
On the limits of oscillation of a function and its
Cesaro means

By C. T. RAJAGOPAL.

{Received 4th July, 1945. Read 2nd November, 1945.)

There is a group of Tauberian theorems of which the simplest is
one due to K. Ananda Rau [Theorem 2 of the paper numbered 1 in
the list of references at the end of the note]. More complicated
theorems of the same group are discussed in a paper by S.
Minakshisundaram and myself to be published by the London
Mathematical Society [4].

There is another group of Tauberian theorems of which the most
general is one of Karamata's [2, Satz 1], its special cases being the
well-known oscillation theorems of Fekete ahd Winn [Proc. London
Math. Soc. (2), 33 (1932), 488-513; Journal London Math. Soc.,s 8
(1933), 27-32].

The precise nature of the relation between the two groups of
Tauberian theorems does not seem to have been studied till now.
This. note shows that. Karamata's results admit of generalizations
whose basic idea is also that of the first group of Tauberian theorems.
This idea has been recently embodied by L. S. Bosanquet [1] in
certain difference formulae of which Lemmas 1, 2 are simplified
versions sufficient for the purposes of the note.

1. In a well-known theorem [2, S a t z l ] , Karamata has refined
and elaborated Fejer's relation between the intervals of oscillation of
a sequence and its first order Cesaro mean. The theorems which
appear below suggest a formal generalization of Karamata's results,
different from the one due to S. Minakshisundaram [3, Theorem 2]
mentioned in § 3.

THEOREM A. For any function s {(•) defined in (0, oo ) and of
bounded variation in every finite interval, let

(*-1)v-'s{t)dt ( p = 1 , 2 , 3 , . . . . ) , (1)

1 Numerals in thick type appearing within square brackets indicate references given
at the end of the note.
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oj, = lim 8*T aP (x), lp = 5p-qp (p = 0, 1, 2, ).

/ / lim sup Max {5 (f) - s (t)} <; JF+(A) > 0, (2)

and 0 < 0 < 1 < A,

p (A), BP (A) are polynomials oj degree p in A

where Cp (0), Dp (0) are polynomials of degree p in 0 such that

C,<exo,ZM«»o. S ĵfLbAffl
further, when 0 = I/A,

THEOREM B. If in theorem A, we have, in addition to (2),

lim inf Min {s {f) - s (t)} ^-W~(X)< 0. (6)

then

( V ) J,"~(0* + (Iir) I,"r+(^-)*pai. m

where Ep (A, 0), .?,, (A, 6) are polynomials of degree p in A, 0 such that

EP (A, 0) = -Bp (A) + 0 , (6) + J {1 + ( - l)*+>},

FP(X, 0) = - AP(X) + Dp{0) - 4 {1 + ( -

https://doi.org/10.1017/S0013091500024469 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024469


164 C. T. RAJAGOPAL

further

i
\, 6) - Ep (A, 6)

where 2 F ( A ) = JF+ (A) + W~ (A).

1.1. These theorems reduce to Karamata's theorem when p = 1.
Though unwieldy they bring to light a natural connection between
Karamata's theorem and a group of Tauberian theorems discussed in
two papers recently presented to the London Mathematical Society
[1, 4].1 This connection turns on an idea expressed by L. S.
Bosanquet [1] in certain difference formulae which (to suit our
immediate needs) can be simplified as follows.

LEMMA 1. For any function F (x) of x and <f> > 0, let us write

= £ (-

Then A»sp (t0) = T (p + 1) J dtx J dt2 J . . . J s(t) dt.
to ti '-' tp—1

LEMMA 2. For any function F (x) of x and o> > 0, let

&p_ F(x)= 2 (-l)"(p\F(x-vu)), p^l.
,=o W

[to p , Ft: Ftp-l
Then b?_n8p (t0) = T (p + 1) j dh) dt2) . . . J s[t)dt.

tQ —&) ti —u» (^ — to *p— 1 w

2. PROOF OF THEOREM A. To prove (3) we put <f> = (\ — 1) x/p
in Lemma 1 and write it in the form

= / + J (say). (10)

1 One of the Tauberian theorems in question [4, Theorem 2] is a direct generaliza-
tion of the result : given (2), o-p (a;) = 0 (1) as x -*• oo implies cro (x) = 0 (1). Theorem
A, on the other hand, is an attempt to develop this conclusion without going beyond
the hypothesis (2).
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Now, in J, x 5S tx 5S t ^ <i + (p — l)<f> and hence

J ^ \X+* Max {5 (0 - a («)} ^ " 1 dt,

= T Max
J l |

(«') dt' + o (^P- 1 *) (x->oo). (11)
Ji+(i»-i)^ .

Next

Writing " » = ( j f i + p - v— ) = a positive quantity independent

of x, we get

/ ^ ^ ^ L M i ^ ^ , ^^ ĵ {12)

where

-4,(A)= - { c 0 + c2 + . . . . ( )}, 5,(A) = {C

so that

v=0

Using (11) and (12) in (10) we obtain

+ 0(1) (*-»oo),
whence (3) results immediately.

To prove (4), choose o> = (1 — 6) x/p in Lemma 2 and write the
lemma

= /'' + J ' (say). (13)
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In J', tx — (p — 1) a> ^ t ^ tx g x and so

J' ^ P Max {s (x) - s (t)} a*-1 dt

X — ta tt-(p — l)toi^t£x

p i — (j> — 1) —

= J Max {8 (x) — s (t)} u"-1 xdt'

e

Next

whence setting dv = (* \ (l — v—) = a positive quantity independent
\ v I \ x J

of x, we find

+ o(a;J>) (a;-* oo). (15)

Using (14) and (15) in (13) we can get (4) exactly as we got (3)
formerly. (5) follows by addition from (3) and (4) since

A* Cp (1/A) =-Bp (A), A* Dp (1/A) = - Ap (A).

PROOF OF THEOREM B. (7) is obtained by a repetition of the
preceding arguments, after we have put <f> = (A — 1) x/p, a> = (1 — 6) x/p
in the following combination of Lemmas 1,2.

f ••• J, j { • ( « ) -

+ J d<! J ... J {s (a;) - 5 (0) dt 1 (16)
a: —<o (, — tu tp—\ — (ti

(8) is deduced from (7) by considering — « (x) instead of s (x). Finally
(9) is obtained by adding (7) and (8).

3. For the sake of completeness I conclude with the statement

1 When p is odd, the term - s (x) in APsp(x) cancels out a (x) in AP_ Sp (a:)-
Hence, in the passage from (15) to its limiting inequality form, we have to add
(<TP - ii-p) /T(p + 1) to the right-hand member when p is odd. This accounts for the
expressions for Ep (A. 6), Fp (A, 6) in terms of Av (A), Bp (A), Gv (6), Dp (6).
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of two theorems which are easy deductions from Karamata's special
case p = 1 of Theorems A, B.

T H E O R E M C. / / crk(x) is defined as in (I) for any positive k (not

necessarily integral) and if (2) is postulated, then, for 0 < 6 < 1 < A,

- ( A - l)ok^A1(X)ak+1 + B1(X)ak+1 + ^ W+(t) dt. (17)

D1(0)dk+1+ [ W+(l/t)dt. (18)

THEOREM D. Postulating (2), (6) and 0 < 0 < 1 < A, we have

( (19)

- (A - d) Zk ^ - Ex (A, 6) ak+1 - Fj. (A, 6) *k+1

+ [V+ (*) dt + T W-(—\ di. (20)

The first of these theorems appears elsewhere [3, Theorem 2] with
some misprints. Either theorem leads to a relation between lk and
\k) where k = k — the greatest integer not exceeding k.
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