure—strain component scales
proportionally to the component production, agreeing with observations from Matsuno &
Lele (2020). As uv is the dominating term, which spreads the jet through the streamwise
momentum equation (2.13), it is unsurprising that the balance shows self-preservation.

The budget of v2 is shown in figure 25 normalised by b/ Un31 b’3. Here, vw? is substituted
by v3. Compared with setting vw? = 0, the magnitude of the turbulence—diffusion term
changes less than 10 %. This substitution was also made by Hussein et al. (1994) when
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Figure 25. Normalised budget of v2. Red shaded areas show 95 % expanded uncertainty bounds.
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Figure 26. Normalised budget of 2. Red shaded areas show 95 % expanded uncertainty bounds.

lacking w information and suggested that approximating vw? with v3 is satisfactory for
estimating the scaling behaviour of the residual of the ﬁ-transport equation. The balance
of v2 is difficult to interpret by itself, as the major source term is the pressure—strain
term and the major sink term is the dissipation (Hussein ef al. 1994). With the present
data, while v2 was shown to be self-similar when scaled by the self-preserving scaling
U,gl b'?, the advection terms are not. The turbulence-transport and production terms appear
self-similar, while the residual terms containing the dissipation and pressure strain is not
self-preserving and balances the scaling of the advection.

In the budget of u_2 shown in (B1), the terms share a common factor of b/ U,fl b’, which
has been applied to the u2 balance across various M., as shown in figure 26. In the u?
budget, the primary source term is the production and advection terms. This turbulent
kinetic energy is then transported into the v2 equation and contributes to the production of
uv. Therefore, limited production of u2 due to M. is suggested to play a role in the reduced
spreading rate. The production and turbulence transport terms appear to be self-preserving
at all M.; meanwhile, the advection terms increase as M. decreases. The situation in the
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Figure 27. Normalised budget of u? — v2. Red shaded areas show 95 % expanded uncertainty bounds.

u2 balance is similar to the v2 balance — profiles of advection are not self-similar, and a

similar imbalance is observed in the residual. As the residual of the balance contains the
pressure—strain term and dissipation term, the pressure strain is responsible for transferring

energy to the v2 budget. Although the terms in the budgets of %2 and v2 do not conveniently
collapse, a strong coupling is observed between these equations, which is already evident

in the momentum equation (5.4) where the collapse of the difference u? — v2 collapses
with Un%, as seen previously in figure 17.

Figure 27 shows the difference between budgets (B1) and (B2) normalised by b/ Un31 b';
remarkably, the profiles are observed to be self-preserving. The balance of the difference

resembles the balance of ﬁ where the turbulence production and then advection are
the significant source terms. The scaling of the advection terms previously observed

in the individual u2 and v2 balances appear to redistribute energy to each other such
that the resulting advection of the difference is self-preserving. As a result, the residual
of the difference scales is self-preserving. Closer consideration of the residual term for
the difference balance, (B1)—(B2), yields further insight. An isotropic dissipation model
implies that the contributor of dissipation in the residual term vanishes. In contrast, the
pressure—strain terms between axial and radial directions tend to differ in sign. Hence, the
residual term is dominated by the redistribution due to the pressure strain. This observation

shows the importance of the pressure—strain redistribution in the coupling of u2 and vZ,
and the internal dynamics leading to self-preservation and role in the attenuation of energy
redistribution.

Figure 28(a) plots the pressure—strain component /11, estimated from the residual of the
uv balance as a function of M,. The pressure strain is normalised by its incompressible
value, estimated from the furthest value available downstream. From the self-preservation
analysis of the uv balance, I1q; scales with b/ U%bﬁ. Compared with mixing layer data
from Pantano & Sarkar (2002), significant attenuation of the pressure—strain component
is observed, verifying the behaviour of the shear pressure strain. From the current jet
data, individual normal pressure—strain components cannot be calculated. Instead, from
the balance of the difference between the u? and v? equations, the residual scales with
b/ U,:jlb’ . Again, this residual is approximately I1; — 1>, assuming isotropic turbulence
where the diagonal dissipation terms are of similar magnitude. Note that I11; and I15; are
expected to have opposite signs, such that their differences increase their contribution
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Figure 28. Pressure—strain components normalised by incompressible value as a function of M, for the mixing
layer (Pantano & Sarkar 2002) (A) and the current jet (-). (a¢) Normalised I7j; (b) normalised I112—112
estimated from (B1) - (B2).

to the u? — v2 transport balance. Figure 28(b) plots the normal pressure—strain terms,
normalised by b/U;, which appears to be attenuated by M, through 5, again agrees
with the scaling observed in the mixing layer. Note that the off-diagonal term appears to
scale to different powers of b’ than the diagonal terms; this difference in scaling was also
exhibited in the mixing layer data of Pantano & Sarkar (2002). This indicates that pressure
modification is consistent with the self-preservation scaling framework in the current jet
study and directly connected to the reduced spreading rates due to increasing M.

7. Summary and conclusion

High-speed PIV measurements were conducted for subsonic (Mj,; = 0.3) and supersonic
(Mje; = 1.25) perfectly expanded jets. The supersonic jet conditions were limited to ensure
density-fluctuation correlations remained small. For the M., = 1.25 jet, b’ was attenuated
as M, increases, showing a similar trend to the compressible mixing layer. This behaviour
indicates that the attenuation of turbulence behaves similarly across free compressible
shear flows. However, when comparing the attenuation function @ (M,), which describes
the relationship between b" and M., the axisymmetric jet is more closely aligned with
axisymmetric mixing layer experiments. This behaviour suggests that factors such as
geometry influence the behaviour of the attenuation.

By applying the current self-preservation theory and expanding on observations from
compressible mixing layers, turbulence moments were found to scale as functions of
powers of b’. Due to the behaviour of the Reynolds-stress-transport equations, the power
of b’ depends on the component and the order of the moment, with some moments
exhibiting more substantial attenuation than others. These findings are notable given the
discrepancies and scatter previously reported in Reynolds stresses and provide direction
into the behaviour of Reynolds-stress anisotropy.

It is found that the intensity of the attenuation of component velocity moments can
be predicted and is consistent with self-preservation. Velocity moments containing radial
or azimuthal components scale according to self-preservation analysis as the velocity
moments scale with powers of b for each radial or azimuthal component. For example,

in the Mj,; = 1.25 case, wv oc U2b', v2 oc U2 "%, v3 o« U2 b and so on. Velocity moments
containing explicitly streamwise components were attenuated, where u? o Un% b’ and u?
U,%l b’3/2. These scalings remain consistent with self-preservation of the mean momentum
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equation, where after substituting the pressure term for v2 the Reynolds-normal-stress

difference, u? — v2 exhibits collapsed profiles when normalised by U} . 2 The behaviour of
the Reynolds stresses suggest self-preservation is observed despite Mach number effects

and that pressure plays a role in the scaling of u?.

When examining the Reynolds-stress-transport equations, the self-preservation scalings
were also applicable. For M, = 1.25, the collapse of all terms in the uv budget after
normalisation indicates that self-preservation extends to turbulence energetics. Collapsed
profiles were also observed when considering the budget of the Reynolds-normal-stress
difference, which indicates internal regulation of energy occurs within the normal stresses,
influencing the redistribution due to pressure strain. Each component was also attenuated
and scaled with powers of b’, and attributed as the source of turbulence attenuation
due to compressibility. The shear component of pressure strain, 117, was found to
scale U;Zb/ 2 /b, meanwhile, I} — 1y U;Zb/ /b. The consistency observed in the
scalings of the pressure strain and other turbulence moments suggests that compressible
turbulence is orderly and can be used to redefine two-point closure models capturing these
compressibility effects. The behaviour at higher Mach numbers and different geometries
remains to be established, as well as identifying the underlying further physics responsible
for the reduction in energetic redistribution due to the attenuated pressure strain observed.
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Appendix A. Compressible Reynolds-stress-transport equations

In compressible shear flows, the transport equations are commonly expressed using Favre
averaging (Knight 1997). As a consequence of strong Reynolds analogy, turbulence
moments using Reynolds or Favre averaging are approximately similar under the
restrictions from (2.1), for example, uv ~ v, where v is the Favre-averaged Reynolds
stress. For further information on the differences between the averaging procedures, see
Knight (1997).

For reference, the continuity, momentum and Reynolds-stress-transport equations using
conventional Reynolds averaging is shown respectively as

a —i -
a[; + Vi (0T') ==V, (p"ul), (A1)
8Ul‘ j _ —_j — —Jj 77
,OV +pU’'V;U; =V;p+ Vj‘L"i — Vj(,ou,-u/) -U"V(p ui)
: —_ ]
— 0"V U =V (o uwus) = = (7). (A2)
opu;u; X Ui —— ——0oU;  9p"uju;
+ v, (U =7 e 7 Y St R i e
k(U” piiiit;) = or P TP, ot
advection unsteady-fluctuating-density correlations

— Vk[,oukuiuj + U p"uiuj + p"ukuiuj — u,-p”(Sk ujp"8k — ui(fjl.‘)” —uj (Tik)”}

——
turbulent fluctuating- pressure diffusion viscous diffusion
diffusion density diffusion
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— (pujur + o"u;U* + p"ul u¥) ViU — (pujuk + o"u; UX + " uiuk) Vi Uj

production

+ [p//vjui + pNViuj] - [(rJ’.‘)"Vku,- + (‘Eik)//vkujJ . (A3)

pressure strain viscous dissipation

As seen, double and triple moments containing density-fluctuations are introduced
from the Reynolds-averaging operation. Neglecting the density-fluctuating moments as
per (2.1), unsteady pressure—diffusion and viscous—diffusion terms result in the simplified
set of equations shown in (2.5).

Appendix B. Self-preservation of the RST equations

After reducing the RST equations to only include terms up to the first order, as performed
in §2.1, the reduced RST budgets are provided where the behaviour of the scaling
functions is made explicit. The scaling functions for each individual term are shown after
removing a common factor in under braces. Here, € denotes the viscous dissipation terms.

The W balance with common factor b/ U3 b’ removed is

O=|:8pU;+8pVﬁi|_|:18rpm_ 8,0% i|

ox or r or 0x
~——— —
/ T T
0<R—1210<—(R211) X —;]2/ X L;
U2~ URY Unb U
opU —opU 0
w2 120227 | 2 | 226y (B1)
ar 0x 0x
——— — — ——
~ Rz o< R ~ Iy b
UZb U2 U3

The pv? balance with common factor b /U3 b removed is

0:|:8pUﬁ+8pVﬁ:|_|:18rpF ,pvw? . dpuv? }

0x ar r or r 0x
—— ~—— ———
R»  (R») T T33 T2
x x X733 X735 X7oma
U2b'  U2D? U3b U3b U2b
—0pV oV d
| 2222 Lo P 4 2 | =260 (B2)
ar dx ar
—— ———
o R» o Ri2 o b
U2b'? U2 U3bs3
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The pw? balance with common factor b/ U2 b"> removed is

—\ 0 — 19 ; — 29—
O e ) I i e X
dx ar ror r dx
—
Rz (R33) T»33 133 T133
X7 X —F= X ——= X X
UZb? ~ UZDb? U b? U3 U3 b?
m m
—V ow
2pw2— |+ 2p”¥ — 2€33. (B3)
# — —
~ R33 o II33b
UZb2 U3 b3
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