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SEQUENTIAL COMPLETENESS OF QUOTIENT GROUPS

DlKRAN DlKRANJAN AND MICHAEL TKACENKO

We discuss various generalisations of countable compactness for topological groups
that are related to completeness. The sequentially complete groups form a class
closed with respect to taking direct products and closed subgroups. Surprisingly,
the stronger version of sequential completeness called sequential h-completeness (all
continuous homomorphic images are sequentially complete) implies pseudocompact-
ness in the presence of good algebraic properties such as nilpotency. We also study
quotients of sequentially complete groups and find several classes of sequentially q-
complete groups (all quotients are sequentially complete). Finally, we show that
the pseudocompact sequentially complete groups are far from being sequentially q-
complete in the following sense: every pseudocompact Abelian group is a quotient of
a pseudocompact Abelian sequentially complete group.

1. INTRODUCTION

The topological groups that are sequentially closed in any other topological group
are precisely the sequentially complete groups [17, 18], that is, those that are sequen-
tially closed in their Raikov completion (equivalently, every Cauchy sequence converges).
Obviously, the class of sequentially complete groups contains all complete groups and all
countably compact groups. By [18, Corollary 4.10], the free topological group F(X) and
the free Abelian topological group A(X) are sequentially complete for every countably
compact space X. The groups F(X) and A(X) are never precompact; however, there
are lots of precompact sequentially complete groups that are not pseudocompact, for ex-
ample, the free precompact Abelian group F(X, PA) on any countably compact space X
[18, Corollary 5.5]. On the other hand, every minimal, sequentially complete, connected
Abelian group of non-measurable cardinality is compact by [17, Corollary 3.3].

Since the sequentially complete topological groups are obviously the categorical coun-
terpart of the sequentially closed Tychonoff spaces in the category of topological groups,
these facts suggest the natural idea to study categorical properties of the sequentially
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complete groups and compare this class of groups with the narrower class of countably
compact groups. Clearly, countable compactness is invariant under continuous map-
pings, so it is also natural to consider the classes of sequentially h-complete (sequentially
q-complete) groups defined to be the groups all continuous (open) homomorphic images
of which are sequentially complete.

We briefly discuss the relations between countably compact, pseudocompact, pre-
compact and sequentially (/incomplete groups in Section 2 and present a diagram that
visualises (a part of) our knowledge.

In Section 3 we prove that Abelian (more generally, nilpotent) sequentially h-
complete groups are precompact (Theorem 3.6) and all precompact sequentially h-
complete groups are pseudocompact (Theorem 3.9). In particular, Abelian sequentially
/i-complete groups are hereditarily pseudocompact (that is, all closed subgroups are pseu-
docompact). We also show that there are many precompact sequentially ^-complete
groups that fail to be pseudocompact: by Theorem 3.10, every infinite Abelian group
G endowed with the maximal totally bounded group topology is sequentially g-complete
and non-pseudocompact.

Sequential completeness of quotients of free topological groups is considered in Sec-
tion 4. It is shown that if X is a closed subspace of a E(w)-product of compact metric
spaces, then the groups F(X) and A(X) are sequentially g-complete (Corollary 4.4).
We also show that for every infinite cardinal r, there exists a r-bounded space X such
that the free topological groups F(X), A(X), F(X,P) and F(X, PA) are not sequen-
tially g-complete (Corollary 4.10), where P and PA are the varieties of precompact and
precompact Abelian groups, respectively.

In Section 5 we prove that every pseudocompact Abelian group H can be represented
as a quotient G/N, where G is a pseudocompact Abelian sequentially complete group and
N is a closed pseudocompact subgroup of G. This shows that the Abelian pseudocompact
sequentially complete groups are far from being q-complete.

Finally, in Section 6 we present a list of unsolved problems supplied with short
comments.

1.1. PRELIMINARIES We recall here some compactness-like conditions on a topological
group G. A group G is precompact if its completion G is compact (or, equivalently, if for
any open nonempty subset U of G there is a finite subset F C G such that F -U = G),
pseudocompact if every continuous real-valued function on G is bounded, u-bounded if
every countable subset is contained in a compact subgroup (a group G is ^-bounded
precisely when all closed separable subgroups of G are compact). Clearly, w-boundedness
implies countable compactness, countable compactness implies pseudocompactness, and
pseudocompact groups are precompact [9] (see the diagram in Section 2). More generally,
for an infinite cardinal r , a space X is called r-bounded if the closure of every subset of
X of cardinality ^ r is compact. We consider only Tykhonoff spaces here.
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We denote by N and P the sets of positive natural numbers and primes, respectively,

by Z the integers, by Q the rationals, by R the reals, by T the unit circle subgroup of

the complex plain C, by Z p the p-adic integers ( p e P ) , by Z(n) the cyclic group of order

n. The cardinality of the continuum 2" will be denoted also by c.

All topological groups we consider are assumed to be Hausdorff. Completeness of

topological groups is intended with respect to the two-sided uniformity, so tha t every

topological group G has the (Raikov) completion which we denote by G, while c(G)

denotes the connected component of a group G. A topological group G is called minimal

if G does not admit a coarser Hausdorff group topology, and totally minimal if every

quotient of G is minimal. The group G is totally minimal if and only if every continuous

epimorphism (p: G —> H is open [15].

The centre of a group G is denoted by Z(G). Recall t ha t the upper central series

{Zn(G)} of the group G is defined by: Z0(G) = {1} and Zn+i(G)/Zn{G) is the centre

of G/Zn(G). A group G is nilpotent if Zn(G) = G for some integer n. For a topological

group G, the subgroups Zn{G) are closed.

2. V A R I O U S D E G R E E S O F W E A K C O M P L E T E N E S S

We recall here several closure operators related in a natural way to countable com-

pactness, pseudocompactness and w-boundedness. For a categorical t reatment of closure

operators in full generality the reader can consult [16]. The topology PT on G associated

to a topology r on G, is generated by the family of all Gj-sets in (G, T ) taken as a base

of open sets for PT. When referring to this topology we shall simply speak of G{-closed

and Gg-dense sets. The importance of this notion of density is revealed by the following

theorem of Comfort and Ross [9].

THEOREM 2 . 1 . A group G is pseudocompact if and only if it is precompact and

Gg-dense in G.

It can also be useful to note tha t if (G, r) is a topological group, then so is (G, PT)

and the latter group is always zero-dimensional.

2 . 1 . U - C O M P L E T E GROUPS For a subset A of a topological space X, define clu(A) =

\J{B : B C A, | B | ^ a ;} . We say tha t A is ui-closed (respectively, u-dense) in X if

cl^(A) = A (respectively, clu(A) = X). This is an idempotent additive closure operator

(in the sense of [16]) t ha t induces a finer topology TU on X of countable tightness (in

fact, TW is the coarsest topology on X with these two properties). This closure operator

is useful for describing topological properties, for example, a space X has countable

tightness if and only if rw = r [4]. Further, by analogy with Theorem 2.1 one can prove

that a topological group is ai-bounded if and only if it is precompact and oz-closed in its

completion.

Call a group G u-complete if it is w-closed in every topological group tha t contains G
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as a subgroup, or equivalently, if it is o;-closed in G. Now we can say that w-boundedness
splits up into precompactness and ^-completeness.

Every topological group G admits an w-complete hull Gu that has the universal
property with respect to o;-complete groups. More precisely, there exists an w-dense
embedding G —tGa into an ai-complete group Ga such that every continuous homomor-
phism / : G —* K to an w-complete group K extends to a continuous homomorphism
/ u : Gu —• K. One can take as Gu the w-closure of G in G; it obviously has the desired
universal property.

The class of w-bounded groups is closed under taking w-closed subgroups, quotients
and products (the third property is easy to check; it also follows from [46, Theorems 4.7
and 4.9]). Hence every group admits also an u-bounded hull, wG and a continuous homo-
morphism G —¥ wG which is the restriction of the Bohr compactification bg: G —» bG.

Actually, uG is the least w-closed subgroup of bG which contains ba(G). Obviously,
the unbounded hull has the usual universal properties with respect to continuous homo-
morphisms with dense image G -» K, where AT is an w-bounded group. Note that the
reflector G >-¥ uiG is the composition of the reflectors G i-¥ ba(G) and G i-> Gu consid-
ered above. The hull wG is an extension of the group G if and only if the group G is
precompact (that is, the Bohr pre-compactification &G(G) coincides with G).

Let us note in connection with the oj-bounded hull LJG that no "countably compact
hull" can be defined even for precompact groups. This is due to the failure of productivity
of countable compactness in topological groups (see Example 3.3).

2.2. SEQUENTIAL COMPLETENESS AND ITS STRONGER VERSIONS AS far as countably

compact groups are concerned another closure operator seems to be relevant, namely the
sequential closure. We say that a group G is sequentially complete if G is sequentially
closed in any other Hausdorff group, that is, all Cauchy sequences in G converge [17],
[18]. Clearly, a group G is sequentially complete if and only if it is sequentially closed
in its completion. Therefore, sequential completeness is preserved by arbitrary direct
products and inherited by sequentially closed subgroups. Hence, as above, every group
G admits a sequentially complete hull Gseq (namely, the sequential closure of G in G, see
[17, Proposition 2.1]).

While u;-complete precompact groups are w-bounded, sequentially complete precom-
pact groups need not be even pseudocompact (see Theorem 3.10 below).

Sequential completeness is not inherited by continuous homomorphic images. In-
deed, the group R is complete while its image /(R) under the continuous homomorphism
/ : R -+ T2 defined by f(r) = (jr(r),7r(rv^2)) is a proper dense subgroup of the metric
group T2, where ir: R —> R/Z = T is the quotient homomorphism.

Call a group G sequentially h-complete if all continuous homomorphic images of G are
sequentially complete. Countably compact groups are obviously sequentially /i-complete.
This relation is studied more closely in Section 3. We give examples of sequentially
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/i-complete groups tha t are neither countably compact nor precompact (Example 3.8),

and show that sequential A-completeness is not finitely productive under Mart in 's Axiom

(Example 3.3).

In the following diagram we describe several classes of groups with relation between

them that frequently appear in the sequel. The only non-trivial relation, namely,

precompact & sequentially h-complete =*• pseudocompact

will be proved in Theorem 3.9 where we show that the assumption of precompactness can
be omitted in the case of nilpotent groups. We point out several examples showing that all
implications are proper with the eventual exception of one. Namely, we have no examples
to distinguish the precompact sequentially ft-complete groups from the countably compact
ones, see Question 6.1. The diagram also involves h-w-complete groups, that is, the
groups whose continuous homomorphic images are u;-complete (these groups appear after
Theorem 3.6).

countably compact I .. I u-bounded I

1 1
Iprecompact & sequentially h-completel „ I precompact & /i-u-complete I

pseudocompact Iprecompact & sequentially complete! _ I precompact & incomplete

precompact I Isequentially complete! „ w-comptete(sequentially completel

As noted in [17, Proposition 2.2] the topological groups that have no convergent
sequences other than the trivial ones are sequentially complete. Such precompact groups
of arbitrary cardinality can be found in ZFC (see Theorem 3.10 below). There exist
also infinite countably compact groups that have no convergent sequences other than the
trivial one (see [21] for a zero-dimensional example of such a group under Martin's Axiom,
or [45] for a connected and locally connected one under the Continuum Hypothesis).

3. PRECOMPACTNESS OF SEQUENTIALLY /^-COMPLETE GROUPS

The class of h-complete groups was introduced in [19] under a different name and
studied in [20]: these are the groups whose continuous homomorphic images are al-
ways complete. Here we establish several properties of the wider class of sequentially
/i-complete groups.

One can prove the following proposition by arguments similar to those in [20]:

PROPOSITION 3 . 1 . Sequential h-completeness is inherited by closed central

subgroups.
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PROOF: Suppose that G is a sequentially /j-complete group and H is a closed cen-
tral subgroup of G. To check that H is sequentially ft-complete consider a continuous
surjective homomorphism f:H-> H\. Apply Lemma 2.17 of [20] to find a continuous
homomorphic image Gi of G such that Hi is isomorphic to a closed subgroup of G\.
Since Gi is sequentially complete, Hi is sequentially complete as well. D

EXAMPLE 3.2. Sequential /i-completeness is not inherited by closed normal subgroups.
Indeed, there exists a locally compact metrisable connected group, namely the semidirect
product G = R2»5Z/2(K), where this fails (see [20, Example 5.6]). Here the closed normal
subgroup JV = R2 of G is not sequentially /i-complete, while G is /i-complete, and hence
sequentially ^-complete.

Now we show that sequential /i-completeness is not finitely productive under Martin's

Axiom.

EXAMPLE 3.3. Assuming that there exists an infinite countably compact Abelian group
E of exponent 2 without non-trivial convergent sequences, van Douwen produced (by an
easy "tearing apart" ZFC construction [21, 6.2]) two countably compact subgroups E\
and Ei of E such that E\ x E% has a closed countably infinite subgroup D. (To get such
a countably compact group E he needed MA.) Clearly, D is precompact. By Theorem
3.9 below, D cannot be sequentially /i-complete, and by Proposition 3.1, E\ x E2 is not
sequentially /i-complete. The existence of such a pair Ei,E2 in ZFC is still an open
problem (see [5, Question 1A.2]).

Let us prove that every Abelian (more generally, nilpotent) sequentially /i-complete
group is precompact. The proof of this result follows along the lines of [20]. It is based
on a couple of lemmas.

LEMMA 3 . 4 . Separable metrisable sequentially h-complete Abelian groups are

compact.

PROOF: Let G be a separable metrisable sequentially A-complete Abelian group.
Clearly, G is complete. We prove first that G is totally minimal. Consider a continuous
surjective homomorphism f:G —• H. Then H has a countable network, and by a
theorem of Arhangel'skii [1], the group H admits a coarser Hausdorff group topology of
countable weight. Denote by H' the group H equipped with that topology. Then the
metrisable group H' is a continuous homomorphic image of G, and hence H' is complete.
The homomorphism f:G->H'of complete separable metrisable groups is open by the
Banach Open Mapping Theorem. This implies that / : G —> H is open as well, so that G
is totally minimal. It remains to note that every totally minimal complete Abelian group
is compact [37]. D

LEMMA 3 . 5 . If all countable subgroups of a topological group G are precompact,

then G is precompact.
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PROOF: If G is not precompact, there exists an open neighbourhood U of the iden-

tity e in G such tha t K • U ^ G for every finite subset K of G. Define by induction a

sequence X — {xn : n € ui} C G such tha t xn £ XkU whenever k < n and denote by S

the subgroup of G generated by the set X. Choose an open symmetric neighbourhood

V of e in G with V2 C U. An easy verification shows tha t for every x 6 G, the set xV

contains a t most one point of X. Therefore, the subgroup S of G is not precompact. D

In the proof of our precompactness theorem we shall use the following weak form of

Guran's embedding theorem [29]: a separable topological group is topologically isomor-

phic to a subgroup of a Cartesian product of separable metrisable groups.

THEOREM 3 . 6 . Nilpotent sequentially h-complete groups are precompact.

P R O O F : From Guran 's embedding theorem it follows tha t every separable sequen-

tially h-complete Abelian group G is a subgroup of a product of separable metrisable

sequentially h-complete Abelian groups, which are compact by Lemma 3.4. Hence G is

precompact. Since sequential h-completeness in Abelian groups is inherited by closed

subgroups (Proposition 3.1), and since precompactness is determined by separable sub-

groups (Lemma 3.5), we conclude tha t all sequentially h-complete Abelian groups are

precompact. In the general case, Z(G) is sequentially h-complete by Proposition 3.1 and

hence precompact. Now G/Z(G) is again sequentially h-complete and the proof goes on

by induction on the nilpotency class with the use of the fact tha t the class of precompact

groups is closed under extensions. (See Theorem 6.3 (a) of [8].) D

Let us call a group G h-uj-complete if all continuous homomorphic images of G

are w-complete. Note tha t every h-w-complete group is sequentially /i-complete and

^-complete.

COROLLARY 3 . 7 . For nilpotent groups, h-w-completeness coincides with u-

boundedness.

P R O O F : Clearly, every w-bounded group is h-w-complete. Conversely, a nilpotent

h-w-complete group is sequentially h-complete, and hence precompact by Theorem 3.6.

It remains to note tha t precompact ai-complete groups are w-bounded. 0

Corollary 3.7 shows tha t countable compactness does not imply either h-u>-complete-

ness or w-completeness (take any countably compact Abelian group which is not u-

bounded). The next example shows tha t both nilpotency and sequential h-completeness

are essential in Theorem 3.6 (more precisely, neither "Abelian and sequentially q-

complete" nor "h-complete" alone implies "precompact"; however, Abelian sequentially

h-complete groups are pseudocompact and hence precompact by Theorem 3.9 below).

We recall tha t a topological group G is (sequentially) g-complete if all quotients of G

are (sequentially) complete. Clearly, h-completeness implies g-completeness as well as

sequential h-completeness implies sequential g-completeness.

E X A M P L E 3.8.
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(a) The group SL2(R) is h-complete. Indeed, by a theorem of Remus and
Stoyanov [40] every continuous surjective homomorphism <j>: 5Z-2(K) -¥ G

is open, hence the group G is locally compact (as a quotient of SL2(R))

and consequently complete. On the other hand, 5Z/2(K) is not precompact.
This shows that a locally compact separable sequentially /i-complete group
need not be precompact.

(b) Let X be a compact space. Then the free Abelian topological group A(X)

is sequentially ^-complete by Proposition 4.2 below, but not precompact.

3.1. SOME SEQUENTIALLY /I-COMPLETE GROUPS ARE PSEUDOCOMPACT Call a group

G hereditarily pseudocompact if every closed subgroup of G is pseudocompact. It is

known that there exist hereditarily pseudocompact Abelian groups that are not countably

compact. In fact, the subgroup G = M(T) of all metrisable elements of Tc is hereditarily

pseudocompact and sequentially dense in T, so that G cannot be countably compact (see

[17])-

THEOREM 3 . 9 . Any precompact sequentially h-complete group is pseudocom-

pact. Nilpotent sequentially h-complete groups are pseudocompact. In particular,

Abelian sequentially h-complete groups are hereditarily pseudocompact.

PROOF: Let G be a precompact sequentially h-complete group. Then for every
closed normal Gj-subgroup TV of the completion G of G, the quotient G/N is metrisable,
and hence the image f(G) of G under the canonical homomorphism / : G —> G/N is
sequentially closed and dense in G/N. Therefore, f(G) = G/N. Thus, every coset gN in
G meets G, so G is G$-dense in G. By Theorem 2.1, G is pseudocompact. This proves
the first part of the theorem.

To prove the second part we note that by Theorem 3.6, nilpotent sequentially h-
complete groups are precompact. Then they are also pseudocompact by the first claim
of the theorem. Now assume that G is an Abelian sequentially /i-complete group. Every
closed subgroup of G is sequentially /i-complete by Proposition 3.1, and hence pseudo-
compact. Therefore, G is hereditarily pseudocompact. D

"Nilpotent" is essential in Theorem 3.9: there exists a non-precompact sequentially
/i-complete separable metrisable locally compact group (see Example 3.8).

The next theorem provides a large class of ZFC examples of precompact sequentially
q-complete Abelian groups that are not pseudocompact. Following van Douwen [22],
we denote by G* the Abelian group G equipped with the maximal precompact group
topology.

THEOREM 3 . 1 0 . The group G* is sequentially q-complete and non-pseudocompact

for any infinite Abelian group G.

PROOF: It was proved by Flor [23] that G is always sequentially closed in its Bohr
compactification, that is, G* is sequentially closed in its completion (see also [11]). To
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finish the proof note that every subgroup N of G* is closed and G*/N 9i (G/N)*, so
that G* is sequentially g-complete. By a result of Comfort and Saks [10, Theorem 2.2],
G* is never pseudocompact. D

Theorems 3.9 and 3.10 also show that many precompact sequentially g-complete
groups are not sequentially h-coraplete: every infinite Abelian group equipped with its
maximal precompact group topology suits.

4. Q U O T I E N T S O F F R E E TOPOLOGICAL GROUPS

It is an interesting problem to characterise the class SQ of spaces X for which the free
topological group F(X) is sequentially g-complete. Clearly, all discrete spaces have this
property, so we have to restrict ourselves to considering spaces satisfying some compact
type restrictions. Corollary 4.10 of [18] suggests the hypothesis that every countably
compact space is in SQ, but we shall see in Theorem 4.9 below that it is not so. Let us
show that ku-spaces are considerably better in this respect (see Proposition 4.2 below).
We recall here some related notions.

Let 7 be a family of subsets of a space X such that \J 7 = X. We say that 7
generates the topology of X if a subset U C X is open in X if and only if U l~l K is open
in K for every K e 7. If there exists an increasing sequence {Kn : n € u} of compact
subsets of X that generates the topology of X = \J Kn, then X is called a ku-space [24].

The representation X = \J Kn is said to be a ku-decomposition of X [32].

In the sequel we shall use the following result the proof of which goes almost exactly
as in [26, Theorem 6] (see also [39]). Briefly, a topological group that admits a ku-
decomposition is complete:

THEOREM 4 . 1 . Let 7 = {Bn : n € w} be a sequence of compact symmetric
subsets of a topological group G such that G = \J Bn and Bn • 23* C .£?„+* for all

n€ur

n, k € ui. Iff generates the topology ofG, then G is complete.

Note that every topological group G with a ^-decomposition G = \J Kn admits
n€u*

another ^-decomposition G = (J Bn satisfying the conditions of the above theorem. To

see this, simply put Bo = {1} and Bn = Ln •... • Ln (n times), where Ln = KQ U KQ1 U
• • • U Kn U K~l for each n = 1,2,... .

Here we introduce some notation concerning free (Abelian) groups. Let X be a
nonempty set and F(X) be the (abstract) free group on X. Every element g of F(X)
is a word in the alphabet X and has the form g = x\l •... • s£", where xt,... ,xn € X
and £1,... ,en = ± 1 . The word g may be reducible, that is, g can contain two adjacent
letters x\l and x^+i' s u c l 1 t n a t x' = x>+i an<^ e< ' £*+1 = "*• Otherwise the element g is
called irreducible and we say that the length of g equals to n: l(g) = n. This permits us
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to define the sets

where n € N. We also put Fo{X) = {e}, where e is the identity of F(X) (the empty
word). One defines the subsets An(X) of the free Abelian group A{X) in a similar way.

If Y is a subset of X, F(Y, X) will denote the subgroup of F(X) generated by the set
Y. The same applies to the subgroup A(Y,X) of A(X). In addition, for every n e w we
use the abbreviation Fn(Y, X) for the subspace Fn(X) l~l F(Y, X) of F(X). Analogously,
we put An(Y, X) = An(X) n A(Y, X) in the case of the group A(X).

The following proposition refines the result of Hunt and Morris [31] about complete-
ness of free topological groups on fcu-spaces.

PROPOSITION 4 . 2 . If X is a ku-space, then the groups F{X) and A(X) are
q-complete.

P R O O F : Suppose that K is a closed normal subgroup of F{X) and put G =
F{X)/K. Let p: F(X) —> G be the quotient homomorphism. By assumption, there
exists a ^-decomposition X = (J Cn. For every n e w , the sets j4n = Fn(Cn, X)

and Bn = p(An) are symmetric and compact. Clearly, we have F(X) = \J An and

G = U Bn- In addition, >ln • A* C j4n+* for all n,k eui. By a theorem of [32], the sets
n€(*z

A,, generate the topology of F(X). We claim that the sets Bn generate the topology of
G. Indeed, let U be a subset of G such that U n Bn is open in Bn for each new. Then
p^E/) n 4 n = Pnl{U n -Bn), where pn = p|,in, n e w . Since pn is a continuous mapping,
the set p~l{U) f\ An is open in yln for each n e w , and hence p-1(^) ' s °Pen in ^(^)-
So, t/ = p(p-1((/)) is open in G. This proves our claim.

It is clear that B~l = Bn, BnBk= p(An • Ak) C p(An+k) = Bn+k for all n,kew,
and G = \J Bn. Since the compact sets Bn generate the topology of G, Theorem 4.1

new

implies that the group G is complete. The same argument works for the quotients of the
group A(X). U

The above result implies that every fcM-space is in the class SQ. By [18, Corollary
4.10], the groups F(X) and A(X) are sequentially complete for any countably compact
space X, but not every countably compact space is in SQ by Corollary 4.10 below. Let
us show that some special countably compact spaces are in SQ.

THEOREM 4 . 3 . Let X be a space such that Xn is countably compact and normal
for each n e w . Then t i e groups F(X) and A(X) are sequentially q-complete.

P R O O F : Let K be a closed normal subgroup of F(X). Since X is countably compact,
we can identify F(X) with the subgroup F(X, pX) o{F(0X) (see [36] or [35]). Denote by
L the closure of K in F(0X) and put G = F(/3X)/L. Letp: F{PX) -> G be the quotient
homomorphism. Since K is dense in L, [27, Lemma 1.3] implies that H = F(X)/K is
topologically isomorphic to the dense subgroup p(F(X, 0X)) of G. For every n e w , put
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An - Fn{(3X) and Bn = p(An). Then the compact sets Bn cover the group G and, by
the argument in the proof of Proposition 4.2, generate its topology. Therefore, following
assertion is immediate:

(*) If S C G and \S D Bn\ < Ho for each n € w, then S is closed and discrete in G.

The group G is complete by Proposition 4.2, so it suffices to show that p(F(X, f)X)) = H
is sequentially closed in G. Suppose that S C H is a non-trivial sequence converging to a
point x € G\H. Then (*) implies that S C f l ^ for some t G w . Since all finite powers of
X are countably compact, we conclude that Fk(X) and C* = p{Fk{X)} are also countably
compact. We claim that Ck is closed in H. Indeed, let q be the restriction of p to F(X).
Then q~l(Ck) = K • Fk(X), and since all finite powers of X are countably compact and
normal, the latter set is closed in F(X) by [43, Assertion 4]. Since q: F(X) -f H is an
open epimorphism, we conclude that C* is closed in H. Note that Ck is dense in Bk n H,
so that Ck = Bk n H. Being countably compact, BkHH is sequentially closed in Bk and
in G. Clearly, 5 C BkDH, so 5 cannot converge to x eG\H. This contradiction shows
that .ff is sequentially complete. The same argument applies to the group A(X). Q

We do not know whether Theorem 4.3 remains valid for spaces X whose finite powers

are countably compact (see Question 6.6).

In the sequel we make the use of E(T)-products defined as follows. Let II = f ] Xa

aeA

be a product space and p € II be an arbitrary point. For every x € II, put supp(ar) =
{a e A : ira(x) ^ 7rQ(p)}, where na: U —> Xa is the projection. Given a cardinal r ^ u>,
we put

E(p,r) = { z e n : |supp(x)| ^ T } .

Clearly, E(p,r) is a dense subspace of II. In addition, if all Xa are topological groups
and p is the identity of FI, then E(p, T) is a subgroup of II. We shall usually abbreviate
E(p, r) to E (T) . Topological properties of S(w)-products of (separable) metrisable spaces
and compact spaces were studied in [12, 28, 34].

COROLLARY 4 . 4 . Let X be a closed subspace of a E(a>)-product of compact

metric spaces. Then the groups F(X) and A(X) are sequentially q-complete.

PROOF: Any E(w)-product Y of compact metric spaces is w-bounded [34] and nor-
mal [12]. Since a finite power of Y is homeomorphic to a closed subspace of a larger
E(oj)-product, every closed subspace X of Y satisfies the conditions of Theorem 4.3. D

For an ordinal a, let T(a) be the space with the underlying set a endowed with the
well-order topology. We show now that even if the space T(a) is not countably compact,
it belongs to the class SQ. Hence SQ does not consist only of countably compact spaces.

COROLLARY 4 . 5 . ThegroupsF(T(a))andA(T(a)) are sequentially q-complete

for each ordinal a.
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P R O O F : If cf(a) ^ w, Proposition 4.2 implies that the groups F(X) and A(X) are
g-complete and hence sequentially g-complete. If cf(a) > w, then the space T(a)n is
normal and countably compact for each n € w, so Theorem 4.3 applies. D

We shall show now that the class SQ fails to contain very nice countably compact
spaces. Our construction requires three auxiliary results. To avoid a repetition of similar
arguments for the free groups F(X), F(X,P), et cetera, we shall use the notion of a
variety of topological groups understood as a class of groups which is closed under taking
Cartesian products, quotient groups and closed subgroups [33]. A variety V closed under
taking arbitrary subgroups will be called an S-variety. Finally, if an S-variety V contains
all homomorphic images of the groups in V, then it has the name of a J-variety [38].

Given a variety V, one defines the free V-group F(X, V) £ V on a Tychonov space
X to satisfy the following conditions (see [33, 6]):

(1) there exists a canonical continuous mapping ix '• X —> F(X, V);

(2) ix{X) generates a dense subgroup of F(X, V);

(3) for every group G € V and every continuous mapping / : X -> G, there
exists a continuous homomorphism / : F(X, V) —> G such that / o ix — f.

If Y C X, we use the symbol F(Y, X, V) for the subgroup of F(X, V) generated
by the set ix(Y). Note that ix is not necessarily a topological embedding; it may even
fail to be injective [33]. It is important to note that if V is an 5-variety, then for any
space X, the set ix{X) algebraically generates the group F(X, V). Indeed, denote by
G the subgroup {ix(X}) of F(X, V). By (3), there exists a continuous homomorphism
ip: F(X, V) -¥ G such that <poix = ix- Then ip\a = ida and since G is dense in F(X, V),
we conclude that F(X, V) = G.

Finally, for every variety V and every G £ V, the mapping ia is a topological em-
bedding, and hence the canonical continuous homomorphism p: F(G, V) —> G satisfying
poiG = idc is open. For the same reason, the restriction of p to the subgroup (ia(G))
of F(G, V) is also open.

LEMMA 4 . 6 . Let V be a variety of topological groups. Suppose that H is a
dense subgroup of a group G € V and X is a subspace of G such that H C X. If
p: F(G,V) —> G is the homomorphism extending the identity mapping idc, then the
restriction P\F(X,G,V) '• F(X, G, V) -» (X) C G is an open epimorphism.

PROOF: Consider the free topological group F(G) on G and the continuous iso-
morphism 7r: F(G) -»• F(G,V) which fixes the points of G. Then the composition
p o 7r: F(G) —> G coincides with the homomorphism (p: F(G) -> G extending the iden-
tity mapping idg. By Assertion C of [26, Section 4], the continuous homomorphism tp
is open, so p is open too. Therefore, by Lemma 1.3 of [27], it suffices to verify that
F(X,G, V) n kerp is dense in (ic(G)) n kerp. In what follows we identify G with its
image iG{G) C F(G, V).
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Let W be an open subset of F(G, V) such that W n kerp ^ 0. Choose an element
u e W n k e r p , say u = gl'-'-gft1, where gu... ,gn e G and £lt... ,en = ± 1 . Then

9i' ' ••• ' 9nn = eG m G, where e<3 is the identity of G. Since W is open in F(G), we
can find open sets U\,... ,Un and U in G such that #i € t / i , . . . ,gn € !/„> eG e U
and t/*1 • ••U^U-lU C W in F(G). There exist open sets Vu ... , Vn in G such that
ft 6 V'j C t/j for each i < n and V " • . . . • V*n C U in G. For every i ^ n, pick an element
hi e V i n i / . T h e n / i = h \ l •... • he

n
n € H n U . C o n s i d e r t h e e l e m e n t v = h \ 1 ••• h ^ h ^ e a

of F(X, G). It is easy to see that v € W and p(i>) = eG, that is, t; 6 W<~\F(X, G) nkerp.
Thus, F{X, G, V) n kerp is dense in (ia(G)) n kerp. This proves the lemma. •

The proof of the following result is close to that in [36, 35].

LEMMA 4 . 7 . Let X be a pseudocompact space. Then for any S-variety V, the
free V-group F(X, V) is topologically isomorphic to the subgroup F(X, 0X, V) of the free
V-group F{/3X,V).

PROOF: Denote by ix : X -> F(X, V) and i0X: PX -> F(0X, V) the canonical con-
tinuous mappings of X and 0X respectively. The restriction j = i0x\x '• X —> F(/3X, V)
admits an "extension" to a continuous homomorphism J: F{X, V) —> F(0X, V) satisfying
Jo ix = j . Note that the image %F(X, V)) coincides with F(X, /3X, V). We claim that J
is a topological isomorphism between F(X,V) and F(X, fiX, V). Consider a continuous
epimorphism tp: F(X,V) —> G, where G € V. It suffices to show that there exists a
continuous homomorphism ip: F{fiX, V) —> G such that ip = i/>oj. We shall do this in
two steps.

I. Suppose that the group G admits a coarser metrisable topology. We shall show a
bit more, namely: there exists a continuous homomorphism ip: F(X, V) -+ G satisfying
<p = •j/ioj. Indeed, the set Y = ip(ix(X)) is pseudocompact and hence compact [3, Lemma
5.10]. Therefore, <p o ix admits an extension to a continuous mapping / : f3X —> Y. Let
/ : F((IX, V) -¥ G be a continuous homomorphism satisfying / o i0x = / . Let us verify
that <p = / o J (in other words, one can take ij> = / ) . We have:

= f°j = 7°i/}x\x = f\x =

whence it follows that / o %x(x) — vlix(x)- Since ix(X) generates a dense subgroup of
F(X, V), the equality / o J = (p is immediate.

II. In the general case, the set Y = <p(ix(X)) is pseudocompact and algebraically
generates the group G. Therefore, the group G can be embedded as a topological sub-
group into the direct product U = ]JGi of separable metrisable groups Gj by Corollary 2

of [36] (see also [2, Corollary on page 140]). Let p<: II -> Gi be the projection, i € I. For
every i € / , denote by K{ the kernel of the homomorphism TTJ = pt o tp; F(X, V) —> Gj
and put i/j = F(X,V)/Kt. Since the quotient homomorphism $%'• F(X,V) —• Hi is
open, the group #< belongs to V. Clearly, there exists an isomorphism hi : / /< -> Pi(G)

https://doi.org/10.1017/S0004972700022085 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022085


142 D. Dikranjan and M. Tkacenko [14]

satisfying hi o fc = m. Apply the fact that <fo is open to deduce that the isomorphism ht

is continuous. So, the group Hi admits a coarser metrisable topology and by I, we can
find a continuous homomorphism tp,: F(0X, V) —> Hi such that <t>t = ipi ° J. For every
i € / , the homomorphism ipi = hi o ipi: F(fiX, V) —> Gi is continuous, so the diagonal
product ip of the family {ipi : i € / } is a continuous homomorphism of F(0X, V) to II.
By the definition of ip, we have pi o ip o J"= 7Tj = pt o ip for each i € I, whence it follows
that tpoj= ip. It remains to note that J(F(X, V)) is a dense subgroup of F(/3X, V), and
hence the continuity of ip implies that ip(F{fiX, V)) C G, where G is the closure of G in
II. Since G C G C G, the homomorphism ip: F(0X, V) -> G is as required. D

The following lemma is well known in topological group folklore, so we give only a
brief sketch of its proof here.

LEMMA 4 . 8 . Every non-trivial compact topological group contains a non-trivial

closed metrisable Abelian subgroup.

PROOF: Let G be a non-trivial compact group. By a theorem of Stoyanov (see also
[17, Theorem 2.9]) there exists a prime number p and a non-trivial closed subgroup Np

of G that is either a cyclic p-group or isomorphic to the group of p-adic integers. (The
more precise result is that the subgroup of G generated by all subgroups Np with this
property, when the prime p varies in P, is dense in G.) Since Np is metrisable in both
cases, we are done. D

We shall say that a variety V is good if it contains a non-trivial compact group. It
is known that there exist J-varieties that are not good [38]. The following result shows
that very strong forms of countable compactness of a space X do not imply sequential
g-completeness of the free group F(X, V) for any good S-variety V of topological groups.

THEOREM 4 . 9 . Let V be a good S-variety of topological groups. For every

infinite cardinal T, there exists a T-bounded space X such that the group F(X, V) is not

sequentially q-complete.

PROOF: By Lemma 4.8, V contains a non-trivial compact metrisable Abelian group
J. Put K = Ju. Then K eV, and Theorem 1.12 of [30] implies that there exists a non-
trivial sequence S = {an : n € w} C K converging to the neutral element e# of K such
that (S) is dense in K (see also Theorem 5.13 of [7]). Then C = S U {e*-} is a compact
subset of K which generates a proper dense subgroup of K. Since K is metrisable, we
can choose a sequence {bn : n G u} C (C) converging to an element b e K\ (C).

Let G be the compact group Kx, where A = T + and r ^ No. Clearly, G e V.
Denote by E ( T ) the subgroup of G consisting of all points g e G which have at most r
coordinates distinct from OK- Then E(r) is dense in G and T-bounded. Let i: K -v Kx

be the topological monomorphism that sends x e K to the point i(x) e Kx whose
coordinates are equal to x. Put X = £ ( T ) U i(C). Since i{C) is compact, the subspace
X of G is r-bounded. In addition, from E ( T ) C X C KX and 0H(T) = KX it follows that
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0X = Kx = G. It is easy to see that the subgroup (X) of G is not sequentially closed
in G. Indeed, the sequence {i(bn) : n € ui] C (i(C)) C {X) converges to the point i(b),
so it suffices to verify that i(b) $ (X). Suppose the contrary, then i(b) € (X) !~\ i(K)
since the subgroup i(K) is closed. Let us see now that this intersection coincides with
the subgroup {i(C)). Indeed,

{X) n i(K) = i(K) n (E(r) + (i(C))) = (i(K) n E(r)) + (i(C)) = <i(C)>.

Here the second equality is the modular law applied in the lattice of all subgroups of G,
while the last one is due to the fact that i(K) trivially intersects E(r). This contradicts
the choice of 6 6 K \ (C) in view of the injectivity of i.

Consider the group F(G, V) and its subgroup H = F(X, G, V) generated by X. By
Lemma 4.7, the group F(X, V) is topologically isomorphic to H. Let p : F(G, V) -> G be
the homomorphism extending the canonical mapping jc- G —> F(G, V). Since G € V,
the mapping jo is a homeomorphic embedding. Apply Lemma 4.6 to G, X and H = £(r)
to conclude that the restriction of p to the subgroup F(X, G, V) of F(G, V) is an open
continuous epimorphism of F(X, G, V) 9* F(X, V) onto (X). Since (X) is not sequentially
closed in G, the group F(X, V) fails to be sequentially ^-complete. D

Denote by P (PA) the 5-variety of all precompact (Abelian) topological groups.
Clearly, the S-varieties P and PA are good, so the following result is immediate.

COROLLARY 4 . 1 0 . For every infinite cardinal r, there exists a r-bounded space
X such that the groups F(X), A(X), F(X,P) and F(X,PA) are not sequentially q-
complete.

REMARK 4.11. Theorem 4.9 shows that by adding a convergent sequence C to the
space X = E(w) C Z(2)c we destroy sequential g-completeness of the groups F(X U C)
and A(X U C), while the groups .F(£(u;)) and i4(E(w)) are sequentially (/-complete in
view of Corollary 4.4.

5. QUOTIENTS OF PSEUDOCOMPACT SEQUENTIALLY COMPLETE GROUPS

Corollary 4.10 (combined with [18, Corollary 5.5]) gives a series of precompact
Abelian sequentially complete groups of the form F(X, PA) that fail to be sequentially
g-complete. However, these groups are never pseudocompact. In fact, it is impossible to
define a "free pseudocompact topological group" on a nonempty space [6]. This gives
rise to the question whether pseudocompact Abelian sequentially complete groups are
sequentially g-complete. Theorem 5.5 below gives a strongly negative answer to this
question. As usual, we start with auxiliary results.

LEMMA 5 . 1 . Let 5 be a subgroup of the tree group A(X) and (p: S —¥ T be
a homomorphism. Then there exists a mapping f:X—tT such that f\s = <f, where

f: A(X) -+ T is the homomorphism extending f.
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PROOF: Since the group T is divisible, <p extends to a homomorphism ip: A(X) -4 T.

Put / = <p\x- Clearly, then ip — f, and hence <p = 0\s = f\s- D

The next lemma appeared in [17], but it actually goes back to [23]. We reproduce
its proof here for the sake of completeness.

LEMMA 5 . 2 . A topoiogical group without non-trivial convergent sequences is

sequentially complete.

PROOF: Suppose that a topoiogical group G contains a non-trivial sequence {xn :
n € w} converging to a point of G \ G. For every n e u, put yn = x~* • z n + i . Then
{yn : n € w} is a non-trivial sequence in G converging to the identity of G. D

Our third lemma is a very special case of Glicksberg's theorem in [25] saying that
a locally compact group G and the group G+ (the same group G but endowed with the
Bohr topology) have the same compact sets. An elementary proof of this theorem that
does not require the methods of Functional Analysis can be found in [15, Theorem 3.4.3].
Following van Douwen's [22], we use G* instead of G+ for a discrete group G.

LEMMA 5 . 3 . Tie group A(X)# does not contain non-trivial convergent se-

quences for any set X.

Now we present the main result of this section in a slightly more general form than
it is necessary for further applications here.

THEOREM 5 . 4 . Every Abelian topoiogical group H is topologically isomorphic
to the quotient group G/N, where G is a sequentially complete Abelian group and N is
a closed pseudocompact subgroup ofG.

PROOF: Our construction resembles the one applied in [44, Example 3.6], but the
arrangement of the main details here is different. Let r = (jH\ -wf. Our aim is to define
a dense subgroup G of H x TT such that p(G) = H and N = G H P~1(QH) is a dense
pseudocompact subgroup of {OH} X Tr, where p: H x f —t H is the projection. We have
to guarantee that G will be sequentially closed in H x Tr , where H is the completion
of the group H. Clearly, the projection p is open and its restriction to G is an open
homomorphism of G onto H by [27, Lemma 1.3], so that H = G/N.

In fact, we shall construct the subgroup G of H x T7' with two additional properties.
First, the restriction to G of the projection w. H xT7 —> V will be injective. Second,
the subgroup n(G) of T won't have non-trivial convergent sequences.

In its turn, to ensure that G will have these two properties, we take care of con-
structing it in such a way that every homomorphism h: S —> T defined on any countable
subgroup S of G extends to a continuous homomorphism h: G -> T, and this continuous
extension is simply the restriction of the projection of G to the factor TQ for some a < T.

Let us enumerate the set

E = \J{H xTK:KCr,\K\< W},
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say E = {a:7 : 7 < r } . By definition, for every 7 < r there exists a countable subset /f7

of r such that z 7 € H x T^1. Denote by A(r) the abstract free Abelian group on the
set T. For every g € A ( T ) , denote by supp(</) the minimal finite subset F of r such that
5 € (F). Enumerate the family 5 of countable subgroups of A(T), say S = {Sv : v < r } .
For every v < T, let %„ be the family of all homomorphisms from Sv to T. Clearly,
\Wv I ^ c ̂  r for each v < r . Therefore, the family % = \J %v has cardinality ^ r and

we can write % = {ha : a < r } . For every a < T, denote by u(a) the ordinal < r such
that /iQ e %,(,»). Finally, let irK: H x T ->• H x TK and TT& : if x TL -> ff x T x be the
natural projections, where K C L C r .

Our recursive construction of the group G is quite easy after all preliminary defini-
tions have been given. For every a < T, we shall define a subset Aa of r and the points
2/7>Q € H x TB™ for all 7 < r , where 5 7 ) Q = K^uAa, satisfying the following conditions:

(1) Ap C Aa if /? < a < T;

(2) a C AQ;

(3) |i4«| < | t t | -w;

(4) *K~!;° (Vw) = xy for each 7 < r;

(5) " a ^ (»7,<«) = ^7,^ whenever ,3 < a and 7 < r.

From (5) it follows that j / 7 ] O extends j/7i/3 if f} < a < T. Therefore, (2) implies that
for ev̂ ery 7 < T there exists the unique point yy e H x T7 such that TTB7 a (j/7) = y7i<1 for all
a < T. Clearly, 7r«-,(j/7) = z7 (see (4)). We put X = {yy : 7 < r } and define G to be the
subgroup of H x T generated by X. However, to guarantee that every homomorphism
/ i : 5 - > T defined on a countable subgroup S of G extends to a continuous homomorphism
Jt: G -¥ T, we have to perform the construction more carefully.

Suppose that for some a < r, we have defined the sets Ap and the points yyip that
satisfy (l)-(5) for all 0 < a and 7 < r. If a is a limit, put Aa = | J Ap and for every

7 < r, define a point y7,Q 6 if x T*™" that satisfies (4) and (5) for all fi < a. This

completely defines j / 7 , Q . Clearly, the set Aa and the points j / 7 > a satisfy (l)-(5).

Suppose now that a = ft + 1. Consider the homomorphism ha: Sv —• T, where

1/ = f(a), and put

G, = lj{supp(s) : $ € &} and L, = (J{AT7 : 7 € G,}.

Then \CV\ < w, |LV| < w and 5W C A ( G , , T ) . By Lemma 5.1, there exists a mapping
/ : G -* T such that /iQ = / | s , , where / : A{CU, r) -+ T is the homomorphism extending
/ . Here A(Cy, T) denotes the subgroup of A(T) generated by the set Cv. Let us define the
subset Aa of r by Aa = ApULv\j{P,5], where S = 5{a) e T\{A0\JLVU{P}) is arbitrary.
For every 7 < T, put B7>Q = K^uAa. It remains to define the points yy>a € H x T 8 " 1 for
all 7 < T. To this end, we put y~,,a(6) = /("/) for every 7 e G,, j / 7 , a = ar7(<J) if 7 e r \ Cv
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and 5 £ Ky, and j / 7 i Q (S) = 0 otherwise. This defines the points y1A at the 5th coordinate.
Then we define yyA at the rest of coordinates in B7iO to satisfy (4) and (5). It is easy to
verify that the set Aa and the points j / 7 > Q satisfy (l)-(5). This finishes our construction.

Define the homomorphism ip: A(T) -* H x V as follows. Suppose that g = riiji +
••• + fi/cik € A ( T ) , where n i , . . . ,n* € Z \ {0} and 7 1 , . . . ,7* < T. Then put <p(g) =

"12/71 H 1- 7**2/7* (we use additive notation here). It is clear that ip(A(r)) = G. Our
definition of the points J/7J« at the <5th coordinate and (5) together imply the following:

(6) ha(g) = <p(g)(6) for each g € Sv (here v = v(a) and 6 = 6(a)).

Informally, (6) means that the projection of ip(Sv) to the <5th coordinate "represents"
the homomorphism ha. Let TTJ : H x T —> T$ be the projection. Since every countable
subgroup 5 of G is of the form <p(Su) for some u < r , we conclude that any homomorphism
h: S —> T admits a continuous extension to a homomorphism h: G —y T; this extension
h is simply the restriction of the projection ns to G for some <5 < r. We thus have:

(6*) If S is a countable subgroup of G and h: S —> T is a homomorphism, then there
exists 5 < T such that irs\s = h.

It is important to note that the assertion similar to (6*) remains valid for countable
subgroups of the group TT(G) Q T . Indeed, let R be a countable subgroup of v(G) and
g: R —• T be a homomorphism. Then one can find a countable subgroup S of G with
TT(S) = J? and then apply (6*) to the homomorphism g o 7r|^: S —>• T in order to choose
5 < T such that g o n\s = ns\s. Since n(S) = .R, we conclude that 5 coincides with the
projection of R to the Jth coordinate.

This property of T ( G ) implies that every countable subgroup R of ir{G) inherits
from TT(G) the maximal totally bounded group topology, that is, R = R*, where Rj is
the group R with the discrete topology.

The next step is to show that n(G) does not contain non-trivial convergent sequences.
Let us first note that the group K(G) is algebraically isomorphic to the free Abelian group
A(T). Indeed, it suffices to verify that woip: A(T) —t n(G) is an isomorphism. Prom the
definition of G it readily follows that ip = ir o ip is an epimorphism, so we have to show
that the kernel of tji is trivial. Let g € A(r) be an arbitrary element, g ^ 0. Denote by
S the cyclic subgroup of A(T) generated by g and consider a homomorphism h: S -* 1

such that h{g) / 0. Then h = ha for some a < r. Put v = v(a) and 5 = <5(a). Clearly,
S = SV and, by (6),

Therefore, g £ ker(^). This proves that ker(^) = {0}, so that ip is an isomorphism. In
particular, we conclude that the restriction of TT to G is a monomorphism.

Let K be a sequence in TT(G). Denote by R the subgroup of n{G) generated by K.

Then R is countable, and hence R — R*. By [41, 4.2.3], the subgroup R of n(G) is
algebraically isomorphic to the free Abelian group A(Y) with < u> generators, whence

https://doi.org/10.1017/S0004972700022085 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022085


[19] Quotient groups 147

R = A(Y)#. Apply Lemma 5.3 to conclude that R does not contain non-trivial con-
vergent sequences, and hence the same is true for n(G). Since TT|G: G -» ir(G) is a
continuous isomorphism of G to TT(G), the group ?r(G) does not contain non-trivial con-
vergent sequences either. Therefore, from Lemma 5.2 it follows that G is sequentially
complete.

Denote by g the restriction to G of the projection p: H XT' —»• H. We claim that
the kernel N of q is a dense pseudocompact subgroup of {OH} x T. This is equivalent
to saying that N fills in all countable faces of T7. Indeed, let x be an arbitrary point
of {OH} X TK, where AT is a countable subset of T. Then x € E, so that x = xy and
K = Ky for some 7 < T. The projection of y^ to H x T*7 coincides with a;7 by (4), and
y-, eGnker(p) = N. This proves our claim. Note that this also implies that G is dense
in if x IT. Therefore, the quotient group G/N is topologically isomorphic to H, thus
finishing the proof. D

THEOREM 5 . 5 . Every pseudocompact Abelian group H is topologically isomor-
phic to the quotient group G/N, where G is a sequentially complete pseudocompact
Abelian group and N is a closed pseudocompact subgroup ofG.

P R O O F : By Theorem 5.4, we can find a sequentially complete Abelian group G and
a closed pseudocompact subgroup N of G such that H = G/N. Since both N and G/N

are pseudocompact, [8, Theorem 6.6 (c)] (or [42, Corollary 2.26]) implies that G is also
pseudocompact. D

REMARK 5.6. The group G in Theorem 5.5 has several additional properties that follow
from the construction given in Theorem 5.4:

(a) G is algebraically the free Abelian group of cardinality \H\a • c;

(b) G is a pseudocompact group without non-trivial convergent sequences;

(c) every countable subgroup of G is closed in G; in particular, every countable
subgroup of G is sequentially complete.

6. QUESTIONS

The first two questions are taken from [14]. Our first question concerns the diagram
in Section 2.

QUESTION 6.1.

(1) Must a precompact sequentially /j-complete group G be countably com-

pact? What if G is Abelian?

(2) Find an example of a pseudocompact sequentially g-complete group that

is not sequentially /i-complete.

QUESTION 6.2. Are minimal sequentially complete totally (hereditarily) disconnected

groups zero-dimensional?
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In view of Theorem 3.9 and [13, Theorem 1.2], the answer to the above question is
"yes" for sequentially /i-complete Abelian groups. By [17, Corollary 4.9] this is also true
for minimal hereditarily disconnected sequentially complete Abelian groups.

QUESTION 6.3.

(1) Is /i-cj-completeness finitely productive?

(2) Is sequential ^-completeness consistently finitely productive (see Example

3.3)?

We do not know if adding minimality (nilpotency) may help in answering Ques-
tion 6.3. Note that nilpotency gives "yes" in (1) and (2) of the above question.

QUESTION 6.4. Is sequential completeness preserved by perfect continuous epimor-
phisms? More generally, find classes of continuous homomorphisms that preserve se-
quential completeness.

As Theorem 5.5 shows, continuous open homomorphisms with pseudocompact kernel
do not preserve sequential completeness even in the class of pseudocompact groups. The
groups that arise on the basis of our construction in Theorem 5.5 are very far from being
hereditarily pseudocompact. It is also known that hereditary pseudocompact groups need
not be sequentially complete (see the comment before Theorem 3.9). This gives rise to
the following problem.

QUESTION 6.5. Is a hereditarily pseudocompact sequentially complete group sequen-
tially g-complete?

QUESTION 6.6. Does Theorem 4.3 remain valid for any space X whose finite powers
are countably compact?
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