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QUADRATIC EQUATIONS AND APPLICATIONS

TO CHANDRASEKHAR’S AND RELATED EQUATIONS

[oannIs K. ARGYROS

A new technique, using the contraction mapping theorem, for
solving quadratic equations in Banach space is introduced.

The results are then applied to solve Chandrasekhar's integral
equation and related equations without the usual positivity

assumptions.

1. Introduction
Consider the equation
x =y + Blx,x) (1)

in a Banach space X over the field S of real numbers, where

B: XxX + X 1is a bounded bilinear operator and y ¢ X is fixed. We prove
a consequence of the contraction mapping principle which can be used to
prove existence and uniqueness of solutions of (l). For the special cases

of Chandrasekhar's equation [5]:
1o
x(s) =1+ )\x(,s)J —x(t)dt (C)
o s+t

and the Anselone-Moore system [1]:

1
le(s,t)xl(t)xz(t)dt + YL)

1 2

1(Bdt, j=1,2, (1)

Ti(8) = yi(8) + YJ

1
) sz(m,t)ix
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our theorem yields existence and uniqueness for larger values of the
positive parameters A,y than previously known in [1], [9], as well as

providing more accurate information on the location of solutions.

More precisely we prove existence and uniqueness in a specific closed

ball ﬁkz,r) for a solution of (C) provided that
A < .424059
and for a solution of (H) provided that

1 -1
vy < [alyl max ("leﬂ-fiﬂszﬂ)] .

Jj=1,2
From [4], [5]1, (61, [71, (8], one can describe the existence theory
of (C) completely for the case KRe(A) > 0 , however, the techniques
applied there are not as general as the one described here, because they
make use among other assumptions (which hold only for the specific B

given in (C)) of the differentiability of the operator
1
P@)(8) = - 1 - Az(s)| —Lrz(t)dt
s+t

and the invertibility of P'(xo) for some specific x. ¢ C[0,1] .

0
The principal new idea in our general theorem is the introduction of a

second quadratic equation
2=y + F(z,2) (2)
for comparison with (1). The estimates on (C) and (H) are then obtained

under suitable choices of F.

Finally we show how we can use the solutions of finite rank equations
to approximate solutions of (1) when B is the uniform limit of finite

rank operators.

Some of these results were announced in [Z2].

2. Preliminaries

DEFINITION 1. an operator B:XxY -+ Z sending (x,y) € XXY to

B(x,y) € Z 1is called bilinear if it is linear in each variable separately
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and symmetric if X =Y and B(x,y) = B(y,x) for all x € X .

DEFINITION 2. The mean B of B on XxX is defined by

B(z,y) = %(B(x,y) + B(y,x)) for all x,y € X.

DEFINITION 3. &an operator @: X + Z sending xz € X to @(x) € 2
is called quadratic if there exists a bilinear operator B : X¥xX =+ Z such

that

@(x) = B(x,x) for all x € X.

The following proposition can now be easily proved.

PROPOSITION 1. 4n operator Q:X + Z ig a quadratic operator if and
only if there exists a symmetric bilinear operator B : XxX » Z
satisfying

2 = 2
Qlex+ery) = c]Q(x) + 2¢ B(x,y) + c,Q(y)

for all x,y € X , ¢ € S . Such a symmetric B 1is unique.

17%2

DEFINITION 4. A bilinear operator B: XxY+Z is said to be bounded

if there exists ¢ > 0 such that
1B(x,y)l < elxllyl for all (x,y) e XY.

The quantity [Bl = sup I1B(x,y)! is called the norm of B .
lel<1,Byl<1

DEFINITION 5. A quadratic operator B: X-+Z is said to be bounded if

there exists ¢ > 0 such that
2
1gx)l < elzxl for all x € X.

The quantity 1¢l

sup 19(x)} is called the norm of § .
1zl<1

From now on we assume that X = Y = Z unless otherwise stated.

https://doi.org/10.1017/50004972700009953 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009953

278 Iocannis K. Argyros

3. A consequence of the contraction mapping principle,
Rall's Theorem and equation (1)

We can assume without loss of generality that B in (1) is symmetric

since it agrees with B on the diagonal of XxX .

We now prove a consequence of the contraction mapping principle for
(1).

THEOREM 1. Let B be a bounded bilinear operator on XxX and
suppose y and 2z belong to X . Define T:X > X by

T(x) = y + B(x, x).

Set
= 1 _
@ = grgr - 12l
b= 2 _ I7(2)-z0)1/2
D R ;) S '
and assune b is nonnegative and a # 0 . Then

(i) T has a unique fized point in U(z,a) = {z € X|lz-zl < a};

(ii) this fized point actually lies in U(z,b).

Proof. The hypothesis, » 2 0 and a # 0 , implies that a > 0 and

2 0.

2 _Ir(a) -2l
a L

Fix r such that b <sr <a.

Claim 1. 7T is a contraction operator on U(z,r) . 1If

X, X, € U(z,r) , then it is routine to show

172

ﬂT(:cl) - T(x,) ! ﬂB(xl,xl) - Blx,,x,)l

IA

2 (r+l 20y 1 BI l!xl-lel .

set gq = 2(r+lzl)iBl. By hypothesis,

1
I’<W—HZH

so 0 <gq <1 and the claim is proved.
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Claim 2. T maps U(z,r) into U(z,7) . We have

17 (x) -2l

0 7(x)-T(z)+T(3) -3l

A

iB(x,z)-B(z,z)l+17(z)-z0

in

18002 + 20 BET 28 pel T(2) - 21 .

Define the real quadratic polyhomial g(r) by
glr) = "B"r2+-(2ﬂBﬂﬂzH-1)r4-ﬂT(z)-zﬂ,

To establish the claim we must show that g(r) € 0 for all r, b<sr<a.

Now the quadratic function g(r) is convex, with smallest root at b

and minimum occurring at a . So for b < r <a,

18122 + 208l zlp + 1T(z)-20 < » .

The theorem now follows from the contraction mapping principle.

COROLLARY 1. If
alpliliyl <1
then
(1) the equation
x =y + B(x,x) (1)
has a unique solution x <in the open ball Uco,r,), where

- -1,
r, = (208l ™%

(ii) moreover z e ﬁ(o,rl), where

r = [1-(1-a1BI1»01)1 212081y "2

Proof. Take 2z = 0 in Theorem 1.

We now state Rall's theorem for comparison. The proof can be found in

[91.
THEOREM 2. If

4iBllyl <1
then
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(i) equation (1) has a solution = € X satisfying

Il < [1-(1-41BI0y0) 2212081 7L,
(ii) moreover x is unique in Ulx,R), where

1/2 1

R = (1-4lgllyl) 2lBly~",

Note that Theorem 2 and Corollary 1 provide the same estimate on

lzl , but Theorem 2 guarantees uniqueness in U(x,R) and not in U(0,»)

Corollary 1 is a crude application of Theorem 1. Sometimes it is
possible to introduce an auxiliary quadratic equation which is "close to"
(1), but easier to handle. In the next section, we will use Theorem 1 in
a more subtle way to exploit this idea. In particular, we will learn how

to solve (1) in cases not covered by Rall's theorem.

4, Auxiliary quadratic equations
THEOREM 3. Consider the equation
a3 =y+ F(z,a) (2)

where F :XxX - X 4s a bounded symmetric bilinear operator and Yy 1is
fixed in X . Suppose that there exists a solution =z of (2) satisfying

Izl < C2/MBT(AEA + AN 7L, (3)
Then

(1) equation (1) has a unique solution x e U(3,a);

(ii) moreover, x € U(z,b), where

b = {1-20B00z0 - [ (21B0Iz1-1)2% - 4l B-FLIBIIz1231/2} (208172,
Proof. with T as in Theorem 1, we have
I7(2)-20 = 1 (B-F)(2,2) + F(z,2)+y-3l
< 1(B-F)(z,2)1 +F(3,2)+y-zl
< IB-Fllzl2,
So
i7(z)-20 < 1B-Fllzi°, (4)
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Now (3) implies the hypothesis of Theorem 1 since
Izl < 2081y Y = 4 > 0,

while by (3) and (4) we have

1 _ lz0 > / B-F izl
28T TET

or

ar TR s

The following generalization of Theorem 3 allows us to deal with the

situation when 2 1is not an exact solution of (2).

THEOREM 4. Let B and F be bounded bilinear operators on XxX and
suppose y and =z belong to X . Define T:X > X by

T(x) = y + B(x,x),

and set

a = 1 121
2T Bl

ﬂF(z,z)+y—zﬂ"zﬂ_2

(4]
o

o
It

2 _1B-Fllzl+elal? 7172
a- @ TET :

Assume that

Dzf < [2/TBT (BT + AB-FT7e)1 L

then

(1) T has a unique fixed point in U(z,a) ;
(ii) this fixzed point actually lies in U(z,b)

Proof. similar to Theorem 3.

We complete this section by recording certain facts concerning

Theorem 3.

REMARK 1. The iteration
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Tl =Y + B(mn,xn), n=1,2,...

converges for any X, € U(z,b) to the solution z of (1) at the rate of
a geometric progression with quotient

g =1- [(1BM1z1-1)2 - aiB-FIIBINZ121Y/2

Proof. By Theorem 3 we have

g = 2(b+lzl)IBl

1 - [(20Bllzl-1y2 - alBlIB-Fll2127Y/2,

PROPOSITION 2. Under the hypothesis of Theorem 3, the solution
obtained in Theorem 3 satisfies
Tzl < (20B1)7L,
Proof. By Theorem 3 we have
lz-zl < a,

so that

el < 20 + g,

that is, lzl < (2“3")_1, and the result follows.

COROLLARY 2. For any y € X such that Iyl < (alBl)™L,

(i) equation (1) has a unique solution x € U(y,a), where

a = (1-21Bl0yl) (208172,
(ii) moreover =z e Uly,b), where
b = [1-2BliEyl - (1_4ﬂBIIy|)1/2](zuBg)‘1.

Proof. Apply Theorem 3 with F =0 and 3=y .

REMARK 2. Theorem 3 may be applicable even if the hypothesis in

Corollary 1 or Theorem 2 is violated. Here is an example in X = IR .

EXAMPLE 1. ret

-.251 + x2 for x

X

y + Blx,x) and

z = -.251 + .82%2 for

N
1]

y + F(z,2) .
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PROPOSITION 3. Assume
(i) the hypotheses of Theorems 2, 3 and Corollary 1 are satisfied;
(ii) (ABI-IB-FYkzh? Uzl +0yl > 0 .
Then Theorem 3 provides a sharper estimate on x than Theorem 2 or
Corollary 1.
Proof. By Theorem 3,

le-z1 < b so Izl <b + Iz,

By Theorem 2 and Corollary 1,

bzl < [1-(1-alBlIyl)1/21(2080)72
so it is enough to show
[1-((20BlIz1-1)2 - al BIIB-FI1 212) /272150y 2
< [1-(1-40Bl0y0y /232080y 72

or
(IBI-1B-FI) 1212 — izl + Uyl > o

and the result now follows from {(ii).

5. Chandrasekhar's integral equation

PROPOSITION 4. Take X = ¢[0,1] with sup-norm and define the operator
K:XxX > X by

1 1
K(z,y) (s) = %{x(,s)f sSTty(t)dHy(s)I oo (t)dt].
0 0

Then Bkl = 1n 2 .

Proof. The operator @ : X + X defined by

1
_ s
Qx) = .'z:(s)JO —s+tx(t)dt

is a quadratic operator since

Kz, x) = @(x) for all zx e X.
Now
1 s
Q@ = max f I——— dt = 1n 2
s o s+t|

https://doi.org/10.1017/50004972700009953 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009953

284 Iocannis K. Argyros

and since always

lql < Ixi
we obtain

m 2 < LKl
The proof will be completed if we prove that

Ixl < in 2.

But by the definition of X ,

8

EIfldt) =1 2

1 1
Tkl < Emax(Z[ I
8 0]

and the result follows.
We now apply Theorem 2, Corollary 1 and 2 in (C) with B = AK .

According to Corollary 1,

(i) equation (1) has a unique solution =x € Utz,r,), where

r, = (2\ In 7L

(ii) moreover «x ¢ _ﬁ(z,rl) , where

1

/2902x 1 )" .

"

r [1-(1-4x 1n 2)1

1
provided that 4x 1n 2 < 1, that is, XA < .36067 .
Similarly according to Theorem 2,

(i) equation (1) has a unique solution in U(x,R), where

/2 1

R = (1-4) 1n z)l (22 n 2)°

provided that X < .36067 .

Finally, according to Corollary 2,

(i) equation (1) has a unique solution zx ¢ U(l,a), where

a= (1-2A 1n 2)(2A 1n 2)°%;

(ii) moreover =z ¢ U(1,b), where

1/2 1

b=1[1-2x 1 2 - (1-4x n 2)~7°7@2x 1 2)7 .
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Theorem 3 has the following corollary.
PROPOSITION 5. Consider the equation
gz =y + AB(z,3). (5)
Suppose

gzl < 1 (6)

where 2z and X satisfy (5). Then for
A< )\l < cl (7)
with
e, = [4lBllzl (1-AlBlzly 37t

the conclusions of Theorem 3 for the equation
=y + AlB(x,x) (8)
hold.

Proof. To apply Theorem 3 we need to prove

1/2 1/2 1/2

-1
Izl < [2(>\1IIB||) ((|A-Al[llBll) + (AlﬂB") 11 .

This is proved by using (6) and solving (7) for [zl

In practice, an exact solution of the auxiliary equation (2) or (5)
can seldom be obtained. The following proposition, whose proof is similar
to that of Proposition 5, guarantees that the original equation (1) has a

solution even when we can only find an approximate solution of (2) or (5).
PROPOSITION 6. Let B be a bilinear operator on XxX , suppose Yy
and =z belong to X and X 1is a positive parameter. Set
€ = HAB(z,z)+y—zﬂﬂBﬂﬂz"-2
and

e, = {4“2““3"[1—(%—5)“Bﬂﬂzﬂ]}-l.

Then, for any A satisfying X < A, < e

1 L » the equation

r =y + Achx,x)
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has a unique solution =z in U(z,a) and in fact this solution lies in

T(z,b) Here
@ = 5 - 14
1
b=a-[a’- (1_%)113112_}‘1 120271/2,
1 1
REMARK 3. According to Theorem 2 and Corollary 1 or 2,

Chandrasekhar's equation

1
2(8) = 1 + A\K(2(8),2(8)) = 1 + Az(‘s)f Sf—t z(t)dt (©)
o

has a solution for any X satisfying A < .36067 , but now using

Proposition 6 we can extend the range of A to A < .424059.

Here are some characteristic values for A , the norm of the

corresponding approximate solution z, and e -
A anﬂ e
.35 1.44474532 .384363732
.4: 1.59821923 .405244331
.4; 1.683;3661 .4201;3281
.4;3 1.696;4924 .4230;1429
.4;4 1.700é5561 .4240;0047
.4;4059378 1.700;73716 .424059379
.424059379 1.700973721 .424059379
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The approximate solution zn was calculated using the iteration
suggested in Remark 1 with zo(s) =1 for A < .36067 . The convergence

of the iteration is then guaranteed by Corollary 2. When

.36067 < XO < .424059 then the initial approximation zo(s) for such a

Al was the approximate solution of (C) for a smaller kl , which was

sufficient for the use of Proposition 6. Simpson's rule was used for the
numerical quadratures over 8 in the range 0(0.05)(1.0) . The results

agree with those in [711] at least to six decimal places. Finally ¢,
was calculated according to Proposition 6.
Numerical iteration [8] suggests that if A = .42406 then

Ix"Z(ZX"Kﬂ)_l . This implies that if the estimate on Il given by

Proposition 2 is the "best" that Theorem 4 can provide, then Proposition 6

provides the widest possible range for A .

6. Anselone-Moore's system

A system of quadratic equations in X of the form

z, =y, + B(z,2), 1=1,2,...,n

where zp.Y; € X, x= (xl,...,xn) e ¥ and Bi: XxX > X ,1=12,...,n

are bounded bilinear operators, can be viewed as a quadratic equation of

the form
z =y + Blx,z) in X (9)

where the norm of a vector in Xt s defined by

12! = max{lx l,...,lxn|};
and therefore

130 = max{1B I,...,anl}.

Let X = (C{0,1] and define the continuous linear operators
ij: X+ X by

1

(ijf) (8) = J Njk(s,t)f(t)dt, 0<sg <1,

0
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where the Njk’j'k = 1,2 are continuous functions of two variables.

Define the quadratic operator E : XxX > XxX by

1 2
Lz, + 5 05%

E(x) = with x = (ml,xz).

1
Lyyoqxy + 3 L%

[\S]

Also define the operator B i XxXxXxX » XxX by

Bla,y) = HE@+y) - By 1.

~

Note that B is a bounded symmetric bilinear operator.

We now state for comparison Anselone-Moore's theorem concerning the

solution of (H). The proof can be found in [1].

THEOREM 5. If

aylyllgl < 1
and
Vel < max (ML, 0+0Z. 1),
g=1,2 It 72
then
(1) equation (H) has a unique solution x e U(_O,ré), where
- -1
rl = (2ylELH "
(ii) moreover xeTJ'(O,rJ’_), where
vl = [1-(L-aylgllEH 2T oyl 7L

Equation (H) is of the form (9). Here, X = C[0,1] and

1Bl < max (ML .. 0+3z. 1)

j=1,0 d1 2752
where
1
"ij" = s:p L)INjk(s,t)ldt, J.k =1,2.
Since
1
max (0L B+=0L. 0y € max (17, 0+07.. 1),
g=l,2 It 2207 o, Tl g2
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Corollary 2 provides both a wider range for Yy and better information
about where the solution lies than Theorem 5. Finally we can use
Proposition 6 to extend the range of Y even more, but we omit the

details here.

7. Quadratic finite rank operator equations

DEFINITION 6. An operator P: X +Z sending x € X to P(x) € 2
has finite rank n if the span of the range of P has dimension n .

REMARK 4. The problem of solving the quadratic equation
x =y + Q(x) (10)

when & is of rank 7n can be translated to a finite dimensional one by

making the substitution 2z = x-y to obtain the equation
2 = Q(z+y)

which shows that 2 must lie in the range of @ . More precisely we

state the following theorem. The proof can be found in [3].

THEOREM 6. The point w ¢ X is a solution of (10) if and only <if

where the vector (ByrenarB) € 5" is a solution of

n

n

. =1. + z a.x. + E b.x.x., 1 =1,2 n in (11)
Z . ) . ¢ 20eees S :

7 iz T2 i,3=1 13 1g

where 15 a b.. i, =1,2,...,n are specific numbers depending on @

1 Tig
and y .
REMARK 5. The linear part in equation (11) can sometimes be

eliminated and therefore (11) can be written as

xz. =1

n
; !+ Z blax.x., 1 =1,2,...,m in s,
7 .
1,J=1

e

THEOREM 7. Consider the quadratic equations

2=y + Fn(z,z) (12}
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where F :XaX *X , n=1,2,... are bounded symmetric bilinear operators.

If

(1) the sequence {Fn} converges to B uniformly as n » =,
(ii) for each n there exists 2z, , satisfying (12) and
suplz Il < 2igly~t
then the sequence {z,} converges to a solution z of (1).
(Note that B and the Fh's are not necessarily of finite rank here.)
Proof. we have
z, - 2, = Fﬁ(zm,zm) - Fn(zn,zn);
by adding and subtracting Fh(zm,zm), Fﬁ(zn,zn), Fn(zm,zn) and Fﬁ(zm,zn)
and rearranging we obtain
zm - Zn = (_Fm—Fn) (zm,zm) + (_Fm—Fn) (zn,zn) + Fn(zm’zm_zn)
+ Fm(zm—zn,zn) + (Fn_Fm) (zm,zn) . (13)

Now, since sup"znll < (_2"B||)_l there exists ¢ > 0 such that

Iz 1 <c < @By, n=1,2,..., (14)

Moreover using (14) and the triangle inequality in (13) and setting

p = limﬂzn_zmﬂ as n,m -+ © ywe obtain
p s 2lBlep
SO
p(2lBle-1) 2 o, (15)

by (14) and (15), which implies p = 0 , that is,

imlz -z I > ®
1im = %m 0 as n .
Therefore the sequence {Zn} , n=1,2,... 1is a Cauchy sequence in a

Banach space and as such it converges to some 2z € X . The element 2z € X

is a solution of (1) since

2 = 1lim 2_ = lim (y+F (=2_,2_))
O R nn'n
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=y +lnmF (3,2) =y + Bz,z].
>

Here we provide an example for Theorem 7 in X = R :

EXAMPLE 2. Let

1
o
+
8
Hh
]
]
8

I

x y + B(x,x) (16)

and

n
1
Q
+
th
o]
L
n
1

y + F (2,2 . (17)

Then since

-1
EZ— +>1 as n > ®

zn = 0 1is a solution of (17) for eachn , n = 1,2,...,

the conditions of Theorem 7 are satisfied. Therefore since
zn >0 as n>» , 0 is a solution of (16).
The results presented here have been extended (3) to the more general

equation
x =y + L(x) + B(x,x)

where L :X -+ X 1is a bounded linear operator.
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