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SOME EXTENSIONS OF ADDITIVE PROPERTIES OF
GENERAL SEQUENCES

MiIN TANG

Let A = {a1,a2,...}(a1 < a2 < ---) be an infinite sequence of positive integers.
Let £ > 2 be a fixed integer and denote by Ri(n) the number of solutions of
n = @ +a + - + 6. Erdds, Sirkozy and Sés studied the boundness of
|R2(n + 1) — Ry(n)| and the monotonicity property of Rp(n). In this paper, we
extend some results to k > 2.

1. INTRODUCTION

Let k > 2 be a fixed integer and let A = {a;,a2,...}(a; < az < ---) be-an infinite
sequence of positive integers. We write

f@)=) 2 Am)=3_1 BAan= > 1

a€A a€A a—1¢A
agn a€A, agn

Forn=0,1,2,... let Ri(n) denote the number of solutions of
a, +a,+---+a,=n, a;, €A a,€A,...,a €A

Then the generating function of Ri(n) is f*(z).

Erdés, Sarkézy and Sés studied the representation function Ry(n). For examples, in
(2, 3], they examined the possible order of growth of the function Ry(n) in comparison
with that of functions such as logn or lognloglogn; in [4], they showed that under
certain assumptions on A, le(n +1) - Rz(n)| cannot be bounded; in {5], they proved
that Ry(n + 1) > Ry(n) for all large n if and only if A(N) = N +O(1).

It is natural to extend these results to the case of k summands, that is, to the function
Ri(n). In [6], Horvath extended the result in [2] to k > 2. He showed that if F(n) is a
monotonic increasing arithmetic function with F(n) — +oo and F(n) = o(n(logn)~?),
then |Re(n)—F(n)| = o((F (n))l/ 2) cannot hold. In (1], Dombi studied the monotonicity
property of Ri(n) for k > 4. He proved that there exists an A C N such that Ri(n) is
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increasing for every k > 4 and n > ng(k) and the density of A is equal to 1/2. In this
paper, we have the following results:

THEOREM 1. There exist infinitely many integers N such that

N
(1) Y (Bi(n +1) - Ri(m))” > c(k)(B(4, N))",

n=0
where c(k) = e~2¥21-2F(1 + (2k)!)1.
COROLLARY 1. For large enough N,
& 2 - ok
S (Re(n +1) - Ry(n))’ = o((B(A, N)) )
n=0
cannot hold.

COROLLARY 2. If
. B(AN)
lim

N-—r+o0 Nl/k

then |Ry(n+1) — R,,(n)| cannot be bounded.

= +00,

THEOREM 2. If

@) A = of () ™).

then Ry(n) cannot be eventually monotonic increasing.

2. PROOFs

LEMMA 1. For0 <z <1 and m € N, we have
. +o00 +o0
Zm-1 _ n+m 1 n
1-=) —1+Z( m >$">Eznmx.
. n=1 n=1
LEMMA 2. ([6]) For large N, we have

1
1
——— da K log N,
/o TF ¢
where z = e"1/Ne?*@ « js a real variable.
LEMMA 3. If Ri(n+1) > Ri(n) forn > no, then

(3) Ri(n) < ﬂi"i for n > ng.
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PRrROOF: For n 2 ng, we have

(A@n))* = (m ) > | 1=;\;Rk(i)

8y +--+ai, £2n

as2n Biy yoensBiy €A

2n 2n
> Y Re(i) > Y Ri(n) =nRu(n).

i=n+l i=n+l1
Hence Aom)E
Ri(n) < %’m- for n 2> ny.
This completes the proof of Lemma 3. 0

LEMMA 4. If F(n) is a real arithmetic function satisfying 0 € F(n) < n, and
F(n) = 0 holds only for finitely many integers n, then there exist infinitely many integers
N such that

F(N +1) (N+i)2

(4) F(V) N for i=1,2,...

PROOF: Suppose that (4) holds only for finitely many N. Then there exists an

integer Np such that :
F(N) >0 for N 2 N,.

Then there exists an integer N' = N'(N) satisfying N’ > N and

F(N' "\ 2
s (%)

By induction, we get that there exist integers No < N; < N; < -:- < N; < --- such that

F(NJ+1) J+1 2 .
> = e .
F(N;) /( N, ) forj=0,1,2,

Hence

F(Niy1) = F(INo) HT’(Vz_wL)ll F(No)]'[( ,H)

J

N,
= F) () > W3

for large enough [, which contradicts the fact that F(Ni41) < Ny4.
This completes the proof of Lemma 4. ‘ 0
PROOF OF THEOREM 1: If A = {1,2,...}, then the result is obvious. Now let
AC {1,2,...} be an infinite sequence and let S(n) = zn:O (Re(G+1) - Rk(j))z. Suppose
j=

https://doi.org/10.1017/50004972700038697 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700038697

142 - M. Tang ' [4]

that there are only finitely many integers NV satisfying (1). Then there exists an integer
Ny such that for N 2 N, we have
(5)  S(N) < el (1 4 (2k)1)71(B(4, V).

By Lemma 4, there exist infinitely many integers V such that

(6) B;’A],VAT;) < (N]\’/H)2 fori=1,2

Let N denote a large integer satisfying (5) and (6). We write e2*® = ¢(a), and we put
r = e~ YN 2 =re(a), where a is a real variable.
The infinite series

(@)= Ez and f(z)(1-z) = zb,,z
a€A

are absolutely convergent for |2| < 1.
Let '

1
J1=/o |£(2)(1 - 2)|* de.

Then by Hélder’s inequality and Parseval’s formula,

2k (/ £(2)1-2) | da)z/k(/ollda)l—z/k
> [ |f(z)(1—z)|

ngN
nEA,q—leA

= e 2B(A, N).
Hence
@ hz (2BA,N) " =t (BN,

On the other hand, by Cauchy inequality and Parseval’s formula, we have

n=[ @ -] - da
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<2 [ |e)a - o) de
/ 1 ka(n)z"(l - 2)| da
n=1

0

= 2k I/ol i(R’;(n) —-Rk(n— 1))2" dCl

n=1
/ |

+°° 2 1/2
Rk(n) - Rk(n — ].))Zﬂ )

(-]

+co 1/2
— Ri(n - 1))°r 2")

n=1

(
(e
=2 1((1 - 22 Ri(n) — Re( n—l))2r2")
(
(

1/2

2k-1 (1—r2)25(n-1 )1/2
<2 (1-7%) ES(n‘)r%)l/2

=2"‘1( ‘2/N)(ZS(n )2t 4+ Z S(n)r? ))1/2.

n=N+1

For0<z < 1, we have 1 — e™* < z, and in view of (5) and (6), we have

< 2k~ 1( (ZS(N)+ Z S(n ))1/2

n=N+1
+00
1

1/2
e,,zk-l(H(zk)!),,z((B(A,N» +N Y (BAm))

n=N+1

—- 2k—l

< .—l____(B(A N))k/2 1+N—2k—l § n2kr2n 12
1+ @Rz B ' :

n=N+1

Put z =72 and m = 2k in Lemma 1,and 1 —e™* > z/2 for 0 < z < 1, thus

< sy B ) (1 N it = )
® < é'=(1_+(12—kW(B(A, N2 (14 (2k)N-21 1 /N)-zk_l)lﬂ

_.k(B(A N))k/2
By (7) and (8), we have
e_k(B(A, IV))’C/2 < Jl < e-k(B(A, N))k/2’
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which is impossible, thus the assumption cannot hold.
This completes the proof of Theorem 1. 0
PROOF OF THEOREM 2: Now suppose that (2) holds and Rx(n + 1) > Ri(n) for
n 2 ng. By Lemma 4, there exist infinitely many integers N such that

AN +1) (N +iy2 .
(9) AN <( N ) fori=1,2,...
Let N(2 no) denote a large integer satisfying (9). We write €2 = ¢(a), and we put
r = e N,z = re(a), where a is a real variable. Then the infinite series f(z) = ¥ 2° is
absolutely convergent for |z| < 1. a€A
Let

1
J2=/0 17(2)[* da

Then by Hoélder’s inequality and Parseval’s formula,

2/k (/ |j(zl da)w‘(/o lda)l—z/k2/:|f(2)|2 da
)

= Zrz“ > Z'rw =e? Z 1=e2A(N

a€EA a€EA a€A
agN agN
Hence,
(10) B 2 (e 2A(N))*? = e~ (A(V))**.

On the other hand,
1
J. = / ‘f"(z)l da

/1 400

Z Ry n)z

/ l (1 —z)ZRk(n)z — 2™ da.
Let oo
= ’(l —z) ER;,(n)z" .
Then
T = E (Rk(n) - Rk(n. - 1))2"
Zle n) — Re(n—1)|r" + Z |Re(n) = Ri(n — 1)|r"
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< Z le(n) - R,,(vn - 1)| + i (Rk(n) — Ri(n — 1))7'1!

n=no+1

no . 400
<2)|Re(n) - Re(n = 1)| + 3 (Re(n) — R(n - 1))r"
n=1 .

n=1

+00 +00
=ci+ Y R - =+ (1-1)Y Ri(n)r"

n=1 n=1

+0o
Z Ri(n)r"

n=ng

no—1
<a+ Y R(nm)+(1-1)
n=1

N +00 ° .
<ec+(l- e-*/”)( YR+ Y Rk(n)r"),

n=np n=N+1
where ¢;, c¢; are constants.
For 0 < z < 1, we have 1 — e~ < z, and in view of (3) and (9), we have

k +00 k
ey (i BN S e )

<cz+N“((A(N))'°(2N/N)2"+ ) (A(N))k(2n/N)2"n‘lr"))

n=N+1
+00
<ecy+ N“(A(N))" . 22k(1 + N2 Z n2k—1rn).
n=N+1

Put z =7 and m =2k — 1 in Lemma 1, and 1 — e~*(z/2) for 0 < z < 1, thus

1
N-1 k o2k —2k _ a—1/Ny-2k
T < o+ N7 (AN)* - 2%(1+ N ami e )
< o+ N7 (A(N): - 2 (1 v L (1)
(2k —1)'\2N
< N7Y(AN))*.
By Lemma 2, we have
(1) J2 < N™H(A(N))* log NV.
By (10) and (11), we have
e (AN < Jp < N7 (A(N))" log N.
Hence
k/2 N
(AN >
which contradicts the assumption that A(n) = o((n/logn)¥/¥).
This completes the proof of Theorem 2. 0
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