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Cp-parametrization in O-minimal Structures

Beata Kocel-Cynk, Wiesław Pawłucki, and Anna Valette

Abstract. We give a geometric and elementary proof of the uniform Cp-parametrization theorem
of Yomdin and Gromov in arbitrary o-minimal structures.

1 Introduction

Fix any o-minimal expansion of a real closed ûeld R (see [14] or [4] for fundamental
deûnitions and results concerning o-minimal structures). Let p be any positive inte-
ger. We will be discussing deûnable subsets andmappings referring to this o-minimal
structure. _e aim of this note is to give a geometric and elementary proof of the fol-
lowing uniform Cp-parametrization theorem.

Uniform Cp-Parametrization _eorem Let X be a deûnable subset of Rm × Rn . Let
Xt ∶= {x ∈ Rn ∶ (t, x) ∈ X} for any t ∈ Rm and put T ∶= {t ∈ Rm ∶ Xt ≠ ∅}. Let k and
p be positive integers. Assume that all Xt (t ∈ T) are closed, of pure dimension k, and
commonly bounded; i.e., there exists r > 0 such that ∣x∣ ⩽ r, for each t ∈ T and x ∈ Xt .

_en there exists a ûnite decomposition T = T1 ∪ ⋅ ⋅ ⋅ ∪ Ts of T into deûnable Cp-cells
in Rm and for each i ∈ {1, . . . , s} a ûnite family of deûnable Cp-mappings

φ iϰ ∶ Ti × [0, 1]k ∋ (t, ξ) z→ φ iϰ(t, ξ) ∈ X(ϰ ∈ K i)
such that
(i) (π○φ iϰ)(t, ξ) = t, where (t, ξ) ∈ Ti×[0, 1]k and π ∶ Rm×Rn → Rm is the natural

projection;
(ii) Xt = ⋃ϰ∈K i φ iϰ({t} × [0, 1]k) for each t ∈ Ti ;
(iii) φ iϰ ∣Ti ×(0, 1)k is a Cp-diòeomorphism onto a deûnable Cp-submanifold of Rm ×

Rn open in X ∩ (Ti × Rn);
(iv) φ iϰ(Ti × (0, 1)k) ∩ φ i λ(Ti × (0, 1)k) = ∅, whenever ϰ, λ ∈ K i , ϰ ≠ λ;
(v) all the partial derivatives ∂∣α∣φ iϰ/∂ξα(t, ξ), where t ∈ Ti , ξ ∈ [0, 1]k , α ∈ Nk ,

0 < ∣α∣ ⩽ p, are bounded by a constant independent of t.

_e above theorem in the semialgebraic case originated in the papers of Yomdin
[15, 16] and Gromov [5] (with some estimates on the number of mappings φ iϰ , which
are important from the point of view of applications). Now there are quite a lot of
papers connectedwith it (see [1–3,12,17,18]), where applications in dynamics, analysis,
diophantine, and computational geometry are given. Of course this theorem brings
to mind (and perhaps can be even considered as a generalization of) the classical
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Hironaka rectilinearization theorem [6, _eorem 7.1] and, from the point of view of
the proof (see below), the Puiseux desingularization (cf. [10]). A proof of the Uniform
Cp-Parametrization_eorem for arbitrary o-minimal structureswas given byPila and
Wilkie [12, Corollary 5.2]. Nevertheless, in view of diòerences between our approach
and that of [12], we think that our paper may still be of interest.

Remark 1.1 If the o-minimal structure is that of semialgebraic sets, the number of
needed mappings φ iϰ can be estimated from above by an integer that depends on p,
on the degrees of polynomials describing X, the radius r, the dimension n, and the
number of parameters m (cf. [5, Section 4.5] and Remark 2.6).

For fundamental deûnitions and results concerning o-minimal geometry, we refer
the reader to [14] or [4]. We limit ourselves here to reviewing the notions of a cell and
that of a cell decomposition, because they will play particularly important roles in our
approach.
A subset C of Rn is called a cell (a Cp-cell) in Rn if C = {a}, where a ∈ R or

C = (a, b), where a, b ∈ R, a < b, in the case n = 1, and, in the case n > 1, if either
C = {(x′ , f (x′)) ∶ x′ ∈ C′}, where x′ = (x1 , . . . , xn−1), C′ is a cell (a Cp-cell) in Rn−1

and f ∶ C′ → R is a deûnable continuous (a deûnable Cp-)function or C = {(x′ , xn) ∶
x′ ∈ C′ , f1(x′) < xn < f2(x′)}, where C′ is a cell (a Cp-cell) in Rn−1 and each of the
functions f i ∶ C′ → R (i ∈ {1, 2}) is either a deûnable continuous (a deûnable Cp-)
function f i ∶ C′ → R or f i ≡ −∞, or f i ≡ +∞ and f1(x′) < f2(x′) for each x′ ∈ C′. It
is clear that any Cp-cell in Rn is a Cp-submanifold of Rn .

Let X be any deûnable subset of Rn . By a cell decomposition (a Cp-cell decompo-
sition) of X, we mean any ûnite decomposition C of X into cells in the case n = 1
and, in the case n > 1, any ûnite decomposition C of X into cells (Cp-cells) such that
{π(C) ∶ C ∈ C} is a cell decomposition (a Cp-cell decomposition) of π(X), where
π ∶ Rn = Rn−1 × R ∋ (x′ , xn) ↦ x′ ∈ Rn−1 is the natural projection.

2 Preparatory Assertions

A key role is played by the following lemma (cf. [8, Lemmata 1 and 2]) mimicking an
idea of Yomdin and Gromov (cf. [5, Section 4.1]).

Lemma 2.1 Let λ ∶ (a, b) → R be a deûnable Cp+1-function, where p ∈ N, p ⩾ 1,
deûned on an open interval (a, b) ⊂ R such that, for each ν ∈ {2, . . . , p + 1}, λ(ν) ⩾ 0
on (a, b) or λ(ν) ⩽ 0 on (a, b). _en for any closed interval [t− r, t+ r] ⊂ (a, b), where
r ∈ R and r > 0,

∣λ(p)(t)∣ ⩽ 2(
p+2
2 )−2 sup

[t−r ,t+r]
∣λ∣ 1

rp .

Proof First consider the case p = 1. Without any loss of generality, we can assume
that λ′′ ⩽ 0; i.e., λ is concave. Hence,

λ(t) − λ(s)
t − s

⩽ λ(t) − λ(t − r)
r

⩽ 2 sup
[t−r ,t+r]

∣λ∣
r
,
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when t − r < s < t. It follows that

λ′(t) ⩽ 2 sup
[t−r ,t+r]

∣λ∣
r

.

Applying this to λ(−t), we obtain

−λ′(t) ⩽ 2 sup
[t−r ,t+r]

∣λ∣
r

; consequently, ∣λ′(t)∣ ⩽ 2 sup
[t−r ,t+r]

∣λ∣
r

.

Now the lemma follows by induction on p.

Applying Lemma 2.1 to λ′ in the place of λ and µ − 1 in the place of p, we have the
following corollary.

Corollary 2.2 Under the assumptions of Lemma 2.1,

∣λ(µ)(t)∣ ⩽ Cp sup
(a ,b)

∣λ′∣ 1
∣t − a∣µ−1 ,

for each t ∈ ( a, a+b2 ) and µ ∈ {2, . . . , p}, where Cp ∶= 2(
p+1
2 )−2. In particular, if λ′ is

bounded; i.e., ∣λ′∣ ⩽ M, where M ∈ R and M > 0, then

∣λ(µ)(t)∣ ⩽ CpM
1

∣t − a∣µ−1 for each t ∈ ( a, a + b
2

) , µ ∈ {2, . . . , p}.

Lemma 2.3 Let λ ∶ (0, 1] → R be a deûnable Cp-function such that

(2.1) ∣λ(µ)(t)∣ ⩽ C 1
tµ−1 for each t ∈ (0, 1], µ ∈ {1, . . . , p}

where C ∈ R is a positive constant. Fix m ∈ N, m ⩾ p + 1. Put φ(τ) ∶= λ(τm) for each
τ ∈ (0, 1].

_en there exists a positive constant L depending only on C and m such that
∣φ(µ)(τ)∣ ⩽ L, for each τ ∈ (0, 1] and µ ∈ {1, . . . , p}.

Proof For each µ ∈ {1, . . . , p},

φ(µ)(τ) = a1µτm−µλ′(τm) + a2µτ2m−µλ′′(τm)
+ a3µτ3m−µλ(3)(τm) + ⋅ ⋅ ⋅ + aµµτµm−µλ(µ)(τm),

where a i µ are positive integers deûned inductively by the following formulae:

a1µ =
m!

(m − µ)! , a i µ = ma(i−1)(µ−1) + (im − µ + 1)a i(µ−1) , aµµ = mµ .

By (2.1), it follows that

∣φ(µ)(τ)∣ ⩽ a1µτm−µC + a2µτ2m−µ C
τm

+ a3µτ3m−µ C
τ2m + ⋅ ⋅ ⋅ + aµµτµm−µ C

τ(µ−1)m

= C(a1µ + ⋅ ⋅ ⋅ + aµµ)τm−µ ⩽ C(a1µ + ⋅ ⋅ ⋅ + aµµ).
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Lemma 2.4 (cf. [7, Lemma 1] or [13, Proposition 5.5]) Let Ω be an open deûnable
subset of Rn and let

f ∶ Ω × (0, 1)m ∋ (x , y) z→ f (x , y) ∈ R

be a deûnable C1- function, where x = (x1 , . . . , xn) and y = (y1 , . . . , ym). Assume that
all the partial derivatives

∂ f
∂y i

(i = 1, . . . ,m)

are bounded on Ω × (0, 1)m .
_en there exists a closed nowhere dense deûnable subset Σ of Ω such that, for each

x ∈ Ω ∖ Σ, the function

(0, 1)m ∋ y z→ ∂ f
∂xn

(x , y) ∈ R

is bounded.

Proof First consider the casem = 1. In this special case we have the following claim.

Claim (C1-Extension _eorem, cf. [11, Proposition 10]) _ere exists a closed
nowhere dense deûnable subset Σ of Ω such that f extends to a C1-function

f ∶ Ω × [0, 1) ∖ Σ × {0} ∋ (x , y) z→ f (x , y) ∈ R.

Indeed, by a dimension argument ∂ f
∂y extends to a continuous function deûned on

Ω × [0, 1) ∖ Σ ×{0} with Σ as above. By the Mean Value_eorem there exists a ûnite
limit limy→0 f (x , y) ∈ R, for each x ∈ Ω; hence, again by a dimension argument, one
can assume that f extends to a continuous function deûned on Ω × [0, 1) ∖ Σ × {0}.
Of course, one can assume that Σ = ∅. Again by removing a small subset of Ω, one
can assume that the function g ∶ Ω ∋ x ↦ f (x , 0) ∈ R is of class C1. Now we check
that

lim
x→a
y→0

∂ f
∂xn

(x , y) = ∂g
∂xn

(a, 0)

for all a ∈ Ω, except perhaps for a from a small subset. Of course, one can assume
that g ≡ 0. Now it suõces to show that for each a = (a1 , . . . , an) ∈ Ω, there exists a
deûnable curve λ ∶ (0, 1) → Ω × (0, 1) such that

lim
t→0

λ(t) = (a, 0) and lim
t→0

∂ f
∂xn

(λ(t)) = 0.

Choose any ε, δ > 0. _ere exists x ∈ Ω such that x = (a1 , . . . , an−1 , xn),
0 < ∣xn − an ∣ < δ, and y ∈ (0, δ) such that ∣ f (x , y)∣ < ε∣x − a∣ and ∣ f (a, y)∣ < ε∣x − a∣.
_en by the Mean Value_eorem, there exists θ ∈ (0, 1) such that

∣ ∂ f
∂xn

( a1 , . . . , an−1 , θan + (1 − θ)xn , y) ∣ =
∣ f (x , y) − f (a, y)∣

∣x − a∣ < 2ε,

and by the Curve Selection Lemma, the proof of the claim is complete.
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Now consider the case m > 1. Suppose that Lemma 2.4 is not true; i.e., there is an
open nonempty subset W of Ω such that for each x ∈ W , there exists h(x) ∈ [0, 1]m
such that

lim sup
y→h(x)

∣ ∂ f
∂xn

(x , y)∣ = ∞.

By deûnable choice and shrinking perhaps W , we can make h deûnable of class C1.
By a version with a parameter of the Curve Selection Lemma (or the Whitney Wing
Lemma), there exists a deûnable mapping α ∶ (0, 1) ×W → (0, 1)m such that for each
x ∈W , limt→0 α(x , t) = h(x) and

(2.2) lim
t→0

∂ f
∂xn

(x , α(x , t)) = ±∞.

Perhaps shrinking W and replacing the parameter t by t′ = ρt, with ρ small positive,
we can assume that α = (α1 , . . . , αm) is of class C1 on W × (0, 1) and there is j ∈
{1, . . . ,m} such that

∣
∂α j

∂t
(x , t)∣ ⩾ ∣ ∂α i

∂t
(x , t)∣ for each (x , t) ∈W × (0, 1), i ∈ {1, . . . ,m}.

Introducing a new variable τ ∶= α j(x , t) in the place of t, we can assume that
∣ ∂α i

∂t (x , t)∣ ⩽ 1, for i ∈ {1, . . . ,m}. By the C1-Extension _eorem, shrinking per-
haps W , we can assume that α is C1 on W × [0, 1). _e same is true for the function
g(x , t) ∶= f (x , α(x , t)) and in view of C1-Extension _eorem, we get a contradiction
with (2.2).

Proposition 2.5 Let f1 , . . . , fk ∶ Ω → R be any deûnable bounded functions deûned
on a deûnable open bounded subset Ω of Rn . Let π ∶ Rn−1 × R ∋ (x′ , xn) ↦ x′ ∈ Rn−1

be the natural projection. Let p be a ûxed positive integer.
_en there exists a cell decomposition {Cϰ} of Ω such that for each open cell Cϰ ,

there exists a deûnable Cp-diòeomorphism φϰ ∶ π(Cϰ) × (0, 1) → Cϰ of the form

φϰ(x′ , ξn) = (x′ , φϰn(x′ , ξn)),
where x′ ∈ π(Cϰ), ξn ∈ (0, 1) and
(i) ∣ ∂

µφϰn
∂ξµn

∣ ⩽ Lp for each µ ∈ {1, . . . , p}, with a positive constant Lp ∈ N depending
only on p;

(ii) each of the functions f i ○ φϰ (i = 1, . . . , k) is of class Cp on π(Cϰ) × (0, 1) and

∣ ∂
µ( f i ○ φϰ)

∂ξµ
n

∣ ⩽ Lp for each µ ∈ {1, . . . , p}.

Proof By the Cell Decomposition _eorem (see [14, Chapter 3 and Chapter 7, §3]),
we reduce the general case to the one where

Ω = {(x′ , xn) ∶ x′ ∈ D, a(x′) < xn < b(x′)}

is an open bounded Cp-cell in Rn , D is an open bounded cell in Rn−1, a, b ∶ D → R
are deûnable Cp-functions, a < b on D, each of the functions f i is of class Cp+1 on Ω,
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and, for each i ∈ {1, . . . , k}

either ∣ ∂ f i
∂xn

∣ ⩽ 1 on Ω or ∣ ∂ f i
∂xn

∣ ⩾ 1 on Ω.

Now the proof splits into two cases.

Case I: ∣ ∂ f i
∂xn

∣ ⩽ 1 on Ω, for each i ∈ {1, . . . , k}.
Passing perhaps to a ûner cell decomposition of Ω, one can assume that

(2.3) sgn ( ∂ν f i
∂xν

n
) = const on Ω, for each i ∈ {1, . . . , k} and ν ∈ {2, . . . , p + 1}.

Moreover, one can assume that b(x′) − a(x′) ⩽ 2, for x′ ∈ D. Put c(x′) ∶= 1
2 (a(x

′) +
b(x′)), for x′ ∈ D. Fix an integer m ⩾ p + 1. Deûne

φ1(x′ , ξn) ∶= (x′ , a(x′) + ξmn (c(x′) − a(x′))) ,
φ2(x′ , ξn) ∶= (x′ , b(x′) + ξmn (c(x′) − b(x′))) ,

for each x′ ∈ D and ξn ∈ (0, 1). It follows immediately from the assumption of Case I,
from (2.3), and from Lemma 2.3 that conditions (i) and (ii) are satisûed in this case.

Case II: there exists j ∈ {1, . . . , k} such that ∣ ∂ f j
∂xn

∣ ⩾ 1 on Ω.
Passing perhaps to a ûner cell decomposition of Ω, one can assume that

(2.4) ∣ ∂ f i
∂xn

∣ ⩽ ∣
∂ f j
∂xn

∣ for each i ∈ {1, . . . , k},

and sgn ( ∂ f j
∂xn

) = const; one can assume without loss of generality that ∂ f j
∂xn

⩾ 1.
Removing perhaps from D a deûnable closed nowhere dense subset, one can as-

sume that f j has a continuous extension deûned on

{(x′ , xn) ∶ x′ ∈ D, a(x′) ⩽ xn ⩽ b(x′)} .

Now, the main idea is to introduce the following new variable zn ∶= f j(x′ , yn) in the
place of yn . _en yn = ψ(x′ , zn), for (x′ , zn) ∈ Ω̃, where

Ω̃ ∶= {(x′ , zn) ∶ x′ ∈ D, ã(x′) < zn < b̃(x′)},
ã(x′) ∶= f j(x′ , a(x′)), and b̃(x′) ∶= f j(x′ , b(x′)). Put

f̃ i(x′ , zn) ∶= f i(x′ , yn) = f i(x′ ,ψ(x′ , zn)) for each (x′ , zn) ∈ Ω̃, i ∈ {1, . . . , k}.
_en by the assumption of Case II and by (2.4),

∣ ∂ψ
∂zn

∣ = 1

∣ ∂ f j
∂yn

∣
⩽ 1 and ∣ ∂ f̃ i

∂zn
∣ =

∣ ∂ f i
∂yn

∣

∣ ∂ f j
∂yn

∣
⩽ 1 for each i ∈ {1, . . . , k}.

Now it suõces to apply Case I to the functions f̃ i (i = 1, . . . , k) and ψ to complete the
proof.

Remark 2.6 In the semialgebraic case, the number of cells in a cell decomposi-
tion in the proof of Proposition 2.5 can be estimated from above by degrees of initial
polynomials deûning Ω, f1 , . . . , fk , by p and by n (cf. [9, Section 20]).
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Proposition 2.7 Let Fi ∶ Ω × (0, 1)m ∋ (x , y) ↦ Fi(x , y) ∈ R (i = 1, . . . , k) be a
ûnite number of deûnable boundedCp-functions, whereΩ is an open deûnable bounded
subset of Rn , x = (x1 , . . . , xn) and y = (y1 , . . . , ym), p ∈ N, p > 0. Let q ∈ {0, . . . , p−1}.
Let π ∶ Rn−1 × R ∋ (x′ , xn) ↦ x′ ∈ Rn−1 be the natural projection. Assume that all the
partial derivatives

∂µ+∣α∣Fi

∂xµ
n ∂yα

with µ ∈ {0, . . . , q}, 0 < µ + ∣α∣ ⩽ p

are bounded.
_en there exists a cell decomposition {Cϰ} of Ω such that for each open cell Cϰ ,

there exists a deûnable Cp-diòeomorphism φϰ ∶ π(Cϰ) × (0, 1) → Cϰ of the form

φϰ(x′ , ξn) = (x′ , φϰn(x′ , ξn)), where x′ ∈ π(Cϰ), ξn ∈ (0, 1)

and
(i) ∣ ∂µφϰn

∂ξµn
∣ ⩽ Lp for each µ ∈ {1, . . . , p}, with a positive constant Lp ∈ N depending

only on p;
(ii) for each i ∈ {1, . . . , k}, all the partial derivatives

∂µ+∣α∣

∂ξµ
n∂yα

Fi(φϰ(x′ , ξn), y) with µ ∈ {0, . . . , q + 1}, µ + ∣α∣ ⩽ p,

are bounded.

Proof Take any α ∈ Nm such that q + 1 + ∣α∣ ⩽ p. _en, for each r ∈ {1, . . . ,m},

∂
∂yr

( ∂q+∣α∣Fi

∂xq
n∂yα

) = ∂q+1+∣α∣Fi

∂xq
n∂yα+(r)

is bounded; hence, in view of Lemma 2.4, there exists a closed deûnable nowhere
dense subset Σ of Ω such that for each x ∈ Ω ∖ Σ, the function

(0, 1)m ∋ y z→ ∂q+1+∣α∣Fi

∂xq+1
n ∂yα

(x , y) ∈ R

is bounded. By the Deûnable Choice _eorem (cf. [14, Chapter 6, (1.2)]), there exist
deûnable mappings δ iα ∶ Ω ∖ Σ → (0, 1)m such that

(2.5) ∣ ∂
q+1+∣α∣Fi

∂xq+1
n ∂yα

(x , δ iα(x)) ∣ ⩾
1
2

sup
y∈(0,1)m

∣ ∂
q+1+∣α∣Fi

∂xq+1
n ∂yα

(x , y)∣ for any x ∈ Ω ∖ Σ.

Now we apply Proposition 2.5 to all the functions

Ω ∖ Σ ∋ x z→ ∂∣α∣Fi

∂yα
(x , δ iα(x)) ∈ R

as well as to Ω ∖ Σ ∋ x ↦ δ iα(x) ∈ (0, 1)m . _us, there exists a cell decomposition
{Cϰ} of Ω such that for each open cell Cϰ there exists a deûnable Cp-diòeomorphism

φϰ ∶ π(Cϰ) × (0, 1) Ð→ Cϰ
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of the form as above, satisfying condition (i) and such that all the functions

δ iα(φϰ(x′ , ξn)) and
∂∣α∣Fi

∂yα
(φϰ(x′ , ξn), (δ iα ○ φϰ)(x′ , ξn))

are Cp and have all partial derivatives with respect to ξn up to order p bounded. Put

F̃iϰ(x′ , ξn , y) ∶= Fi(φϰ(x′ , ξn), y) .
Now we have

(2.6)
∂q+1

∂ξq+1
n

( ∂∣α∣F̃iϰ

∂yα
) = ( ∂φϰn

∂ξn
)

q+1 ∂q+1+∣α∣Fi

∂xq+1
n ∂yα

(φϰ(x′ , ξn), y)+

a polynomial with integral coeõcients in { ∂νφϰn

∂ξνn
(x′ , ξn)}

ν⩽p

and

{ ∂µ+∣α∣Fi

∂xµ
n ∂yα

(φϰ(x′ , ξn), y)}
µ+∣α∣⩽p,µ⩽q

=

( ∂φϰn

∂ξn
)

q+1 ∂q+1+∣α∣Fi

∂xq+1
n ∂yα

(φϰ(x′ , ξn), y) + a bounded function.

A calculation similar to (2.6) shows that

(2.7)
∂q+1

∂ξq+1
n

( ∂∣α∣Fi

∂yα
(φϰ(x′ , ξn), (δ iα ○ φϰ)(x′ , ξn))) =

( ∂φϰn

∂ξn
)

q+1 ∂q+1+∣α∣Fi

∂xq+1
n ∂yα

(φϰ(x′ , ξn), (δ iα ○ φϰ)(x′ , ξn)) + a bounded function.

Since (2.7) is a bounded function,

( ∂φϰn

∂ξn
)

q+1 ∂q+1+∣α∣Fi

∂xq+1
n ∂yα

(φϰ(x′ , ξn), (δ iα ○ φϰ)(x′ , ξn))

is bounded too. Hence, by (2.5),

( ∂φϰn

∂ξn
)

q+1 ∂q+1+∣α∣Fi

∂xq+1
n ∂yα

(φϰ(x′ , ξn), y)

is bounded, and ûnally by (2.6),

∂q+1

∂ξq+1
n

( ∂∣α∣F̃iϰ

∂yα
)

is bounded, which ends the proof.

Proposition 2.8 Let f1 , . . . , fk ∶ Ω → R be any deûnable bounded functions deûned
on an open deûnable bounded subset Ω of Rn . Let p be any positive integer and let
m ∈ {1, . . . , n}. Let π ∶ Rn ∋ (x1 , . . . , xn) ↦ (x1 , . . . , xn−m) ∈ Rn−m denote the natural
projection.

106

https://doi.org/10.4153/CMB-2018-030-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-030-x


Cp-parametrization in O-minimal Structures

_en there exists a cell decomposition {Cϰ} of Ω such that for each open cell Cϰ ,
there exists a deûnable Cp-diòeomorphism φϰ ∶ π(Cϰ) × (0, 1)m → Cϰ of the form

φϰ(x′ , ξ) = (x′ , φϰ1(x′ , ξ1), φϰ2(x′ , ξ1 , ξ2), . . . , φϰm(x′ , ξ1 , . . . , ξm)) ,

where x′ = (x1 , . . . , xn−m) ∈ π(Cϰ), ξ = (ξ1 , . . . , ξm) ∈ (0, 1)m , all the restrictions
f i ∣Cϰ are of class Cp , and all the partial derivatives

(2.8)
∂∣α∣φϰ

∂ξα
and

∂∣α∣( f i ○ φϰ)
∂ξα

(i ∈ {1, . . . , k}, α ∈ Nm , 0 < ∣α∣ ⩽ p)

are bounded.

Proof _is is immediate by Propositions 2.5 and 2.7 used repeatedly.

Remark 2.9 It follows from the proof of Proposition 2.7 that there exist bounds on
the partial derivatives (2.8) depending only on p and m.

3 Proof of Uniform Cp-Parametrization Theorem

We will argue by induction on d = dimT . By the Cell Decomposition _eorem (see
[14, Chapter 3 and Chapter 7, §3]), without any loss of generality, one can assume that
T is a Cp-cell of dimension d and, by using an appropriate Cp-diòeomorphism, that
T is an open bounded cell in Rd .
By the Good Direction _eorem (cf. [14, Chapter 9, (1.4)]), a�er a linear change of

coordinates in Rn and perhaps removing from T a deûnable subset of dimension < d,
one can assume that, for any y ∈ T , ({y} × Rn−k) ∩ X is a ûnite set.

Now by using a cell decomposition of X, we reduce the general case to one such
that X is the closure in T × Rn of the graph of a deûnable bounded mapping f =
( fk+1 , . . . , fn)∶ Ω → Rn−k deûned on an open deûnable bounded subset Ω of Rd×Rk .
To ûnish the proof, it suõces to apply Proposition 2.8 with p+ 1 in the place of p.

Acknowledgment _eauthors thank the anonymous referee for valuable comments
that improved the original text.
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