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ANY SPINE OF THE CUBE IS 2-COLLAPSIBLE 

ROBERT EDWARDS AND DAVID GILLMAN 

1. Introduction. M. Cohen [1] denned a polyhedron K to be n-
collapsible if K X In PL collapses. He proved that any spine of the cube 
Bz is 3-collapsible. This was a step directed toward the Zeeman Conjecture 
[4], which asserts that every compact contractible 2-polyhedron is 
1-collapsible. In this paper we improve the result of Cohen by one 
dimension (Theorem 3): Any spine of the cube is 2-collapsible. The 
central question of 1-collapsibility remains unanswered. 

Gillman and Rolfsen [3] have shown that any standard spine of the 
cube is 1-collapsible. Conjecture: If K is any spine of the cube, then 
K X I collapses to a standard spine of the cube. This would imply our 
main theorem. Lacking a proof of this conjecture, we must resort to an 
argument independent of [3]. 

THEOREM 1. Let Aly A2, . . . , An be a finite collection of pairwise disjoint 
contractible PL subsets of the cube. Then the decomposition obtained by 
shrinking each Atto a point is 1-collapsible. 

THEOREM 2. Let G be a finite graph embedded in a 2-manifold M, and 
suppose that no component of G is homeomorphic to a circle. Then G X I 
collapses to a subpolyhedron PL homeomorphic to a regular neighborhood of 
G in M. 

Note. The condition on G in Theorem 2 is necessary to rule out the 
situation in which G could be the centerline of a môbius band. If M is 
orientable, it is unnecessary. 

THEOREM 3. Any spine of the cube is 2-collapsible. 

Finally, we pose a question which could improve the proof of Theorem 
3, to yield 1-collapsibility. 

2. Proof of theorem 1. We generalize the idea of a spanning arc 
in a natural way: 

Definition. A k-oà is homeomorphic to the cone over k points. These k 
points are called the end points of the &-od. A &-od spans Bs if its end 
points lie in dB*, and the rest of the &-od lies in Int Bz. 

LEMMA 1.1. A decomposition of B3 whose only nondegenerate element is 
a spanning &-od yields a quotient space that is 1-collapsible. 
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FIGURE I 

Proof. Let K denote the spanning &-od* and B* denote the decomposi­
tion space. We select disjoint disks Dlt . . . , Dk in dBz with each Dt con­
taining an end point of K at its center, as shown in Figure J. We may 
collapse £* X I to 

k 

5 = F X 0 U U ^ * X [ 0 , 1], 
i=l 

where D * is the image of Dt in J3*. The set J§ may be regarded as the 
decomposition of B3 in which the k legs of K are identified into a single leg. 
The nondegenerate elements of B, viewed in this manner, are sets of k 
points identified together. Whereas the decomposition B* was not in 
general collapsible, the decomposition B is collapsible. This is shown by 
the following "Unknotting Procedure" (see Figure I): 

The disks Dt are fattened slightly in B3, yielding disjoint 3-cells Eu 

for i = 1, . . . , k. Each Et intersects K in an unknotted spanning arc 
of Ei. We collapse Et — K by pushing inwards on Dt — K} for i — 1,2, 
. . . , k — 1. More precisely, let £t = Dt C\ K} a point. Regarding £< as 
D{ X [0, 1] with Dt identified with Dt X 0 and Ei C\ K = £< X [0, 1], 
we collapse Dt X [0, 1] to 

D i X l U (aD,U£<) X [0,1] 
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in standard fashion. Note that Ek remains uncollapsed. This will enable 
us to "untie the knot" in the leg of K which intersects Ek, and to "unlink" 
it from other legs. 

The uncollapsed arcs £< X [0 1], for i = 1, . . . , k — 1 seem to remain 
dangling from our 3-ball after these collapses, but we may simply remove 
them, in that they are identified with an arc in Ek; they are therefore 
superfluous in the description of the decomposition space at this stage. 
Let K+ be the sub &-od of K gotten by throwing away £t- X [0, 1), 
i = 1, . . . , k. At this point, the subset of B we are left with can be 
regarded as a 3-ball containing a non-spanning &-od K* in which the k 
legs have been identified to a single leg. Although k — 1 legs of K* 
reach the boundary, the &th leg does not. The &th leg may thus be untied, 
that is, viewed as a straight radius of the 3-ball which does not quite 
reach the boundary. We now collapse the 3-ball inward from the boundary 
towards this straight radius until this leg of the fc-od does reach the 
boundary like the others. This completes one stage of the Unknotting 
Procedure. 

By repetition of this procedure, all legs can be straightened, after which 
the set is easily collapsed. This completes the proof of Lemma 1.1. 

LEMMA 1.2. If X l-collapses, Y l-collapses, and X C\ Y is a single point, 
then X\J Y l-collapses. 

Proof of Lemma 1.2. The set (X \J Y) X / collapses to 

X X [0, 1/2] \J Y X [1/2, 1]. 

Since X l-collapses, 

X X [0, 1/2] \(XnY)X 1/2, 

and similarly for Y X [1/2, 1]. (Recall that if a polyhedron collapses, it 
collapses to any point.) 

Proof of Theorem 1. Let Ai, . . . , An be a finite collection of pairwise 
disjoint contractible PL subsets of the 3-ball B3. Let i^j be a regular 
neighborhood of A { in B3. Then Rf is a 3-cell, and the decomposition 
obtained by shrinking the A / s is the same as that obtained by shrinking 
the RfS. By Lemma 1.2, we may assume that B3 — Rt is connected. 
Thus, Ri r\ dB3 consists of 2-cells, say kt of them. We select a spanning 
&rod Kf of Rt such that Rt is a regular neighborhood of Kt in B3. Then 
the decomposition of B3 obtained by shrinking the RfS is the same as 
that obtained by shrinking the K/s. By applying the technique of 
Lemma 1.1 to each Ku i = 1, 2, . . . , n, we unknot each Kt in turn, and 
unlink it from Kj for j T^ i. This completes the proof. 

3. Proof of theorem 2. By neglecting vertices of order 2, we may 
assume without loss of generality that all vertices of G are of order ^ 3. 
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Except for a neighborhood of the vertices, G X I and a regular neighbor­
hood of G in M are naturally homeomorphic in a fashion which takes 
point X / to a fiber of the regular neighborhood. Let h be such a homeo-
morphism. We now show how to deal with a neighborhood of a vertex 
v of G. 

Let D denote a disk neighborhood of v in M. Then G Pi D is a fc-od, 
k ^ 3, with edges £1, £2 , • . . , Ekl labeled in the cyclic order of their 
appearance in D. The corresponding collapse of G X / can be described 
by a "First Approximation," which yields the correct cyclic order, then 
a "Final Modification," which deals with possible undesired "twists" 
that may occur. 

First Approximation. Let Et have end points e{ £ dD and v G Int D. 
The set E\ X / is not collapsed at all. For 2 S i ^ k, we select disjoint 
closed subintervals of the unit interval / in the natural order which we 
call 12, • . . , Ik- The set JE < X / i s collapsed so that it linearly tapers from 
ex X I to v X It. See Figure II. 

Final Modification. It is possible that G X I, collapsed by the First 
Approximation, will not properly extend the homeomorphism h, because 
some of the £ / s will need a "twist" in order to match with h along et X I. 
For each such £7 , a modification to the collapse is made as follows: 
Select any integer j with 2 ^ j ^ k,j ^ i. Such a j exists since v has order 
^ 3 in G. A small square in Ej X I is not collapsed, and a small square in 

FIGURE II 
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FIGURE III 

Ei X / is collapsed, so that the neighborhood of Et
 utwists" through 

Ej X I before attaching to £1 X / along v X I. See Figure III. This 
completes the proof. 

4. Proof of theorem 3. Let K be any spine of the cube B\ We may 
assume K is at most 2-dimensional, since K must itself have a 2-dimen-
sional spine. We denote by K2 the intrinsic open 2-skeleton of K, that is, 
local 2-manifold points. We denote by K1 the intrinsic 1-skeleton, that is, 
points that locally look like an n-od X / with n ^ 3. The remaining 
points comprise the intrinsic 0-skeleton K°. By Lemma 1.2, it will suffice 
to prove 1-collapsibility for each component of the closure of K2; thus, 
we may assume that K2 is dense in K. Let r : B3 —» K be a natural 
retraction, that is, 

i an arc, for p G K2, 
an n-od with n è 3, for p G K1, 
a contractible polyhedron, for p G K°. 

One way to define such a retraction r is as a composition r = r2rir0, where 
7i : Ni-i —> iVt is a PL retraction, and where N{ a regular neighborhood 
of K mod i£* (so 7V_i can be taken as B3, and N2 = K). 

B* = N^1
r-^Nor-^N1^N2 = K. 

Each rt shares the corresponding property of r displayed above over 
K* — Kl~l, and is a collar-collapse over Nt — K\ Details for constructing 
such an r are provided in [2] (see especially Theorem 5.1 and Addendum 
5.2). 

Let B* denote the * 'pinched cube" obtained from Bz by identifying 
r~l(p) to a point for each p G K°. We will show that K X I \ B*f so 
that Theorem 3 will follow from Theorem 1. 

Let G denote the dual 1-skeleton of K under some fixed triangulation T. 
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LEMMA 3.1. G X I collapses to a subpolyhedron PL homeomorphic to 

This lemma is proved with the same technique as that of Theorem 2. 
Let Uu U2, . . . , Un be the components of K2. Each Ui must be 

orientable. Let d C Ui be a thin open neighborhood of [closure Ui] — £/<. 
Setting d = [Ui — Ct] Pi G we may identify r_1(Gz) with d X I for 
each i. The vertices of G — U G* all lie in X1; they are all of order ^ 3 
in G. Thus, the argument of Theorem 2 yields the collapse of G X / to a 
subpolyhedron PL homeomorphic to r~l (G) near each vertex of G — U G*, 
proving Lemma 3.1. 

Let fl be a vertex of the triangulation T of i£. Then link(z;) C G. 

LEMMA 3.2. rfee PL collapse of Lemma 3.1, restricted to link(y), is a/50 
a PL collapse, yielding a collapse of link(^) X I to a subpolyhedron PL 
homeomorphic to r~l (link (v) ). 

Proof. The collapse of Lemma 3.1 takes place locally in small neighbor­
hoods of vertices Vj of G — VJ Gt. If such a t/̂  lies in link(z;), then its 
neighborhood in G coincides with its neighborhood in link(z/). This 
completes the proof of Lemma 3.2. 

Lemma 3.2 enables us to extend the collapse of Lemma 3.1 linearly 
towards v, pinching r~l(y) to a point and proving Theorem 3. 

We are left with a natural question. 

Question. Does the collapse of Lemma 3.2 extend to a collapse of the 
pair [star(i;) X I, linkO) X I] to the pair (r"1 (star(«;)), r -^ l ink^)) ]? 
An affirmative answer would imply that any spine of the cube is 1-
collapsible. 
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