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Chains of P-points

Dilip Raghavan and Jonathan L. Verner

Abstract. It is proved that the Continuum Hypothesis implies that any sequence of rapid P-points of
length < ¢* that is increasing with respect to the Rudin-Keisler ordering is bounded above by a rapid
P-point. This is an improvement of a result from B. Kuzeljevic and D. Raghavan. It is also proved
that Jensen’s diamond principle implies the existence of an unbounded strictly increasing sequence of
P-points of length w; in the Rudin-Keisler ordering. This shows that restricting to the class of rapid
P-points is essential for the first result.

1 Introduction

The Rudin-Keisler ordering on ultrafilters, introduced in the late sixties [6, 15, 16],
turned out to be a very useful tool for studying properties of ultrafilters. A vari-
ant of this ordering, the Rudin-Frolik ordering, was used by Frolik [4] to prove in
ZFC that the space of non-principal ultrafilters on w is non-homogeneous. Many
combinatorial properties can be characterized in terms of the ordering; e.g., selective
(or Ramsey) ultrafilters are precisely those that are minimal in the Rudin-Keisler
ordering, Q-points are those that are minimal in the Rudin-Blass ordering, P-points
are those below which the Rudin-Keisler and Rudin-Blass orderings coincide.

The first comprehensive study of the Rudin-Keisler (RK) order was done by A. Blass
in his thesis [1]. He continued his investigations by considering the lower part of the
ordering, viz., the ordering of P-points [2]. He showed that, under suitable assump-
tions, the ordering can be very rich. Assuming Martin’s Axiom (MA), he showed that

* there are 2° many minimal P-points,

* there are no maximal P-points,

¢ the ordering of P-points is -closed, both downwards and upwards,
o the real line, as well as w;, can be embedded into the P-points.

These results were later extended by several authors [8,12,14]. The results mo-
tivating the research that went into this paper were obtained by B. Kuzeljevi¢ and
D. Raghavan [7]. They proved the following result.

Theorem 1.1 (Kuzeljevi¢ and Raghavan) Assume MA. The ordinal ¢* can be embed-
ded into the ordering of (rapid) P-points.
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Since any ultrafilter has at most c-many RK-predecessors, the above is the best
possible result as far as embedding of ordinals is concerned. Kuzeljevi¢ and Raghavan
used the notion of a §-generic sequence of P-points, which allowed them to carry
through an inductive construction of length ¢* [7].

In this paper we improve upon their results as follows. In Theorem 3.4 we show
that, assuming the Continuum Hypothesis (CH), the ordering of rapid P-points is, in
fact, ¢*-closed.

Theorem 1.2 Assume CH. Any increasing sequence of rapid P-points of length < ¢* is
bounded above by a rapid P-point.

Unlike many earlier results, this theorem is more than just an embedding result, for
it provides new information about the global structure of the class of rapid P-points
under the Rudin-Keisler ordering.

We also show (Theorem 4.10) that the fact that we are looking at rapid P-points is
crucial. Assuming ¢ (though we suspect that CH is enough), we construct an increas-
ing sequence of P-points of length w; without any P-point upper bound.

The chains of P-points of length ¢* constructed in [7] enjoy a slightly stronger
property than the long chains that can be built using the technique from Section 3 of
this paper. The chains of [7] are all increasing in the <, ordering, but our technique
is insufficient to ensure this property for any of the chains of length ¢* here. Thus the
existence statement proved in [7] is stronger than the existence result that is derivable
from the work in Section 3.

We should also comment on our assumptions. Since S. Shelah [20] showed that
P-points need not exist at all, or there might be just one [18, Chapter VI], some as-
sumption guaranteeing that the structure is rich is needed. For simplicity we use CH,
though a weaker assumption, e.g., MA, would be sufficient for our results.

2 Preliminaries
In this section we introduce the basic notions and state some standard facts.

Definition 2.1 ([17]) An ultrafilter U on w is a P-point provided that for any se-
quence (X, : n < w) of elements of U there is an X € U such that | X \ X,,| < w for
each n. The last condition will also be denoted by X c* X,.

The following is an alternate characterization that we will often use.

Folklore  An ultrafilter U is a P-point if and only if every function f : w - w is
either constant or finite-to-one on some set in U.

Definition 2.2  Given a family P of functions from w to w we say that a function
f:w— wdominates P it g <* f for each g € P, where

g<t f = (Vn)(g(n) < f(n)),

and where V°°n is a shortcut for “for all but finitely many n”.
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Definition 2.3 ([11]) An ultrafilter U on w is rapid if for every f : w — w there is
an X € U such that the function enumerating X in increasing order dominates {f}.
To make notation simpler, we will write X(n) to denote the n-th element of X in its
increasing enumeration and X[n] = X \ X(n).

Again we will use an alternate characterization.

Fact 2.4  An ultrafilter U is rapid if and only if for every partition of w into finite
sets {K, : n < w} thereis X € U such that |X n K,,| < n for all n < w if and only if for
every infinite A C w there is X € U such that |[X nn| < |Ann|?* forall n < w.

Definition 2.5 ([6]) The Rudin-Keisler ordering of ultrafilters is defined as follows.
Given two ultrafilters U,V on w, we say that U is Rudin-Keisler below (or that it is
Rudin-Keisler reducible to) V, denoted U <gg V, if there is a function f : w - w such
that U = £, (V) = {X Cw: f[X]e \7}. If the function is finite-to-one, we say that
U is Rudin-Blass below V, U <z V. If the function is both finite-to-one and nonde-
creasing, we write U <t V.

More information about the <} ordering on the ultrafilters can be found in [9].
A major difference between the <gp and <}y orderings, which was discovered by
Laflamme and Zhu [9], is that <} is a tree-like ordering. In other words, for any ul-
trafilters U, V, and W, if U<{W and V<F W, then either U<,V or V<gzU. This is
very much false for the <gp ordering, even when it is restricted to the class of P-points,
as was shown by Blass [2], who constructed a P-point with two incomparable prede-
cessors assuming MA.

It is easy to see that being rapid and being a P-point are preserved when going
down in the Rudin-Keisler ordering and that the Rudin-Keisler and Rudin-Blass or-
derings coincide below every P-point. Also, since Rudin-Keisler reducibility has to
be witnessed by some function f : w - w and since two RK-inequivalent ultrafilters
cannot be witnessed to be below a third by a single function, it immediately follows
that every ultrafilter has at most c-many RK-predecessors.

Another ordering of ultrafilters is the Tukey ordering. It was introduced by Tukey
[19] for comparing the cofinal type of arbitrary directed partial orders. Isbell [5] was
the first to use the Tukey ordering to compare ultrafilters.

Definition 2.6 ([5]) LetU andV be ultrafilters on w. We say that U<V, i.e., U is
Tukey reducible to 'V or U is Tukey below 'V if there is a map ¢ : V — U such that
VA,BeV[ASB = ¢(A) < ¢(B)] and VA € UIB € V[¢(B) < A]. We say that
U=7V, ie., Wis Tukey equivalent to V if U<1V and V<7 U.

Recently, interest in this ordering on ultrafilters has been revived [3,10,13].
Finally, to eliminate some extraneous brackets, we will use the convenient standard
shorthand f~!(n) to denote the preimage of {n} instead of the formally more correct

fEn}l
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3 There Is No Short Unbounded Chain of Rapid P-points

We start with a few simple observations. Below we use Poly to denote the following
set of polynomial' functions: {n* : k < w}.

Observation 3.1 If f : w > w dominates Poly, then so does f'(n) = @ -n?

n

It is easy to see that the function n in Fact 2.4 could as well have been replaced by
any function tending to infinity.

Observation 3.2 Ifs:w — w is a function tending to infinity (for instance, lim inf
s(n) = 00), m: w — w is a finite-to-one function, and U is a rapid ultrafilter, then
there is X € U such that (Vn < w) (|77} (n) n X| < s(n)).

We aim to show that each RK-increasing chain of rapid P-points of length less
than w, has a rapid P-point on top. We do this by taking the chain and recursively
constructing the future projections (called g in the following proposition) from the
top to each ultrafilter in the sequence. If these projections commute with each of
the maps witnessing the RK-relations in the chain, then the inverse images of the
chain by these projections will generate a P-filter. By a relatively easy argument we
can guarantee that it will be an ultrafilter (making sure that at each step we decide
one set). To make it rapid, we have to work more. For this purpose, we will also build
a tower on the side (the Ts in the following proposition) that will generate a rapid
P-point and, moreover, this P-point will be compatible with the final P-filter.

Proposition 3.3 gives a single step of the construction. The set A in the assumption
will be later used to make sure that the top filter is both an ultrafilter and rapid. The
key property that will keep the induction going will be the fact that the g,s are finite-
to-one, but not bounded-to-one in a very strong sense: the size of the preimages of
points (we will call this somewhat imprecisely the growth rate of g) will dominate a
function s which will in turn dominate the set Poly (conditions (i) and (ii)). Moreover
the first part of condition (iv) will guarantee that the maps g, will not be bijections
on some large set (otherwise our supposed upper bound would be RK-equivalent to
some Uy, ).

We use the following conventions: we imagine each U, lives on a separate copy
of w (the a-the level). We will use the letter m to denote numbers on the first level,
i.e., where Uy lives, the letter n will denote numbers living on some level 0 < « < 6,
the letter [ will denote numbers living on the final level, i.e., where the top ultrafilter
we will be constructing lives, and the letter k will denote numbers living on level 6.
The letters i and j will be used as unrelated natural numbers. If a function has two
ordinal indices a3, they indicate that it goes from the a-th level down to the -th
level. Finally, the functions g, go from the final level to the level indicated by their
ordinal index.

IThe fact that they are polynomials is not important. We could as well have chosen all functions of
some countable elementary submodel of the universe; all that we need is that each function grows much
faster than the previous one.
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Proposition 3.3 Assume § < wy and (U, : a < 8) is an RK-increasing sequence of
rapid P-points as witnessed by finite-to-one maps I1 = {map : f < & < 8} with mee = 1d
foreach a < 8. Also, lets = (s, : o < 8) be a sequence of maps, each dominating Poly,
let g = (gq: & < &) be a sequence of finite-to-one maps, let T = (T, : a < 8) be a C*-
decreasing sequence of subsets of w, and let A € w. Suppose, moreover, that the following
conditions are satisfied.

(i)  The growth rate of g, dominates sq © Tao, i.c.,

(Vo) (v n)(1ga [{n}]] > sa(mao (n)))-

(ii) The sequences is <* decreasing in the following (stronger) sense:
(Vo< B<8)(Vom)(sa(m)> = “( ) -m*>s5(m)).

(iii) TTu{g,: a < 8} commute, i.e., forall f < a < 6, the following diagram commutes
on a Uy-large set:

8a
W w
ﬂaﬁl A
w

Formally, there is X € Uy such that gg(1) = ap(ga (1)) for each I € g;'[X].
(iv) For each a < §, there is X € U, such that lim,ex |g;'(n) N T,| = oo, while also
182" (n) N Ta| < min(g,'(n) U {mao(n)}) for each n € X.

Then we can extend the sequences g,s, T by constructing the maps gs and ss and a
set Ty so that (corresponding modifications of) (i-iv) are still satisfied and, moreover,
(Vi)(|Ts ni| <|Ani]*) and Ts decides A, ie, Ts S Aor Tsn A= @.

Proof We first introduce some notation. Fix D ¢ ¢ a cofinal subset of § of order type
w such that 0 € D. In our construction we will only deal with « € D. Given « € D, we
write ot = min({f € D : a < f}) for the successor of & in D. We also let #a = |[D N «,
i.e., « is the #a-th element of D. Next we use D to enumerate Poly in an increasing
sequence: Poly = {p, : « € D}, where p, < py+.

Givena € D, let ¢} = ngi (n). Since Uy is rapid, we can use Fact 2.4 to find X, € Us
such that |X, n ¢%| < n for each 1 < w. We can also assume? that

€R)) 8a ()] > sa(ma0(n))
for all n such that X, n ¢ # @ and that if n € 75,[ X, ], then
(3.2) gz (n) N Ta| < min(g,'(n) U {mao(n)}).

Next, choose Y, € Us such that

{gs:BeD&B<a’}U{ms:y<p<a’,ypeD}

2Otherwise, throw finitely many elements of X, away to get the first requirement, and for the second,
intersect it with the set T[(;; [X], where X is the set guaranteed to exist by condition (iv) above.
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commute on Y,; more precisely, for every § < y < a* all in D and every k € Y, and
any | € g,'[75, (k)] we have

(3.3) myp(msy(k)) = mop(k) = gp(1).

Finally, since g, and T, satisty the first part of (iv), we can use Observation 3.2 to
find Z, € Us such that

lgz' (1) N Tyl ) X

6.4) (vn>(|ng;<n>nza|s
#o

i.e., Zy is #a-times more sparse then T,. (Just apply Observation 3.2 to 7 = mg,,
U = Us, and s(n) = |gz' (n) N Tyl /#a.)

Since Uy is a P-point, we can find X € Uy that is a pseudo-intersection of { X, Y,
Zy : a € D}. Recursively construct a partition {K, : @ € D} of X into finite sets and
s5 : w > w such that Ky € Ngepra+ Xp N Y N Zg, and
(iv) sq(m) 2 s4(m)/m—m?>ss(m) > pu(m) whenever m = mso(n) and n € Ky3
V) mia[msa[Kall N X € Kos
(vi) #a < |A N min (nao[K[x]) N min (g;l[ﬂ(;,x[Ka”)|.

This is not hard to do: first find an increasing sequence {k, : « € D} of natural
numbers such that X \ ky € Ngepna+ Xp N Yg N Zg, and
( )

~m? > pe+(m) and #a<|Anmni

Sa(m )>
forall m = mg9(n) and i € g;l(nga(n)) with n € X \ k,. Then let

Ka:ng;[n,;a[Xﬂ[ka,kw)]] and  s5 | m50[Ko] = pa-

(Formally, this will not be a partition, since it will not cover X n [0, ko ); we can just
throw these finitely many elements out of X).

Let J, = m5a[Ky] and L, = g;'[Jo]. Notice that since K, € Yy, we can use (3.3)
and (v) to conclude that L, n Lg = @ for distinct a # § € D. This allows us to define
gs separately on each L, (see Figure 1). For n € ], let b% = g;'(n).

Fix @ € Dand n € J, and let m = 7y (n). Then, since K, € X,, by (3.1) and (iv)
we have |b%| > mss(m) + m*. Moreover, since K, € Zg, by (3.4) and (3.2) we have

Ko 0 5 ()] < m,
|b% ﬂT| min(bﬁu{m})

Kyn
[SREAOIE -

It follows that we can partition b’ into pieces {e} : k € K, N w51 (n)}, each of size
> s5(m) + m?, that, moreover, satisfy #a < |e} N Ty| < min(b U {m}).

Due to (vi) we can shrink ¢} to a smaller set d;} (throwing away at most m-many
elements of e N T,,) such that

(3.5) #o <|dp N Ty| <|[Anmnminby|.

Since we threw away at most m elements from each e}, we still have |d}!| > s5(m).
Now let gs[d}] = {k} and extend g5 to all of w arbitrarily so that the new values are
outside of X and that the requirements on g are satisfied, i.e., that it is finite-to-one,
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Figure I: Constructing gs.

its growth rate is bounded below by s5, etc. This finishes the construction of gs. For
future reference, let us note that g5 | (T, N 1) is at most |A N I|-to-one for any I < w.
Notice that if § < a € D, k € Kq, and g5(I) = k, then gg(I) = map(ga(l)), and
so msp(k) = map(msa(k)) = gp(l); so Proposition 3.3(iii) is satisfied for gs. That
condition (ii) for s4 is satisfied follows from (iv). That condition (i) is satisfied for s4
and g5 follows from the construction (|d}| > ss(m)). (Formally, we have only checked
the conditions for f, & € D, but this is clearly enough, since D is cofinal in §.)
Finally we must construct Ts. Without loss of generality we may assume that
Ty € Tg for B < a € D. (Otherwise we could have carried out the construction for
some finite modifications of T,s and the resulting T would still work for the original
T,s). Let T' = Ugep g5 ' [Ka] N To. Then T’ is a pseudo-intersection of { T, : a € D}.
Moreover, gs was constructed (see (3.5)) so that #a < |g5'(k)nT,| < min{m}ug;' (k)
for each k € K, and m = w50 (k). It follows that T’ and g, satisfy (the corresponding
modification of) Proposition 3.3(iv) and, in particular, that gs[T'] € Us.

Claim  Thereisan X' € Us, X' € X n gs[T'] such that | X' n gs[1]| < |An 1],

Proof of Claim Since |gs[!]| < I, we can find a bijection 7 : @ — w such that
n[gs[1]] € 1. Since 7 is a bijection, the ultrafilter 7*(Us) is rapid, so there is
Y e n*(Us) such that [Y n | < |AnI|. Let X' = n7'[Y] n X n gs[T'] € Us. Then we
have

X'ngs[lleX na'lllca ' [Y]na ' [I]=n""[YnI].
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Using this, the fact that 7 is a bijection, and the choice of Y, we get
X' ngs[l]| <|n'[Ynl]|=|Ynl<|AnI],
which finishes the proof of the claim. ]
Let T" = g5'[X'] < T'. Now, since g5 | T’ n [ is at most |A N [|-to-1, we have
IT" nl|<|Anl]-|X ngs[l]| <|AnT|-|AnI <|ANT%
Finally notice that
ga[T” n A] Ugg[T” N A] = g(;[T”] =Xe U5.

So, since Us is an ultrafilter, we can choose Ts € T" that decides A and still satisfies
Proposition 3.3(iv). This finishes the proof. ]

Theorem 3.4  Assume CH. Every RK-increasing chain of rapid P-points of length w,
has an upper bound that is also a rapid P-point.

Proof Let (U, : a < w;) be an RK-increasing chain of rapid P-points as witnessed
by finite-to-one maps IT = {745 : f < & < w; }. Without loss of generality we can as-
sume that the maps commute in the sense of Proposition 3.3(iii). Enumerate [w]® as
{A : a < w1}. Recursively build a sequence of finite-to-one maps (g, : « < w;) and a
decreasing tower (T, : « < w;) so that T, decides A, and | T, nn| < |A,Nn|*. This can
be done by repeatedly applying Proposition 3.3 at each step. In the end (T, : & < w;)
generates a rapid P-point and the map g, witnesses that this P-point is above U,. m

We do not know the optimal hypothesis needed to carry out the above proof. We
leave it as a question for further research.

Question ~ What is the optimal hypothesis needed to get the conclusion of Theo-
rem 3.4 with w, replaced by ¢? In particular, does this hold if we replace CH by b = ¢?
Orevend = ¢?

4 A Short Unbounded Chain of P-points

In this section we show, assuming <, that there is an RK-chain of P-points of length
w; that has no P-point RK-above. We assume < only for simplicity; a more involved
argument using the Devlin-Shelah weak diamond can be used to construct the chain,
e.g., under CH.

Definition 4.1 LetU = (U, : « < §) be a sequence of ultrafilters and IT = (map: B <

a < &) a family of maps from w to w. We say that IT commutes with respect to U, if for
B <a<y<dthereis X € U, such that mag(7yq (i) = m,p(i) forall i € X. When the

sequence U is clear from the context, we just say that IT commutes.

Notation 4.2  Given two families IT; = (7}, : & < 8), i < 2 of maps and a sequence
of ultrafilters U as above, we write f : ITy —¢; I1; to indicate that f is a map from w

to w and for each « < & there is an X € (73 ) ™' [Uq] such that 7 (n) = 7§, (f(n))
forall n e X.
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Definition 4.3  Given two families of maps IT; = (7§, : @ < 8), i < 2, we say that
Hl < H() if

(Va < 8)(Vn < w)(|(m5,) " (n)] > n-[(m5,) " (n)]).
Moreover, if 7, 717 are two maps, U is an ultrafilter, and X € [w]“, we write
T <x,u Mo
ifthereisa Y e Uand s : w — w tending to infinity such that

(VneY)(|n ' (n) nX| > s(n) - |my" (n) n X|)

Observation 4.4 Assume U = (U, : a < &) is an RK-increasing chain of P-points
of length & < w) as witnessed by a family of finite-to-one maps IT = (745 : f < & < J).
Suppose, moreover, that we are given a family of finite-to-one maps ITo = (73, : a < 8)
such that IT U IT, commute. Then there is a family II; = (7}, : & < 8) such that
IT; < ITy and IT u IT; still commute.

Proof Fix an arbitrary finite-to-one 7 such that |77'(n)| > n and let 7, (n) =
oo (1(1))-

Definition 4.5 Given an RK-increasing chain of P-points U of length & for some
limit § < wy, a family of finite-to-one maps IT = (7,5 : f < & < §) witnessing that the
chain is RK-increasing, and two families of finite-to-one maps IT; = {7y, : @ <), i <2,
such that IT; < I1, and IT U IT; commutes with respect to U for i < 2, we define the
forcing

P(U, I, o, 1) = ({X € []“ : (Vo < 8) (s <x10, 73a)} > €7)-

For the following observation and propositions, fix J, U, I1, 1y, and I1; as in the
definition.

Observation 4.6 The forcing P(U, IT, Ty, IT,) contains w.
Proposition 4.7  The forcing P(W, T1, Ty, I1, ) is o-closed.

Proof Let (X, :n < w)be a descending sequence of conditions and, without loss of
generality, assume X,,; C X, for all n < w. Fix a cofinal subset D € § of order type
 and, as before, write a* = min (D \ (a +1)) and #a = |[D N a|. For each n < w
and « € D, fix Y* € U, and s% witnessing 7, <x, 1, 7Ta,. Then for each a € D, let
Y* € U, be a pseudo-intersection of { Y : n < w} € U, and fix a function s : w > w,
tending to infinity, such that s <* s forall @ € D, n < w. For each a € D, fix m, < w
such that
|(m55) ™ (1) 0 Xaa| 2 s(m) | (mg5) ™ (1) 0 X

foreach f € Dna™ and m € Y* \ m,. We also choose each m, large enough to make
sure that

(4.1) max ((m5) " [m']) <min((ngﬁ)’l(m))
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foreach §,8 e Dna*,i,j<2and m’ < my < myy < m. For a € D let

X*= U (n};ﬁ)_l[m“,mw)n)(#u.
BeDnat

Next let Dy and D, be the set of even and odd elements of D, respectively. Choose a
cofinal D’ € D and i < 2 so that Z* = Ugep,[mp, mp+) N Y € U,. Finally, define
X =Ugep, X*. By (4.1) it is clear that

(4.2) X () [ M) = Xoa 1 (hg) ™ [Mas M)

foreach a € Dj, B < «, and j < 2. Itis clear that X is a pseudo-intersection of the Xys.
We need to show that X € P(U, IT, I1y, IT;), i.e., that for each a < & we have

(4.3) e <Xl Toq-

First assume « € D’. We show that Z% \ m, witnesses (4.3). Let m € Z* \ m, be
arbitrary. Find o’ € D; so that m € [my, my+ ). Then a < &’ so, in particular, we have

|(750) 7 (m) 0 Xew| 2 s(m) - [(75,) 7 (m) 0 X |-
This, together with (4.2), shows (4.3). Finally notice thatif « < § < o,
ﬂf;a <X, ﬂga , and ﬂ}w <X,U, ﬂga,,

then also ”(ls 5 <Xy ”g/;- Since D’ was cofinal in &, this finishes the proof of (4.3) for
all < 4. [

Proposition 4.8 If A C w, then the set
Dy={XeP(UILI,,IL): XCAVXCw\ A}

is dense.

Proof Notice that if 7§, <x 1, 73, then either

T[}?a <X0A»ua T[gtx or T[}?a <X\A’ua T[ga'
This follows from the fact that either
1 -1
|(m5,) " (m) n X|

(b)) X 4] > 0

|(75) " (m) N X]
2

for U,-many ms and that if s tends to infinity then so does s/2. The result then imme-
diately follows because one of the two cases must happen for cofinally many a < 5. m

|(m50) " (m) N X N A >

Proposition 4.9 If f : Ty —; 11, is finite-to-one, then the set
Dy ={X eP(W,IL, Iy, IT,) : (3Y € Up) (X N f[(73,) ' [Y]] = &}

is dense.

Proof Let X € P(U,II, I, II;). For each & < &, choose Y, € Uy and s, : 0 » @
tending to infinity witnessing 7§, <x 1, 73,. We can also assume that
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(1) w5, (f(k)) =n3, (k) forall k e (n3,)7"[Ya]
(2) ﬂao(ﬂaa(k)) s, (k) for each k € (m},)™!
(3) Y < (”aO) [ ]

Since Uy is a P-point, there is a Y € U that is a pseudo-intersection of 7,[ Y, ]
and let n, < w be such that 7,o[Y, \ 1] € Y. Also write Z = (ﬂgo)_l[Y]. Let
X' = ((7‘[50) [Y]nX) \ f[Z n X]. Notice that for each n € Y, \ n,, we have
[ (m5,) ()] n X < (nf,)7}(n) N X (since f,n3,, 7w}, commute on Y, \ 1), S0
hat

[Y,] and & < 8, and

|(m50) ™ (m) n X 0 fIZ 0 X]| < [(m54) ™ () n X[

By the choice of Y, we also have |(7}, ) (n) N X| > sq(n)-|(7$,) " (n) N X|. Putting
this together gives

|(752) 7 (n) 0 X'| 2 (sa(n) =1) - |(715,) ™ () 0 X|.
Since s, tends to infglity, so does s, — 1. This shows that s, —1and Y, \ n, witness
the fact that X’ € P(U, IT, Iy, IT;). ]

We now put Propositions 4.8 and 4.9 together and prove the following.

Theorem 4.10  Assume <>. There is a sequence of ultrafilters of length w, that is strictly
increasing in the RK-order and has no upper bound that would be a P-point.

Proof Let (I1*: & < w;), where IT* = (pg, , : y < a), be a diamond sequence guess-
ing sequences of functions from w to w, i.e., such that, for every sequence of such
functions IT = (74,4 : & < wi), the set {a € Lim(w;) : IT | a = [1*} is stationary.
We recursively construct an RK-increasing sequence (U, : a < w;) of P-points and
witnessing maps I1{ = (n}xﬁ : f < a) as follows.

At a successor step « + 1, we just construct an arbitrary P-point U, above U, and
let T1{*! be the appropriate witnessing maps.

At alimit step a, let IT = (nhy ry<B<a),U=(Ug:p<a),and write I[1* = TI§ =
{ﬂgﬂ :f<al,ie., ngﬁ = Pyp- I TTUTIG do not commute with respect to U, we con-
struct U, to be an arbitrary P-point above U and let IT* be appropriate finite-to-one
witnessing maps. Otherwise, we use Theorem 4.4 to construct IT{ = {7} giB< o}
satisfying
(1) IIf < II§.

Then we recursively construct a P-filter U, on P(U, IT, I1%, TI¥) so that
(2) for all finite-to-one f : IT§ —¢; I1{' there is X € U, and Y € U, such that

2 = f[(mee) ' [Y]] n X

To guarantee (1) we just need to ensure that it hits each of the w;-many dense sets
{Dy : f : II§ —g; I} }; we also make sure that it hits the dense sets {D4 : A € w}, so
that it is an ultrafilter. This can be done since the forcing is o-closed by Theorem 4.7.
This finishes the recursive construction.

Finally notice that the chain of P-points thus constructed cannot have a P-point
on top. Otherwise suppose U is RK-above the chain as witnessed by finite-to-one
maps II*" = {7, * @ < w;} that commute with U,<,, IIf. Since the I1*s formed a
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diamond sequence, there is a limit « < w; such that II** | a = IT*. Then II* = II{
commutes with IT, so we can apply (2) to f = m,,4 and conclude that there are X € U,
and Y € U, such that

= ”wna[(ﬂgo)_l[Y” nX= ﬂwla[(P?ulo)_l[Y” nX= ﬂwltx[”;}o[y]] nxX,
contradicting the fact that ,,, witnesses that U is above U,. [ |

5 Concluding Remarks

It was proved in Section 3 that, given a Rudin-Keisler increasing chain of rapid
P-points (U, : « < w;) together with a commuting sequence of finite-to-one witness-
ing maps (713, : @ < 8 < wy), it is possible to find a sequence of finite-to-one maps
(ga + @ < w;) together with a rapid P-point V such that g, is a witness to U,<grxV.
However, the argument in Section 3 does not guarantee that any of the g, will be
nondecreasing, even when it is given that each of the maps 7, is nondecreasing. In
other words, the rapid P-point V may not be an <} upper bound of the sequence
(Uy = o < wy) even if that sequence itself is assumed to be <jp-increasing.

It appears that one must fall back on the construction given in [7] if one wants a
chain of P-points of length ¢* that is increasing in the <, ordering. Nevertheless,
the ideas from Section 3 can be combined with the work in [7] to show that CH im-
plies that the rapid P-points are ¢*-closed with respect to <j. More precisely, the
following theorem will appear in a forthcoming paper of Kuzeljevi¢, Raghavan, and
Verner. Assume the Continuum Hypothesis. Suppose & < ¢*. If (U, : a < §) isany se-
quence of rapid P-points that is increasing with respect to <%, then there exists a rapid
P-point V such that Yo < §[U,<EgV]. Therefore every strictly increasing sequence
of rapid P-points of length < ¢* can be extended to one of length ¢* with respect to
the <jp ordering.

References

[1]  A. Blass, Orderings of ultrafilters. Ph.D. thesis, Harvard University, 1970.

[2] A.Blass, The Rudin-Keisler ordering of P-points. Trans. Amer. Math. Soc. 179(1973), 145-166.
https://doi.org/10.2307/1996495

[3] N.Dobrinen and S. Todorcevic, Tukey types of ultrafilters. Illinois J. Math. 55(2013), no. 3, 907-951.

[4] Z.Frolik, Sums of ultrafilters. Bull. Amer. Math. Soc. 73(1967), 87-91.
https://doi.org/10.1090/S0002-9904-1967-11653-7

[5] J. R.Isbell, The category of cofinal types. II. Trans. Amer. Math. Soc. 116(1965), 394-416.
https://doi.org/10.2307/1994124

[6] M. Katétov, Products of filters. Commentationes Mathematicae Universitatis Carolinae 009(1968),
no. 1, 173-189.

[7]1 B.Kuzeljevic and D. Raghavan, A long chain of P-points. J. Math. Log. 18(2018), no. 1, 1850004,
38 pp.  https://doi.org/10.1142/50219061318500046

[8] C.Laflamme, Forcing with filters and complete combinatorics. Ann. Pure Appl. Logic 42(1989), no. 2,
125-163.  https://doi.org/10.1016/0168-0072(89)90052-3

[9] C.Laflamme and J.-P. Zhu, The Rudin-Blass Ordering of Ultrafilters. ]. Symbolic Logic 63(1998),
no. 2, 584-592.  https:/projecteuclid.org:443/euclid.jsl/1183745522

[10] D. Milovich, Tukey classes of ultrafilters on omega. Topology Proceedings 32(2008), 351-362.
arxiv:0807.3978v1

[11] G. Mokobodzki, Ultrafiltres rapides sur N. Construction dune densité relative de deux potentiels
comparables. In: Séminaire de Théorie du potentiel. Secrétariat mathématique, Paris, 1969, pp. 1-22.

https://doi.org/10.4153/50008439519000043 Published online by Cambridge University Press


https://doi.org/10.2307/1996495
https://doi.org/10.2307/1996495
https://doi.org/10.1090/S0002-9904-1967-11653-7
https://doi.org/10.1090/S0002-9904-1967-11653-7
https://doi.org/10.2307/1994124
https://doi.org/10.2307/1994124
https://doi.org/10.1142/S0219061318500046
https://doi.org/10.1016/0168-0072(89)90052-3
https://projecteuclid.org:443/euclid.jsl/1183745522
http://www.arxiv.org/abs/0807.3978v1
http://www.arxiv.org/abs/0807.3978v1
https://doi.org/10.4153/S0008439519000043

868 D. Raghavan and J. L. Verner

[12] D. Raghavan and S. Shelah, On embedding certain partial orders into the P-points under
Rudin-Keisler and Tukey reducibility. Trans. Amer. Math. Soc. 369(2017), no. 6, 4433-4455.
https://doi.org/10.1090/tran/6943

[13] D.Raghavan and S. Todorcevic, Cofinal types of ultrafilters. Ann. Pure Appl. Logic 163(2012), no. 3,
185-199.  https://doi.org/10.1016/j.apal.2011.08.002

[14] N.I Rosen, P-points with countably many constellations. Trans. Amer. Math. Soc. 290(1985), no. 2,
585-596.  https://doi.org/10.2307/2000300

[15] M. E. Rudin, Types of ultrafilters. In: Topology seminar. Ann. of Math. Studies, 60, Princeton
University Press, Princeton, NJ, 1966, pp. 147-151.

[16] M. E. Rudin, Partial orders on the types in fN. Trans. Amer. Math. Soc. 155(1971), 353-362.
https:/doi.org/10.2307/1995690

[17] W. Rudin, Homogeneity problems in the theory of Cech compactifications. Duke Math. J. 23(1956),
no. 3, 409-419.

[18] S. Shelah, Proper and improper forcin. Second edition. Perspectives in Mathematical Logic,
Springer-Verlag, Berlin, 1998.  https:/doi.org/10.1007/978-3-662-12831-2

[19] J. W. Tukey, Convergence and uniformity in topology. Annals of Mathematics Studies, 2, Princeton
University Press, Princeton, NJ, 1940.

[20] E.L. Wimmers, The Shelah P-point independence theorem. Israel J. Math. 43(1982), no. 1, 28-48.
https://doi.org/10.1007/BF02761683

Department of Mathematics, National University of Singapore, Singapore 119076
e-mail : dilip.raghavan@protonmail.com

Department of Logic, Faculty of Arts, Charles University, ndm. Jana Palacha 2, 116 38 Praha 1
e-mail : jonathan.verner@ff.cuni.cz

https://doi.org/10.4153/50008439519000043 Published online by Cambridge University Press


https://doi.org/10.1090/tran/6943
https://doi.org/10.1090/tran/6943
https://doi.org/10.1016/j.apal.2011.08.002
https://doi.org/10.2307/2000300
https://doi.org/10.2307/1995690
https://doi.org/10.2307/1995690
https://doi.org/10.1007/978-3-662-12831-2
https://doi.org/10.1007/BF02761683
https://doi.org/10.1007/BF02761683
mailto:dilip.raghavan@protonmail.com
mailto:jonathan.verner@ff.cuni.cz
https://doi.org/10.4153/S0008439519000043



