$$\Sigma 1/b_i > c_2 \log n$$
.

P. Erdős, Israel Institute of Technology

SOLUTIONS

 $\underline{P 113}$. If m > 4 show that the integral part n = [(m-1)!/m] is an even integer.

D.R. Rao, Secunderabad, India

Solution by A. Makowski, Warszawa, Poland.

If m is prime then by Wilson's theorem (m-1)! = -1 + km where k is odd (since (m-1)! is even). Thus n = k-1 is even. If $m = p^2$, then (m-1)! contains as factors p and 2p, hence $m \mid (m-1)!$ with even quotient n. Otherwise we may write m = ab, 1 < a < b so again $m \mid (m-1)!$ Now (m-1)! contains 2.3.4 and to have n odd we would require a = 2, b = 4; but then m = 8 and n is a multiple of 6.

Also solved by L. Carlitz, T.M. King and the proposer.

 \underline{P} 115. A set of polynomials $c_n(x)$ which appears in network theory is defined by,

$$c_{n+1}(x) = (x+2).c_n(x) - c_{n-1}(x)$$
 $(n \ge 1)$

with $c_0 = 1$ and $c_1 = (x + 2)/2$.

Establish the following properties of $c_n(x)$:

(i) c (x) satisfies the differential equation,

$$(x^2 + 4x)y^{\dagger \dagger} + (x + 2)y^{\dagger} - n^2y = 0$$
.

(ii) The zeros of $c_n(x)$ are all real, negative and distinct, and these are

$$-4 \sin^2 \left\{ \frac{(2k-1)\pi}{4n} \right\}$$
, $k = 1, 2, ..., n$.

(iii) $c_n(x)$ is an orthogonal function over the interval (-4, 0) with respect to the weighting function $\sqrt{-1/(x^2+4x)}$.

M.N.S. Swamy, Nova Scotia Technical College

Solution by Louis Weisner, University of New Brunswick.

In the statement of the problem $\ c_2$ should be replaced by $\ c_4$.

The Tchebichev polynomials $T_n(x)$ are defined by $T_n(x) = \cos n\theta , x = \cos \theta , n = 0, 1, 2, \dots .$ Thus $T_0(x) = 1$, $T_1(x) = x$. From the trigonometric identity $\cos(n+1)\theta + \cos(n-1)\theta = 2\cos\theta\cos \theta$

we obtain the recurrence relations

 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$, n = 1, 2, Comparing with the recurrence relations for $c_n(x)$, we have $c_n(x) = T_n(\frac{x+2}{2})$, n = 0, 1, 2, The required properties of $c_n(x)$ are now readily derived from the well-known corresponding properties of $T_n(x)$. See Polya-Szego, Aufgaben und Lehrsätze aus der Analysis, vol. 2, p.75.

Also solved by W.R. Allaway, D.R. Breach, S. Spital and the proposer.

P 115. Show that any set can be furnished with a compact Hausdorff topology.

B. Thorp, York University

Solution by M. Edelstein, Dalhousie University.

Let X be the given set and suppose $p \in X$. The family of all subsets of $X - \{p\}$ together with those containing p, whose

complements are finite, (or empty), is readily seen to be a topology on X as desired.

Remark. Since the discrete topology is locally compact the statement of the problem follows also from the known fact that "every locally compact Hausdorff space can be given a weaker Hausdorff topology which makes it compact". (Cf. A. Wilansky: Functional Analysis, Blaisdell (1964), page 163).

Also solved by B. Thomson, J. Washenberger, J. Wilker and the proposer.