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NEW CHARACTERIZATIONS OF THE REFLEXIVITY IN TERMS
OF THE SET OF NORM ATTAINING FUNCTIONALS

MARIA D. ACOSTA AND MANUEL RUIZ GALAN

ABSTRACT. Asaconsequenceof results due to Bourgain and Stegall, on aseparable
Banach space whose unit ball is not dentable, the set of norm attaining functionals has
empty interior (in the norm topology). First we show that any Banach space can be
renormed to fail this property. Then, our main positive result can be stated as follows:
if a separable Banach space X is very smooth or its bidual satisfies the w*-Mazur
intersection property, then either X is reflexive or the set of norm attaining functionals
has empty interior, hence the sameresult holds if X hasthe Mazur intersection property
and so, if the norm of X is Fréchet differentiable. However, we prove that smoothness
isnot a sufficient condition for the same conclusion.

According to the celebrated James Theorem [15], on a non-reflexive Banach space,
there is at least one (bounded and linear) functional that does not attain its norm. In
some classical non-reflexive Banach spaces (for instance ¢y, ¢, Li[0,1]) the set of
functionals not attaining their norms is actually dense in the dual space (for the norm
topology). There are several known assertions in this line; first, as a consequence of
results due to J. Bourgain and C. Stegall, for a separable Banach space with non-
dentable unit ball, the set of norm attaining functionals is of first Baire category (see
for instance [3, Theorem 3.5.5 and Problem 3.5.6]), hence it has empty interior. The
guestion if the assumption of separability can be dropped appears as an open problem
in [3, Problem 3.5.6]. However, for any infinite, compact and Hausdorff topological
space K, Talagrand observed that the set of functionals attaining their norm on C(K) is
also of first Baire category in the dual space (see[3, p. 58]).

In the opposite direction, the set of norm attaining functionals can be large if the unit
ball of the spaceis allowed to have strongly exposed points. For instance, one can easily
check this kind of behaviour for the space (1. In fact, if we denote by A(X) the set of
functionalsattaining their normon aBanach space X; it is not difficult to provethat A(X)
has non-empty interior as soon asthe unit ball of X hasa* strongly vertex point”, aresult
that will be shown later. It follows that any Banach spaceis almost isometric to another
space for which the set of norm attaining functionals contains non-empty open balls.

Once we are convinced it may happen that the set X*\ A(X) is not dense in X* (even
for some non-reflexive space X), we will show a positive result for a certain class of
separable Banach spaces, which contains the spaces with Fréchet differentiable norm.
To prove this, we make use of atechnical result known as “Simons’ inequality” [23],
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inspired by techniques of R. C. James, which has been crucial to obtain a new proof of
the classical James Theorem and a number of other interesting applications (see [12]).
We deducethat if X is avery smooth, separable Banach space, then either X is reflexive
or A(X) has empty interior. The same conclusion is obtained under the assumption that
X is separable and X** satisfies the w*-Mazur intersection property, henceit also holdsif
X is separable with the Mazur intersection property.

Finally, we will give a procedure to construct counterexamples, which shows, in
particular, that the condition “very smooth” can not be essentially weakened in the above
mentioned result, since we prove that every separable Banach space X isisomorphicto a
smooth space Y for which the set A(Y) containsopen balls. Also we exhibit an exampleto
show that assuming that the dual space of X hasno proper norming subspaces, a property
shared by very smooth spaces and spaceswith the Mazur intersection property, does not
imply the denseness of X*\A(X) in X*.

Although all the results we will state are valid both for real and complex Banach
spaces, we just consider the real case for obviousreasons. In the rest of the paper, if X is
a Banach space, we will denote by By its closed unit ball and by Sy the unit sphere. For
asubset A C X, co(A) and | co |(A) will bethe convex hull and absolutely convex hull of
A, respectively.

Let us begin with the first of the announced results, which is an easy generalization
of the phenomenon already mentioned for £1:

PrRoOPOSITION 1. Let X be a Banach space such that for some subset E C X, ep € E
and € € X* itistruethat

Bx =[col(E) and €(e) > sup{|€"(e)| : e € E\{eo}}.
Then e* belongsto the norminterior of A(X).

PROOF. By assumption By = | co|(E), so ||e*|| = sup{|e*(e)| : e € E}, andin view of
the hypothesisit hasto be €*(ep) = ||€*||. Let uswrite

p= sup{|e*(e)| ‘ee E\{eo}}

and choose0 < r < 3(]|e*|| — p). Wewill observethat the ball centered at €* with radius
r is contained in the set of norm attaining functionals; in order to check this, choose
x* € X* suchthat ||x* — €| <r, so, for any e € E\{ep} we have

X @] < e @ +|x — )@ < p+r < S(le] + o)
but, on the other hand
X (@) > €] (< — €)@ > ] > S(Ie] + ).

Therefore, |x*(ep)| = sup{|x*(X)| : x € Bx}, so x* attainsits norm (at ep). "

Note that the previousresult is a partial converse to the mentioned fact that A(X) has
empty interior if By is not dentable. As a consequence of Proposition 1 we can get a
general renorming result:
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COROLLARY 2. For any Banach space X, € € X*\{0} and ¢ > 0, thereis a Banach
space Y isomorphicto X suchthat €* isaninterior point of A(Y) and the Banach-Mazur
distance between X and Y islessthan 1 + «.

PrROOF. Given e > 0, choosegp in X suchthat 1 < ||ep|| < 1+ ¢ and €*(ep) > ||€*||.
Let us consider the set
B =co|(Bx U {en}).
It is clear that B isthe unit ball in X for an equivalent norm. Let Y be the linear space X
endowed with this new norm. Since

Bx CBC ||eo||B>(,

from the choice of ey, it follows that the Banach-Mazur distance between X and Y is
lessthan 1 + €. Y and €* also satisfy the hypothesis in the above proposition, so e &
A(OY) L]

As the above result shows, one can not expect any isomorphic condition on X to
guarantee the denseness of the set X*\ A(X).

Next wewill show somepositiveresults, that is, our aimisto exhibit aclassof Banach
spaces for which a certain strengthening of James Theorem holds: the set X*\A(X) is
densein X*. For this purpose we will usethe following technical result due to Simons:

LEMMA 3 [23, LEMMA 2]. Let E be a set, B C E and assume there is a bounded
sequence{ fn} of elementsin ¢, (E) (real-valued bounded functions on E endowed with
the usual norm) satisfying that for any sequence {t,} of non-negative numbers with
>, th = 1thereisb € B such that

> tafa(b) =sup ) tafa(e).
n=1 ecE n=1
Then

sup[limsupfy(b)] > inf sup{g(e) : e € E}.
beB n geco{fn}

The previous result has been successfully used to get many applications (see [23,
24, 12]); for instance, it is crucial to obtain a new proof of the James Theorem for
separable Banach spaces[5, Theorem 1.3.2]. Even so, the above lemmahas acompletely
elementary proof.

If A(X) has non-empty interior we can easily fulfill the requirements in Simons’
inequality to get some non-trivial but still rather technical information. Thiswill be done
in our next lemma. We need some notation: given a Banach space X and x € S, we
denote by D(x, X) the set of support functionals for the unit ball at x, i.e.,

D(x. X) = {x* € S¢ 1 x*(x) = 1};
if X e X**, V(x, x**) will bethe numerical range of x** relative to x, that is,

V(X X™) = {X™(x™) 1 X** € D(x. X™)}.
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LEMMA 4. Let X be a separable Banach space and assumethat thereexistr > 0 and
X§ € Sx- suchthat X + rBx- is contained in A(X), then:

X(g) + 1|} + X|| < maxV(xp, X™), VX e X,
where X is any element in S satisfying x;(xo) = 1.
ProoF. First wewill show that
(%) XEOQ) + X +X|| < [IX*]], VX e X,

For this purpose, we essentially use the same argument as in the proof of [5, Theo-
rem 1.3.2]. Since the inequality (x) is clearly satisfied for any element x € X, we will
show it holds for elements in X*\X. So, if we fix x* € X*\X, the Hahn-Banach
Theorem provides us with an element x*** in the unit sphere of X*** also satisfying

XY= X X =0, VxeX,

We are assuming X is separable, so the restriction of the o(X**, X U {x**})-topology to
bounded sets is metrizable. Hence, in view of the w*-denseness of By in By, for any
e > Owe canfind a sequence {x;} in Bx- satisfying

{0} — X6 = X+ X

and also the following conditions:

@ {x(}—0. wxeX
and
@) X)) > [[x* +X[| —e. VneN.

Now, for any natural number n, the element x§ + rx;, is in the closed ball of radius r
centered at X3, and, by the assumptions of the lemma, this ball is contained in the set of
norm attaining functionalson X. Clearly we can apply Lemma 3 taking E = Bx-, B = Bx
and {x¢ + rx;} playing the role of the sequence of bounded functions on E, and we get

©) sup{limsup (g + rxp)(x) } > inf{[|x[| - x* € co{xg + g} }.
XEBx n

L et us compute the left hand term in the previous inequality; since we know by condi-
tion (1) that {x;(x)} convergesto O, for every x € X, then limsup(x§ + rx;)(X) = x3(x),
so the left hand term is just ||x5|| = 1. Now the inequality (3) provides us an element
X* € X* that can be expressed as x* = X1, ti(xj + rx’) for somet; > Owith 20, t; = 1
and ||x*|| < 1+¢. So, we clearly deduce

N+ 2) > X ] = X7 (6) = X7 () + 1 3t (¢) (b (2)

o i=1

Y

X*OQ) +r||xX* +X|| —re

https://doi.org/10.4153/CMB-1998-040-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-040-x

NORM ATTAINING FUNCTIONALS 283

and (x) follows letting ¢ — O.

Now we will show the inequality announced in the lemma. So let us fix an element
Xo € Sx with x§(xo) = 1 and choose x™ € X** and t > 0; by using (x) for the element
Xo + tX** in X** we have

L+607(6) + P+ X < o + ¢

so, we also have, forany t > 0

X () +r|| X +X|| < oot -1 +t)f[ [ 1.

It iswell-known that

: +ix7)| — 1
i o+ ¢

= V(xg, X**
lim max V(Xg, X**)

(seefor instance [19] or [7, Theorem V.9.5]), so
X7 (x0) + r|[X™ + X|| < max V(xo, X™)

holds for any x** € X**. n

Before proving the main result, let us recall that a Banach space X is said to be very
smoothif it issmooth (i.e., D(x, X) isasingleton for any x € S) and the duality mapping
X — D(x, X) is norm to weak continuous. This notion, which is due to J. Diestel and
B. Faires [6, Section 4], has also received attention from some other authors (see for
instance [9]).

Let us note that assuming D(xg, X**) is contained in a small ball, we can get a sharp
control of the right hand term in the inequality of Lemma 4. We will use thisideain
case the Banach space X satisfies the so called Mazur intersection property, that is, any
bounded, closed and convex set in X can be expressed as an intersection of closed balls.
Thisnotion wasintroduced in [20] and afterwards, it was used by several authors (seefor
instance[21, 25]). J. Giles, D. Gregory and B. Sims characterized the Mazur intersection
property interms of the extremal structure of thedual unit ball [10] and they also gavethe
corresponding definition for dual spaces: it is said that X* has the w*-Mazur inter section
property if, and only if, any w*-compact convex set can be represented as an intersection
of closed balls.

There are spaces very smooth not satisfying the Mazur intersection property. For
instance, let ustake X = £, endowed with the norm given by

x| = max{][x||2. 2x(@)|} + [lexl|2 (x € X).

where « is afixed sequencein ¢, of positive real numbers. Sincethenorm | - | is strictly
convex, then the corresponding norm on X* is smooth, so X* is very smooth. However,
the open set of the unit ball given by

{xeBx: X2 < 21X}
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does not contain denting points and so, X* does not have the Mazur intersection property
(see[9, Theorem 2.1]). On the other hand, there are even finite-dimensional examples
satisfying the Mazur intersection property which are not smooth: any norm in R® whose
dual unit sphere containsaproper line segment but has a dense set of extreme points[21,
Theorem4.4]. Infact, there are spacesthat can berenormed to havethe Mazur intersection
property and do not admit even a Gateaux differentiable norm (see [16] and [13]).

THEOREM 5. Let X be a separable Banach space satisfying at least one of the
following properties:

(i) Xisverysmooth.

(i) X** hasthe w*-Mazur intersection property.
Then X is reflexive if, and only if, the set of norm attaining functionals has non-empty
interior.

ProoF. Assume X is separable, very smooth and there are p > 0 and x§ € X* such
that x5 + pBx- C A(X); the set A(X) is a cone, hence we can suppose ||x§|| = 1. Let us
choose X € Sx with x§(Xo) = 1; since X is very smooth, D(xg, X**) is a singleton [9,
Theorem 3.1], soitisjust {x§} and the inequality appearing in Lemma4 givesus

X)) + pl| X+ X|| < X)), VX e X,

hence ||x™ + X|| = 0, for any x** in X**, that is, X is reflexive.

Now let us assumethat X** satisfies the w*-Mazur intersection property and A(X) has
non-empty interior, so there are x; € Sx- and r > 0 such that the ball centered at x;
with radius 2r is contained in the set of norm attaining functionals on X. Since X** has
the w*-Mazur intersection property, the set of denting points of By: isdensein Sk [10,
Theorem 3.1], hence we can take X as a denting point of Bx.. Wefix 0 < ¢ < r, and
now the definition of denting point provides us an element zy* € Sx-- verifying that for
some « > Othe slice §(Bx-, z;*, «) given by

SBx-. %' ) = {7 € Bx : 4'(Z) > 1— «}

contains X and has diameter less than e. Now, choose Z; with z5*(z;) > 1 — 62 /4, for
some § < min{a/2,r — e, 1}, which obviously implies that z; € SBx-.z". @). By
using Bishop-Phelps-Bollobas Theorem [2, Theorem 16.1] we can take y§ € Sx- and
y&* € D(yg, X*) with

@) max{|[yo — 2l [IYo" — z"[I} <é.
Therefore, by using that x5, z; € S(Bx-, zy", cr) and the choice of 4, we get

1Yo —Xoll < 1Yo — %l + 20— %ol <o+e<r
and s, since x; belongs to the interior of A(X), we know that

2 Y5 +Bx+ C g+ 2rBx: C A(X).
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If we apply Lemma 4 for y; we get
L+rlyg" + X[ < llyo'll = 1.

that is, y5* € X, so wewill write yo = y§*. Let us check that

3Bxx.y0.5) (- an*ZS* O();
if X* € Bx: and x*(yp) > 1— 6 then

(X)) >1-6—lyo—z| (by (1)
>1-20>1—aq,

because of the choice of 6. So, also the diameter of S(Bx:. Yo, ) is less than ¢ and, by
using that yg € Sx- and y§(Yo) = 1 it follows that S(Bx-, Yo, ) C Yj + eBx-. Making use
of the w*-denseness of Bx- in By:+ we clearly deduce

3 D(Y0. X) C S(Bx-.Y0.6) C TBx-¥0.0)" C Y + By
By (2) y; satisfiesthe hypothesisin Lemma 4, so we get
X*(yp) + (X +X|| < maxV(yo.X™), VX™ e X™.
But, in view of (3), we can estimate
max V(Yo, X™*) < X*(yg) +&.  VX™ € Sq,

and linking the last two inequalities we concluder ||x** + X|| < ¢, forany 0 < ¢ <r and
any xX** € Sx-, and this clearly implies X to be reflexive. ]
As adirect consequence of the previous result we obtain:

COROLLARY 6. If a non-reflexive and separable Banach space X has a Fréchet
differentiable norm, then the set A(X) has empty interior.

PROCF. A Banach space whose norm is Fréchet differentiable has the Mazur inter-
section property. Under this assumption the set of w*-denting points of By: is dense
in Sx» [10, Theorem 2.1], hence X** satisfies the w*-Mazur intersection property [10,
Theorem 3.1] and this time condition (ii) in Theorem 5 is the appropriate hypothesisto
be used. ]

Theresult inthe above corollary was obtained by M. Jiménez Sevillaand J. P. Moreno
for any Banach space with the Mazur intersection property, by using James Theorem
after renorming the original space[17].

L et us note that this conclusion may be alittle bit surprising since for some situations
the set of norm attaining functionals on a Banach space X is residual, for instance, this
happensin case X has the Mazur intersection property and X* al so satisfiesthe w*-Mazur
intersection property [18, Theorem 2.8].

By using techniques which give equivalent norms satisfying some smoothness con-
dition we obtain:
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COROLLARY 7. Every separable Banach space X which is not weakly sequentially
complete admits an equivalent normsuch that A(X) does not contain balls.

PROOF. Let us choose z* € X*\X such that z* is the w*-limit of a sequence {x,}
of elements in X, and now, proceeding as in the proof of [11, Theorem 1.2] one can
construct an equivalent norm in X which is differentiable at every x € X\{0} in the
direction of z**. By [11, Lemma 1.3], thisimplies that

(le’>lf0 Osc(Z*, §Bx-. x. @) =0, Vxe€ X,
where
0sc(Z*. S(Bx:- X, @)) = supZ™(S(Bx:, x. ) — inf 2*(S(Bx:. x. @))
and, as a consequence, we have
L r>1f0 0s¢(Z*. §(Bx-++. X, @)) = 0.

Since, given Xg € S we have D(xg, X**) C §(By:+, Xg, ) for any 0 < o < 1, then if
X € S attainsits normat Xo, V(Xo, z*) = {z**(x) }, and so, from Lemma4, we deduce
that xg is not an interior point of A(X). n

We do not know if the above result holds if the condition of weakly sequentially
completenessis omitted.

Note that Theorem 5 cannot be deduced from the result by J. Bourgain and C. Stegall
that was mentioned in the introduction, since a Banach space with dentable unit ball may
be very smooth. Actually, a very smooth space can be renormed in such away that the
unit ball has at least a denting point and the condition “very smooth” still holds. To this
purpose, if X =Y @ Rx (x # 0) is such space, it suffices to define an equivalent norm in
X by

y+ M2 = Y+ AP (YyEY, A eR),

where we denote by || || the original norm in X. Since (X.| ||) is very smooth, it is
straightforward to check that (X, | |) is also very smooth and the element x in the unit
sphereis a denting point of the unit ball. So, Theorem 5 can be applied at least to one
norm (with dentable unit ball) in any separable space which admits avery smooth norm.
Lemma4 can also be useful in situations not covered by Theorem 5, for example:

PROPOSITION 8. Let X be a separable Banach space such that X**/X is infinite
dimensional and for every xg in Sk the set D(xg, X**) is contained in a finite-dimensional
space, then A(X) has empty interior.

PROOF. Let usfix X in S and denote by Y the linear subspace of X*** generated by
D(Xp, X**). Since Y isfinitedimensional, itsannihilator Y° (C X**) hasfinitecodimension
in X**, so, by using that X** /X is infinite dimensional, Y° cannot be contained in X.

https://doi.org/10.4153/CMB-1998-040-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-040-x

NORM ATTAINING FUNCTIONALS 287

If we assume now that x5 + rBx- C A(X) for somexg € Sx-, r > 0, let usfix xg € Sk
such that x§(Xo) = 1 and Lemma4 gives us

Now, choose x** € X**\ X such that x** belongs to the annihilator of D(xg, X**), so we
have V(xo. x*) = {0} and also x**(x3) = 0, hence, in view of the previous inequality x**
belongsto X, acontradiction.

Therefore, under these conditions A(X) has empty interior, as we wanted to show. =

It is not difficult to check that Proposition 8 can be applied, at least, in case we take
as X the space ¢, or some “canonical” preduals of Lorentz spaces d(w, 1) considered
in [8, 22], since in both cases X is M-ideal in its bidual (see [14, Examples I11.1.4]
and [26, Proposition 2.2]), that is,

X*** — X* @ XO.
where X° denotes the annihilator of X (in X***) and
[IX +C] = ||XF|| + |IX°]], WX e X', ¥X eX.

From the previous definition it follows that D(x, X) = D(x, X**) for any x € Sx and
the serious lack of extreme points of the unit ball in both cases (see [1, Lemma 1.3])
allows one to check that D(x, X) generates a finite dimensiona subspace. However, for
non-reflexive M-ideals, the unit ball is not dentable, so Bourgain-Stegall’sresult applies.

Now we will show that, in acertain sense, the hypothesisof very smoothis not too far
from being sharp in Theorem 5. Taking into account that the assumption of smoothness
on X implies that the set A(X) is not too large (there is just one normalized functional
attaining its norm at each point in the unit sphere of X), it is easy to believe that the
complement of A(X) is dense for a non-reflexive Banach space satisfying this kind of
condition. But we will prove that assuming X is just smooth one cannot expect the same
resullt.

PROPOSITION 9. Let X be a separable Banach space, then thereis a smooth space Y
isomorphic to X such that A(Y) has non-empty interior.

PrROOF. In view of Corollary 2 we may assume that X*\A(X) is not dense in X*.
Now the proof of [4, Theorem 9.(4)] provides us an equivalent norm | | on X such that
Y = (X, | |) issmooth and also A(Y) = A(X), so the condition A(Y) has non-empty interior
still holds. "

On the other hand, one can consider a class of Banach spacesincluding spaceswhich
are either very smooth or satisfy the Mazur intersection property, which is those X
whosedual space X* does not contain norming proper (closed) subspaces. Again thislast
hypothesis is not sufficient to get the same conclusion as in Theorem 5 or Corollary 6.
To show this, let us consider the following case:
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ExAMPLE 10. There is a non-reflexive Banach space X whose dual space has no
norming (proper) subspacesand X*\ A(X) fails to be densein X*.

It is enough to consider as X the space cq endowed with the norm | | whose unit ball
is given by the set
B =co|(B, U {2e1}).

where we denote by {e,} the usual basis of co. By Proposition 1 we know that for
this space the set of norm attaining functionals has non-empty interior. We need just to
check that X* does not contain proper norming subspaces. Under the usual identification
X* = (1, we clearly havein X*

vl = max{g YR 2@ (yex)

where we also denote by | | the dual norm of (X.]| |). Now, if M C X* is a norming
subspace, then we clearly have for every n > 2

@ |en| = sup{ly(n)| :y € M. |y| <1} =1;

since ly| > ¥, [V(K)| > |y(n)| for any y € X* and M is closed, (1) clearly forces
that €, € M, for any n > 2 ({€;} is the sequence of biorthogonal functionals of the
basis {e,}). But using again that M is norming, there has to be an element y € M with
y(1) # O; from this condition and the fact that M contains the subset {€ : n > 2} it
follows M = ¢4 = X*, as we wanted to show.

Finally, we would like to point out that if one considers other topologiesin the dual
space the assertion in Corollary 6 may be satisfied without assuming any additional
hypothesis; for instance, G. Debs, G. Godefroy and J. Saint Raymond prove in [4,
Lemma 11] that for any separable non-reflexive Banach space X the set X*\A(X) is
always w*-dense in the dual space X*.
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