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Abstract

Let G be a finite group and Irr(G) the set of all irreducible complex characters of G. Define the codegree of
χ ∈ Irr(G) as cod(χ) := |G : ker(χ)|/χ(1) and let cod(G) := {cod(χ) | χ ∈ Irr(G)} be the codegree set of G.
Let An be an alternating group of degree n ≥ 5. We show that An is determined up to isomorphism by
cod(An).
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1. Introduction

Let G be a finite group and Irr(G) the set of all irreducible complex characters of G.
For any χ ∈ Irr(G), define the codegree of χ as cod(χ) := |G : ker(χ)|/χ(1) and the
codegree set of G as cod(G) := {cod(χ) | χ ∈ Irr(G)}. We refer the reader to the authors’
previous paper [8] for the current literature on codegrees.

The following conjecture appears in the Kourovka Notebook of Unsolved Problems
in Group Theory [12, Question 20.79].
CODEGREE VERSION OF HUPPERT’S CONJECTURE. Let H be a finite nonabelian
simple group and G a finite group such that cod(H) = cod(G). Then G � H.

In [8], the authors verified the conjecture for all sporadic simple groups. In this
paper, we provide a general proof verifying this conjecture for all alternating groups
of degree greater than or equal to 5.

THEOREM 1.1. Let An be an alternating group of degree n ≥ 5 and G a finite group.
If cod(G) = cod(An), then G � An.
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Throughout the paper, we follow the notation used in Isaacs’ book [10] and the
ATLAS of Finite Groups [6].

2. Proof of Theorem 1.1

First, we note that the cases n = 5, 6 and 7 have already been proven in [1, 2], so in
the following, we always assume that n > 7. Now, let G be a minimal counterexample
and N be a maximal normal subgroup of G. So cod(G) = cod(An) and G/N is simple.
By [8, Lemma 2.5], cod(G/N) ⊆ cod(An). Then, by [9, Theorem B], G/N � An so
N � 1 since G � An.

Step 1: N is a minimal normal subgroup of G.
Suppose L is a nontrivial normal subgroup of G with L < N. Then by [8,

Lemma 2.6], cod(G/N)⊆cod(G/L)⊆cod(G). However, cod(G/N)=cod(An)=cod(G),
so equality must be attained in each inclusion. Thus, cod(G/L) = cod(An) which
implies that G/L � An since G is a minimal counterexample. This is a contradiction
since we also have G/N � An, but L < N.

Step 2: N is the only nontrivial, proper normal subgroup of G.
Otherwise, we assume M is another proper nontrivial normal subgroup of G. If N

is included in M, then M = N or M = G since G/N is simple, which is a contradiction.
Then N ∩M = 1 and G = N ×M. Since M is also a maximal normal subgroup
of G, we have N � M � An. Choose ψ1 ∈ Irr(N) and ψ2 ∈ Irr(M) such that cod(ψ1) =
cod(ψ2) = max(cod(An)). Set χ = ψ1 · ψ2 ∈ Irr(G). Then cod(χ) = (max(cod(An)))2 �
cod(G), which is a contradiction.

Step 3: χ is faithful, for each nontrivial χ ∈ Irr(G|N) := Irr(G) − Irr(G/N).
From the proof of [8, Lemma 2.5],

Irr(G/N) = {χ̂(gN) = χ(g) | χ ∈ Irr(G) and N ≤ ker(χ)}.

By the definition of Irr(G|N), it follows that if χ ∈ Irr(G|N), then N � ker(χ). Thus,
since N is the unique nontrivial, proper, normal subgroup of G, ker(χ) = G or
ker(χ) = 1. Therefore, ker(χ) = 1 for all nontrivial χ ∈ Irr(G|N).

Step 4: N is an elementary abelian group.
Suppose that N is not abelian. Since N is a minimal normal subgroup, by [7,

Theorem 4.3A(iii)], N = Sn, where S is a nonabelian simple group and n ∈ Z+. By [14,
Lemma 4.2] and [11, Theorem 4.3.34], there is a nontrivial character χ ∈ Irr(N) which
extends to some ψ ∈ Irr(G). Now, ker(ψ) = 1 by Step 3, so cod(ψ) = |G|/ψ(1) = |G/N | ·
|N |/χ(1). However, by assumption, cod(G) = cod(An) = cod(G/N). Thus, cod(ψ) ∈
cod(G) = cod(G/N), so cod(ψ) = |G/N |/φ(1) for some φ ∈ Irr(G/N). Hence, |G/N |
is divisible by cod(ψ) which contradicts the fact that cod(ψ) = |G/N | · |N |/χ(1), as
χ(1) � |N |. Thus, N must be abelian.

Now to show that N is elementary abelian, let a prime p divide |N |. Then N has a
p-Sylow subgroup K, and K is the unique p-Sylow subgroup of N since N is abelian,
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so K is characteristic in N. Thus, K is a normal subgroup of G, so K = N as N is
minimal. Thus, |N | = pn. Now, take the subgroup N p = {np | n ∈ N} of N, which is
proper by Cauchy’s theorem. Since N p is characteristic in N, it must be normal in G,
so N p is trivial by the uniqueness of N. Thus, every element of N has order p and N is
elementary abelian.

Step 5: CG(N) = N.
First note that since N is normal, CG(N) � G. Additionally, since N is abelian by

Step 4, N ≤ CG(N). By the maximality of N, we must have CG(N) = N or CG(N) = G.
If CG(N) = N, we are done.

If not, then CG(N) = G, so N must be in the centre of G. Then since N is the unique
minimal normal subgroup of G by Step 2, |N | must be prime. If not, there always
exists a proper nontrivial subgroup K of N, and K is normal since it is contained in
Z(G), contradicting the minimality of N. Hence, we have N ≤ Z(G) which implies that
Z(G) � N. This is because N is a maximal normal subgroup of G so if not, we would
have Z(G) = G, implying G is abelian which is a contradiction. Thus, N is isomorphic
to a subgroup of the Schur multiplier of G/N by [10, Corollary 11.20].

Now, we note that it is well known that for n > 7, the Schur multiplier of
An is Z2, so G � 2.An [17]. From [3, Theorem 4.3], 2.An always has a faithful
irreducible character χ of degree 2�(n−2)/2�. Recall that by Step 2, there is only one
nontrivial proper normal subgroup of G � 2.An. In particular, N � Z2 is the only
nontrivial proper normal subgroup of G. Thus, |ker(χ)| = 1 or 2. Then cod(χ) =
|2.An : ker(χ)|/χ(1). If |ker(χ)| = 1, then cod(χ) = n!/2�(n−2)/2�, and if |ker(χ)| = 2, then
cod(χ) = (n! /2)/2�(n−2)/2� = n!/2�n/2�. In either case, for any prime p � 2, | cod(χ)|p =
|n! |p = |An|p. However, cod(χ) ∈ cod(An) since cod(G) = cod(An). Therefore, there is
a character degree of An which is a power of 2.

However, from [13], for n > 7, An only has a character degree equal to a power of
2 when n = 2d + 1 for some positive integer d. In this case, 2d = n − 1 ∈ cd(An) so we
need |An|/n − 1 = |2.An|/2�(n−2)/2� or |2.An|/2�n/2�. Hence,

1
n − 1

=
2

2�(n−2)/2� =
1

2�(n−2)/2�−1 or
1

2�n/2�−1

so n − 1 = 2�(n−2)/2�−1 or 2�n/2�−1. However, the only integer solution to either of these
equations occurs when n = 9 and 9 − 1 = 8 = 23 = 2�9/2�−1. In this case, we check the
ATLAS [6] to find that the codegree sets of A9 and 2.A9 do not have the same order.
This is a contradiction, so CG(N) = N.

Step 6. Let λ be a nontrivial character in Irr(N) and ϑ ∈ Irr(IG(λ)|λ), the set of
irreducible constituents of λIG(λ), where IG(λ) is the inertia group of λ in G. Then
|IG(λ)|/ϑ(1) ∈ cod(G). Also, ϑ(1) divides |IG(λ)/N | and |N | divides |G/N |. Lastly,
IG(λ) < G, that is, λ is not G-invariant.

Let λ be a nontrivial character in Irr(N) and ϑ ∈ Irr(IG(λ)|λ). Let χ be an irreducible
constituent of ϑG. By [10, Corollary 5.4], χ ∈ Irr(G), and by [10, Definition 5.1],
we have χ(1) = (|G|/|IG(λ)|) · ϑ(1). Moreover, ker(χ) = 1 by Step 2, and thus
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cod(χ) = |G|/χ(1) = |IG(λ)|/ϑ(1), so |IG(λ)|/ϑ(1) ∈ cod(G). Now, since N is abelian,
λ(1) = 1, so we have ϑ(1) = ϑ(1)/λ(1) which divides |IG(λ)|/|N |, so |N | divides
|IG(λ)|/ϑ(1). Moreover, cod(G) = cod(G/N), and all elements in cod(G/N) divide
|G/N |, so |N | divides |G/N |.

Next, we want to show IG(λ) is a proper subgroup of G. To reach a contradiction,
assume IG(λ) = G. Then ker(λ) � G. From Step 2, ker(λ) = 1, and from Step 4,
N is a cyclic group of prime order. Thus, by the Normaliser–Centraliser theorem,
G/N = NG(N)/CG(N) ≤ Aut(N) so G/N is abelian, which is a contradiction.

Step 7: Final contradiction.
From Step 4, N is an elementary abelian group of order pm for some prime p and

integer m ≥ 1. By the Normaliser–Centraliser theorem, An � G/N = NG(N)/CG(N) ≤
Aut(N) and m > 1. Note that in general, Aut(N) � GL(m, p). By Step 6, |N | divides
|G/N |, so |N | = pm divides |An| and G/N � An � GL(m, p). We prove by contradiction
that this cannot occur.

First, we claim that if pm divides |An| and An � (GL(m, p), then p must equal 2. To
show this, we note that for p > 2, by [4], if pm divides |An|, then m < n/2. However, by
[16, Theorem 1.1], if n > 6, the minimal faithful degree of a modular representation of
An over a field of characteristic p is at least n − 2. Since embedding An as a subgroup
of GL(m, p) is equivalent to giving a faithful representation of degree m over a field of
characteristic p, we have m ≥ n − 2. This is a contradiction since n/2 > n − 2 implies
n < 4. Therefore, p = 2.

Now, let p = 2. As above, from [4], we obtain |n! |2 ≤ 2n−1. Thus, if 2m divides |An|,
then 2m ≤ |An|2 ≤ 2n−2 so m ≤ n − 2. We will deal first with n > 8 and then treat the
case n = 8 later. For n > 8, [15, Theorem 1.1] shows that the minimal faithful degree
of a modular representation of An over a field of characteristic 2 is at least n − 2.
Therefore, we must have m ≥ n − 2, so we have equality, m = n − 2.

Let λ ∈ Irr(N),ϑ ∈ Irr(IG(λ)|λ) and T := IG(λ). Then 1 < |G : T | < |N | = 2n−2 for
|G : T | is the number of all conjugates of λ. By Step 5, |T |/ϑ(1) ∈ cod(G) and
moreover |N | divides |T |/ϑ(1). Since |N | = |N |2 = |An|2 and cod(G) = cod(An), it
follows that ||T |/ϑ(1)|2 = |N |. Thus, ||T/N |/ϑ(1)|2 = 1 so the 2-parts of |T/N | and ϑ(1)
are equal. Thus, for every ϑ ∈ Irr(T | λ), we have |ϑ(1)|2 = |T/N |2. However, |T/N | =
∑
ϑ∈Irr(T |λ) ϑ(1)2. Hence, if |ϑ(1)|2 = 2k ≥ 2 for every ϑ ∈ Irr(T | λ), we would have
|T/N |2 = 22k, which contradicts the fact that |ϑ(1)|2 = |T/N |2. Therefore, |T/N |2 = 1.
Thus, since |G/N |2 ≥ |N | = 2n−2, we have |G : T |2 = |G/N : T/N |2 ≥ 2n−2, so |G : T | ≥
2n−2 = |N |, which is a contradiction.

Now we turn to the case n = 8. We have p = 2 and m = 4, 5 or 6. In this case,
A8 � GL(4, 2) and 26 divides |A8|. We look at each possibility for m in turn. If m = 6,
then |N |2 = |A8|2. For this case, the same argument as above holds since 6 = 8 − 2, and
we reach a contradiction.

Second, let m = 5. As above, |G : T | < |N | = 25 and |T |/ϑ(1) ∈ cod(G) such that
25 divides |T |/ϑ(1). Further, ||T/N |/ϑ(1)|2 ≤ 2 so |T/N |2 ≤ 4 and |G/N : T/N |2 ≥ 16.
Thus, 16 divides |G/N : T/N | and |G/N : T/N | < 32. However, we may check the index
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of all subgroups of G/N � A8 using [6] and find that none of them satisfy these two
properties.

Third, let m = 4. Then G/N � A8 � GL(4, 2) and N = (Z2)4 so G is an extension of
GL(4, 2) by N. We may computationally calculate the codegree set for any such group
using MAGMA [5]. There are only four such nonisomorphic extensions and we find
that none of them have the same codegree set as A8. (The MAGMA code is avail-
able at https://github.com/zachslonim/Characterizing-Alternating-Groups-by-Their-
Codegrees.) In every case, |N | = pm produces a contradiction, so N = 1 and G � An.
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