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CP-parametrization in O-minimal Structures
Beata Kocel-Cynk, Wiestaw Pawlucki, and Anna Valette

Abstract. We give a geometric and elementary proof of the uniform C-parametrization theorem
of Yomdin and Gromov in arbitrary o-minimal structures.

1 Introduction

Fix any o-minimal expansion of a real closed field R (see [14] or [4] for fundamental
definitions and results concerning o-minimal structures). Let p be any positive inte-
ger. We will be discussing definable subsets and mappings referring to this o-minimal
structure. The aim of this note is to give a geometric and elementary proof of the fol-
lowing uniform C?-parametrization theorem.

Uniform CP-Parametrization Theorem  Let X be a definable subset of R™ x R". Let
X;:={xeR":(t,x) e X} foranyt e R" and put T := {t € R™ : X; + @}. Let k and
p be positive integers. Assume that all X, (t € T) are closed, of pure dimension k, and
commonly bounded; i.e., there exists r > 0 such that |x| < r, foreach t € T and x € X,.

Then there exists a finite decomposition T = Ty U --- U T; of T into definable C?-cells
in R™ and for each i € {1,...,s} afinite family of definable CP-mappings

Pir: Ti x [0,1]% 3 (£, &) — @i (t, &) € X(3 € K;)
such that
(i) (mo@iy)(t,&) =t, where(t,§) € Tix[0,1]% and m: R™ xR" — R™ is the natural
projection;
(i) X¢ = Upex, @ix({t} x [0, 1]¥) for each t € T;;
(iil) @i |T; x (0,1)F is a CP-diffeomorphism onto a definable CP-submanifold of R™ x
R" openin X n (T; x R™);
(iv) @in(T; x (0,1)F) M ;2 (Ti x (0,1)%) = @, whenever u,A € K, n # A;
(v) all the partial derivatives 8""‘(/)1-%/85“(:%, &), where t € T;, & € [0,1]F, « € NF,
0 < |a| < p, are bounded by a constant independent of t.

The above theorem in the semialgebraic case originated in the papers of Yomdin
[15,16] and Gromov [5] (with some estimates on the number of mappings ¢, which
are important from the point of view of applications). Now there are quite a lot of
papers connected with it (see [1-3,12,17,18]), where applications in dynamics, analysis,
diophantine, and computational geometry are given. Of course this theorem brings
to mind (and perhaps can be even considered as a generalization of) the classical
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Hironaka rectilinearization theorem [6, Theorem 7.1] and, from the point of view of
the proof (see below), the Puiseux desingularization (cf. [10]). A proof of the Uniform
CP-Parametrization Theorem for arbitrary o-minimal structures was given by Pilaand
Wilkie [12, Corollary 5.2]. Nevertheless, in view of differences between our approach
and that of [12], we think that our paper may still be of interest.

Remark 1.1 If the o-minimal structure is that of semialgebraic sets, the number of
needed mappings ¢;, can be estimated from above by an integer that depends on p,
on the degrees of polynomials describing X, the radius r, the dimension #, and the
number of parameters m (cf. [5, Section 4.5] and Remark 2.6).

For fundamental definitions and results concerning o-minimal geometry, we refer
the reader to [14] or [4]. We limit ourselves here to reviewing the notions of a cell and
that of a cell decomposition, because they will play particularly important roles in our
approach.

A subset C of R" is called a cell (a CP-cell) in R" if C = {a}, where a € R or
C = (a,b), where a,b € R,a < b, in the case n = 1, and, in the case n > 1, if either
C={(x,f(x")):x" € C'}, where x" = (x1,...,%,_1), C"isa cell (a CP-cell) in R""!
and f: C’ - Ris a definable continuous (a definable C?-)function or C = {(x’, x,,) :
x' € C', fi(x") < x, < fo(x")}, where C’ is a cell (a CP-cell) in R”™! and each of the
functions f;: C' - R (i € {1,2}) is either a definable continuous (a definable C?-)
function f;: C' - Ror f; = —oo, or f; = +oo and fi(x') < fo(x") foreach x" € C'. It
is clear that any C?-cell in R" is a C?-submanifold of R".

Let X be any definable subset of R". By a cell decomposition (a CP-cell decompo-
sition) of X, we mean any finite decomposition € of X into cells in the case n = 1
and, in the case n > 1, any finite decomposition € of X into cells (CP-cells) such that
{n(C) : C € €} is a cell decomposition (a CP-cell decomposition) of 7(X), where
m: R" =R" ' x R>(x',x,) = x’ € R" ! is the natural projection.

2 Preparatory Assertions

A key role is played by the following lemma (¢f. [8, Lemmata 1 and 2]) mimicking an
idea of Yomdin and Gromov (cf. [5, Section 4.1]).

Lemma 2.1 Let A: (a,b) — R be a definable CP*'-function, where p € N, p > 1,
defined on an open interval (a,b) c R such that, for each v € {2,...,p+1}, A" >0
on (a,b) or A") < 00on (a,b). Then for any closed interval [t -1, t+1] c (a,b), where
reRandr>0,

O ()] <2072 sup |~

[t=r,t+7] rP

Proof First consider the case p = 1. Without any loss of generality, we can assume
that A" < 0; i.e,, A is concave. Hence,

MO -M) A -M=n) W

AN
t—s r [t—r,t+r] r
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when t — r < s < t. It follows that

A () <2 sup m
[t-r,t+r] T
Applying this to A(—t), we obtain
A A
-AM(t) <2 sup U; consequently, |A'(£)| <2 sup U
[t-r,t+r] T [t-rt+r] T
Now the lemma follows by induction on p. ]

Applying Lemma 2.1 to A’ in the place of A and g — 1 in the place of p, we have the
following corollary.

Corollary 2.2 Under the assumptions of Lemma 2.1,
1

N ()] < Cp sup V| ———,
P (ap) |t—al#!

foreach t € (a,%2) and p € {2,...,p}, where C, := 20302 In particular, if \' is
bounded; i.e., |\'| < M, where M € R and M > 0, then

_
[t — al|#!

|A(”)(t)|<CPM foreachte(a,a+b),ye{2,...,p}.

Lemma 2.3 Let A: (0,1] — R be a definable CP-function such that
1
(2.1) N (1) < CF foreachte (0,1, pe{l,...,p}

where C € R is a positive constant. Fix m € N, m > p + 1. Put ¢(7) := A(7™) for each
7€ (0,1].

Then there exists a positive constant L depending only on C and m such that
loM) ()| < L, for each T € (0,1) and p € {1,..., p}.

Proof Foreachpue{l,...,p},

o (1) = ay T EN (T + ag, TTEL (27)
4 awﬁfﬂ*ﬂ,\@)(fﬂ) +eet a##Tﬂm*H/\(H)(Tm)’

where a;, are positive integers defined inductively by the following formulae:

m! u
ay = ———, Qijy =magi_1(u-1) +(im-u+1l)a;,_1y, au,=m".
P TR (i-y(u-y + (im =g+ 1)ai s auy

By (2.1), it follows that
|§0(H)(T)| < al‘uTmi‘uC + a2‘uT2m7MT7m
C C
3m—p pm—p
+az,T o +eoebay,T G
=Clay +-+au)t" " <Clay +-+au). [ |
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Lemma 2.4 (cf. [7, Lemma 1] or [13, Proposition 5.5]) Let Q be an open definable
subset of R" and let

frQx(0,1)" > (x,y) — f(x,7) €R

be a definable C'- function, where x = (x1,...,x,) and y = (y1,..., ym). Assume that
all the partial derivatives

o
ayi
are bounded on Q x (0,1)™.

Then there exists a closed nowhere dense definable subset £ of Q) such that, for each
x € Q \ X, the function

2]
0,)" >3 y+— —f(x,y) eR
0x,
is bounded.
Proof First consider the case m = 1. In this special case we have the following claim.

Claim (C!'-Extension Theorem, cf. [11, Proposition 10]) There exists a closed
nowhere dense definable subset X of Q) such that f extends to a C'-function

F:QOx[0,)NEx{0}>(x,y) — f(x,y)€R.

Indeed, by a dimension argument g—;’[ extends to a continuous function defined on

Q x[0,1) \ £ x {0} with X as above. By the Mean Value Theorem there exists a finite
limit lim,_,q f (x,y) € R, for each x € Q; hence, again by a dimension argument, one
can assume that f extends to a continuous function defined on Q x [0,1) \ £ x {0}.
Of course, one can assume that X = &. Again by removing a small subset of (3, one
can assume that the function g: Q > x = f(x,0) € R is of class C'. Now we check

that
lim of (x,y) = 24 (a,0)
s 0x, 0x,

for all a € Q, except perhaps for a from a small subset. Of course, one can assume
that ¢ = 0. Now it suffices to show that for each a = (ay,...,a,) € Q, there exists a
definable curve A: (0,1) — Q x (0,1) such that

. . of _
ltl_l:x(})t(t) =(a,0) and ltl—% . (A(t)) =0.
Choose any ¢, > 0. There exists x € Q such that x = (a,...,a,-1,%,),
0<|x, —ay| < 8,and y € (0, 8) such that [f(x, y)| < €|x — a| and |f(a, y)| < €|x — a].
Then by the Mean Value Theorem, there exists 6 € (0,1) such that
of _1f(xp) - f(a. )]

axn(al,...,an_l,ﬂa,,+(1—6)x,,,y)| = —al < 2e,

and by the Curve Selection Lemma, the proof of the claim is complete.
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Now consider the case m > 1. Suppose that Lemma 2.4 is not true; i.e., there is an
open nonempty subset W of Q such that for each x € W, there exists h(x) € [0,1]™
such that

limsup| 8){ (x,y)| = oo.

y=h(x) 0
By definable choice and shrinking perhaps W, we can make h definable of class C'.
By a version with a parameter of the Curve Selection Lemma (or the Whitney Wing
Lemma), there exists a definable mapping a: (0,1) x W — (0,1)" such that for each
x € W, limy¢ a(x,t) = h(x) and

2]
(2.2) lim —f(x, a(x,t)) = +oo.
=0 dx,
Perhaps shrinking W and replacing the parameter ¢ by ¢’ = pt, with p small positive,
we can assume that @ = (a,...,a,) is of class €' on W x (0,1) and there is j €
{1,...,m} such that

0a; da;

‘871‘]()6’ t)| > 8021 (x, t)| foreach (x,t) e Wx(0,1),ie{l,...,m}.
Introducing a new variable 7 := a;(x,t) in the place of ¢, we can assume that
| aa‘"t" (x,1)] <1, fori e {1,...,m}. By the C'-Extension Theorem, shrinking per-

haps W, we can assume that & is @' on W x [0,1). The same is true for the function
g(x,t) == f(x,a(x, t)) and in view of C'-Extension Theorem, we get a contradiction
with (2.2). n

Proposition 2.5 Let fi,..., fr: Q — R be any definable bounded functions defined
on a definable open bounded subset Q of R". Let m: R" x R 5 (x/,x,) ~ x" € R"!
be the natural projection. Let p be a fixed positive integer.
Then there exists a cell decomposition {C,} of Q such that for each open cell C,,,
there exists a definable CP-diffeomorphism ¢,.: n(C,) x (0,1) - C, of the form
(% (x,> fn) = (x,’ Din (x,> Zfn))’
where x' € 1(C,), &, € (0,1) and

(i) |a”"”‘”| < L for each y € {1,..., p}, with a positive constant L, € N depending

oL,
only on p;
(ii) each of the functions f; o ¢, (i =1,...,k) is of class C? on n(C,) x (0,1) and

‘ 0 (fio px)
o0&,

<L,  foreach pe{l,...,p}.

Proof By the Cell Decomposition Theorem (see [14, Chapter 3 and Chapter 7, §3]),
we reduce the general case to the one where

Q={(x',x,):x" € D,a(x') < x, < b(x')}

is an open bounded C?-cell in R”, D is an open bounded cell in R*, a,b: D - R
are definable C?-functions, a < b on D, each of the functions f; is of class €?*! on Q,
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and, foreach i € {1,...,k}
5

0x,

5

Xn

either <lon () or >1on Q.

Now the proof splits into two cases.

CaseI:| af"| <lon Q, foreachie{l,...,k}.

0xy
Passing perhaps to a finer cell decomposition of (), one can assume that

vi,-)

(2.3) sgn(ﬁ =const on Q,foreachie{l,...,k}andve{2,...,p+1}.

Moreover, one can assume that b(x") — a(x’) <2,for x’ € D. Put c(x") := 3 (a(x") +
b(x")), for x’ € D. Fix an integer m > p + 1. Define

o1(x', &) = (' a(x") + EF(c(x") - a(x'))),
P2(x', &) 1= (x,b(x") + E7 (c(x") - b(x'))),

foreach x’" € Dand £, € (0,1). It follows immediately from the assumption of Case I,
from (2.3), and from Lemma 2.3 that conditions (i) and (ii) are satisfied in this case.

Case IT: there exists j € {1,..., k} such that | %| >1lon Q.
Passing perhaps to a finer cell decomposition of (), one can assume that

ofi | .| 9fi
2.4 < foreachie{l,...,k},
(24) 0x, 0x,, { }
and sgn ( %) = const; one can assume without loss of generality that % 2L

Removing perhaps from D a definable closed nowhere dense subset, one can as-
sume that f; has a continuous extension defined on

{(x",x4) : x" € D,a(x") < x, <b(x)}.

Now, the main idea is to introduce the following new variable z,, := f;(x', y,) in the
place of y,,. Then y,, = y(x',z,), for (x',z,) € O, where

Q:={(x"sz,) : x" € D,a(x") < 24 < b(x")},
a(x") = fi(x';a(x")), and b(x') := fi(x',b(x")). Put
Fi(x'szn) = fi(x's yn) = fi(x'sw(x',2,)) foreach (x',z,)eQ,ie{l,...,k}.
Then by the assumption of Case II and by (2.4),

~ af'
oy 1 a7, | S ‘
- S - < kD,
0z, of; 1 and 3z, | o, 1 foreachie{l k}
0Yn yn

Now it suffices to apply Case I to the functions f; (i = 1,. .., k) and y to complete the
proof. ]

Remark 2.6 In the semialgebraic case, the number of cells in a cell decomposi-
tion in the proof of Proposition 2.5 can be estimated from above by degrees of initial
polynomials defining Q, fi,..., fx, by p and by n (cf. [9, Section 20]).
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Proposition 2.7 Let F;: Q x (0,1)™ 5 (x,y) = Fi(x,y) e R(i =1,...,k) bea
finite number of definable bounded CP -functions, where Q is an open definable bounded
subset of R", x = (x1,...,x,)andy = (y1,..., ¥m), PN, p>0. Letq € {0,..., p-1}.
Let m: R"™ ' x R > (x',x,) = x" € R"™! be the natural projection. Assume that all the
partial derivatives

oHtlel B,
9x), 0y

with pe{0,...,q}), O<p+|a|<p

are bounded.
Then there exists a cell decomposition {C, } of Q such that for each open cell C,,,
there exists a definable CP-diffeomorphism ¢,: m(C,) x (0,1) - C,, of the form

0x(x', &) = (', pon (X', E1)), where x" € n(Cy), &, € (0,1)

and
(i) a;(gﬁ‘" < L, for each p € {1,..., p}, with a positive constant L, € N depending
only on p;

(ii) foreachie{l,...,k}, all the partial derivatives
ok+lal
08,0y"

are bounded.

Fi(ou(x',&,),y) with ue{0,....,q+1}, u+|a|<p,

Proof Take any a € N such that g + 1+ |a| < p. Then, foreachr € {1,...,m},

9 ,ortllF, o1+l p,
ay,( axzay"‘)  axlaya+r(n

is bounded; hence, in view of Lemma 2.4, there exists a closed definable nowhere
dense subset T of Q) such that for each x € Q \ X, the function

aq+1+|¢x|Fi
axIoye

is bounded. By the Definable Choice Theorem (cf. [14, Chapter 6, (1.2)]), there exist
definable mappings 8;,: O \ £ — (0,1)™ such that

0,H)">3y+— (x,y)€eR

aq+1+|a|Fi 1 Qa1+l g,
(25) T(X, 61'“(X)) 2 - sup T’
0x, oy* 0x, 0y“

ye(0,1)m

(x,y)’ foranyx e Q \ X.

Now we apply Proposition 2.5 to all the functions

a\a\pi

ONZ3x+—
oy®

(x,0ia(x)) €R

aswellas to QN 2 5 x — 8;5(x) € (0,1)™. Thus, there exists a cell decomposition
{C,} of Q such that for each open cell C,, there exists a definable C?-diffeomorphism

@x: 1(Cy) x (0,1) — C,
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of the form as above, satisfying condition (i) and such that all the functions

ol*lF;
oy~

6ia(§0u(x,>£n)) and (‘Pu(x,:gn)>(8ia Oq’x)(x,’ fn))

are C? and have all partial derivatives with respect to &, up to order p bounded. Put

ﬁiu(x,a Emy) = Fi(¢u(x,) fn))y) .

Now we have

91t gl 0@ \ 71 0111l F, ,
(2.6) 853“( P ) :( 3, ) i Ty (@u(x', &), )+
a polynomial with integral coefficients in { 9" o («, fn)}
& v<p
and
outlalF, ,
{W(%(X ’fn)’y)}wlalﬁww -

0Psen q+1aq+1+|alpi
( 9y ) oxIgye

A calculation similar to (2.6) shows that

(¢x(x',&,), y) +a bounded function.

011/ olelF;
2.7) (

P Ty (918, (B0 9) (< £)) ) =

0@, \ 4+ 911 E,
( CI ) oxIt gy«

Since (2.7) is a bounded function,

(0x(x",€,), (8ia © 9)(x, €,)) + abounded function.

( Qs ) q+1 ga+i+lal g,
9, axZHay”‘
is bounded too. Hence, by (2.5),

( ‘Pu(x,’ &n)> (8ia © ‘Pu)(x,r fn))

( 0Pyun ) g+1 aq+1+|a\F,- (¢u(x,: fn),}/)

9¢, oxIt gy«
is bounded, and finally by (2.6),

01+1 a|a|ﬁ7m
oLy ( ay* )

is bounded, which ends the proof. ]
Proposition 2.8 Let fi,..., fr: Q — R be any definable bounded functions defined
on an open definable bounded subset Q of R". Let p be any positive integer and let

me{l,...,n}. Let m: R" 3 (x1,...,%,) = (X1, ..., Xn—m ) € R"™™ denote the natural
projection.
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Then there exists a cell decomposition {C,} of Q such that for each open cell C,,
there exists a definable CP-diffeomorphism ¢,.: n(C,) x (0,1)™ — C,, of the form

(P%(x,) f) = (x,: ¢ul(x,’ 51)’ 90%2(36,: fl) 52): cees SDum(xI, 513 IR Em)) 5
where x" = (x1,...,%4-m) € 7(Cy), & = (&,...,&m) € (0,1)™, all the restrictions
fi|C,, are of class CP, and all the partial derivatives
A 9Il(fi o px)
i < g T MiT¥x)
P FE

are bounded.

(2.8) (ie{l,....k},a e N",0< |a] < p)

Proof This is immediate by Propositions 2.5 and 2.7 used repeatedly. ]

Remark 2.9 It follows from the proof of Proposition 2.7 that there exist bounds on
the partial derivatives (2.8) depending only on p and m.

3 Proof of Uniform C?-Parametrization Theorem

We will argue by induction on d = dim T. By the Cell Decomposition Theorem (see
[14, Chapter 3 and Chapter 7, §3]), without any loss of generality, one can assume that
T is a C”-cell of dimension d and, by using an appropriate C-diffeomorphism, that
T is an open bounded cell in R¥.

By the Good Direction Theorem (cf. [14, Chapter 9, (1.4)]), after a linear change of
coordinates in R” and perhaps removing from T a definable subset of dimension < d,
one can assume that, for any y € T, ({y} x R""¥) n X is a finite set.

Now by using a cell decomposition of X, we reduce the general case to one such
that X is the closure in T x R" of the graph of a definable bounded mapping f =
(fist>-++» fn): Q » R" ¥ defined on an open definable bounded subset Q of R x R¥.
To finish the proof, it suffices to apply Proposition 2.8 with p +1in the placeof p. W

Acknowledgment The authors thank the anonymous referee for valuable comments
that improved the original text.
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