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ASYMPTOTIC BEHAVIOUR OF THE
TIME-FRACTIONAL TELEGRAPH EQUATION

VICENTE VERGARA,∗ Universidad de Tarapacá

Abstract

We obtain the long-time behaviour to the variance of the distribution process associated
with the solution of the telegraph equation. To this end, we use a version of the Karamata–
Feller Tauberian theorem.
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1. Introduction and preliminaries

Let α ∈ (0, 1] and μ, ν > 0 be constants. We consider the time-fractional telegraph equation

∂2α
t (u − u0 − tu1) + μ∂α

t (u − u0) − ν∂2
xu = 0, t > 0, x ∈ R, (1.1)

where u0 = u(0, x) plays the role of the initial datum for u, and u1 = ut (0, x) means the initial
condition of the derivative of u whenever it exists for 1

2 < α ≤ 1. In general, (1.1) can be
solved using e.g. the abstract theory of Volterra equations; see the monograph of Prüss [6].

Equation (1.1) is introduced in [4] subject to the conditions that u0 = δ(x) and u1 = 0;
we adopt these conditions as well. The solution uα of (1.1) exhibits interesting properties, one
of them being that uα can be viewed as the probability density function whose distribution
process, denoted by Xα, coincides with uα at time t (cf. [4]). Furthermore, they show that,
for α = 1

2 , the variance of X1/2 increases like t1/2 as t → ∞, which is more slowly than the
variance of X1 (α = 1), which increases like t as t → ∞. In this paper we aim to establish this
property for all α ∈ (0, 1]. Moreover, we prove that the variance of Xγ increases more slowly
than the variance of Xα if and only if 0 < γ < α ≤ 1. See Theorem 2.1 below.

The term ∂
β
t v denotes the classical Riemann–Liouville fractional derivative of the (suffi-

ciently smooth) function v of order β > 0, which is defined by

∂
β
t v = d

dt
(g1−β ∗ v),

where gα denotes the standard kernel

gα(t) = tα−1

�(α)
, t > 0, α > 0.

Here �(α) stands for the gamma function; gα∗v denotes the convolution on the positive half-line
R+ := [0, ∞)with respect to the time variable, that is, (gα∗v)(t) = ∫ t

0 gα(t − s)v(s) ds, t ≥ 0.
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Let us recall some properties of the standard kernel: (gα ∗ gβ)(t) = gα+β(t), α, β > 0, for
all t ≥ 0, and ∂

β
t gβ(t) = 0 for all t > 0; see, e.g. [5].

The solution of the scalar equation (1.1) can be computed explicitly in terms of the Mittag–
Leffler function

Eα,β(x) :=
∞∑

k=0

xk

�(αk + β)
, α, β > 0, x ∈ C.

For a general presentation of fractional calculus and applications, we refer the reader to [3],
[5], and [7].

In particular, in [4, Section 5] the variance of Xα is given by EX2
α since the mean value of

the processes Xα(t), t > 0 is 0. The variance EX2
α is explicitly obtained, that is,

EX2
α(t) = 2νt2αEα,2α+1(−μtα). (1.2)

We use (1.2) to obtain our results.
The following result is a version of the Karamata–Feller Tauberian theorem (cf. [8]), which

establishes that the asymptotic behaviour of a function w(t) as t → ∞ can be determined,
under suitable conditions, by looking at the behaviour of its Laplace transform ŵ(z) as z → 0,
and vice versa. See the monograph [1] for a more general version and proofs.

Theorem 1.1. Let L : (0, ∞) → (0, ∞) be a function that is slowly varying at ∞, that is, for
every fixed x > 0, we have L(tx)/L(t) → 1 as t → ∞. Let β > 0, and let w : (0, ∞) → R be
a monotone function whose Laplace transform ŵ(z) exists for all z ∈ C+ := {λ ∈ C : Reλ > 0}.
Then

ŵ(z) ∼ 1

zβ
L

(
1

z

)
as z → 0 if and only if w(t) ∼ tβ−1

�(β)
L(t) as t → ∞.

Here the approaches are on the positive real axis and the notation f (t) ∼ g(t) as t → t∗
means that limt→t∗ f (t)/g(t) = 1.

2. Main result and proof

Theorem 2.1. (i) Let α ∈ (0, 1]. Then

EX2
α(t) ∼ 2ν

μ

tα

�(α + 1)
as t → ∞.

(ii) Let α, γ ∈ (0, 1]. Then there exists M > 0 such that, for all t > M, we have

EX2
γ (t) < EX2

α(t) if and only if γ < α.

Proof. Define v(t) = 2νt2αEα,2α+1(−μtα) on R+. Note that the Laplace transform of v(t)

is given by

v̂(z) = 2ν

z2α+1 + μzα+1 ;

see, e.g. [3]. This in turn implies that v is the unique solution of

∂2α
t v + μ∂α

t v = 2ν, t > 0, v(0) = 0. (2.1)
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Equation (2.1) can be written as a Volterra equation by convolving (2.1) with the kernel g2α ,
that is,

v(t) + μ(gα ∗ v)(t) = 2νg2α+1(t), t > 0. (2.2)

Now, in order to write the solution of (2.2) by means of the variation of parameters formula
for Volterra equations (cf. [2] and [6]), let us introduce the relaxation function sμ on R+ as the
solution of the Volterra equation

sμ(t) + μ(gα ∗ sμ)(t) = 1, t ≥ 0. (2.3)

Observe that the unique solution of (2.3) is given by the Mittag–Leffler function, that is,

sμ(t) =
∞∑

k=0

(−μtα)k

�(αk + 1)
= Eα,1(−μtα).

It is well known that sμ is strictly positive and decreasing on (0, ∞) (cf. [3] and [7]).
The solution of (2.2) can now be represented as

v(t) = d

dt

∫ t

0
sμ(t − s)2νg2α+1(s) ds = 2ν(sμ ∗ g2α)(t), t ≥ 0.

The second term in this equality is the variation of parameters formula for (2.2).
Since sμ depends on α, set sμ,α(t) = sμ(t).

(i) Observe that v(t) is strictly positive on R+. For α ≥ 1
2 , we have v̇(t) = 2ν(sμ,α ∗

g2α−1)(t) > 0 for all t > 0, meanwhile, for α < 1
2 , we obtain v̇(t) = 2ν(ṡμ,α ∗

g2α)(t) + 2νg2α(t). From (2.3) we obtain

v̇(t) = 2ν(ṡμ,α ∗ g2α)(t) + 2νg2α(t)

= 2ν

μ
([−ṡμ,α] ∗ gα)(t)

> 0, t > 0.

Therefore, v is a monotone increasing function on (0, ∞) for all α ∈ (0, 1]. On the other
hand, v̂(z) ∼ 2ν/(μzα+1) as z → 0. Next, define L(t) = 1 for all t > 0. Hence, the
statement follows from Theorem 1.1.

(ii) Define w(t) = 2νt2γ Eγ,2γ+1(−μtγ ). Then w(t) can be written, by means of the
variation of parameters formula for Volterra equations, for the corresponding solution of
(2.2) as follows:

w(t) = 2ν(sμ,γ ∗ g2γ )(t), t ≥ 0.

Since v and w are strictly positive and increasing functions on (0, ∞), it follows from
(i) that there exists an M > 0 such that

w(t) ≤ 2ν

μ

tγ

�(γ + 1)
< v(t)

holds for all t > M .

This completes the proof.
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