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THE SPACE GROUPS OF TWO DIMENSIONAL
MINKOWSKI SPACE

GEORGE MAXWELL

Introduction. Let E be an n-dimensional real affine space, V its vector
space of translations and A4 (E) the affine group of E. Suppose that (.,.) is
a nondegenerate symmetric bilinear form on V of signature (n — 1, 1), O(V)
its orthogonal group and S(V) its group of similarities.

A subgroup S of A (E) is called a Minkowskt space group it A =S N Vis
a lattice in V and the projection K of S on GL(V) is contained in O(V). The
lattice A is invariant under K. If {(¢(g), g)} is a system of representatives of
elements of K in .S, the induced function {: K — V/ A is a cocycle. The trio
{ A, K, f} completely determines S, since

S = {(a+t(g),gle € A g€ K}

Space groups are considered equivalent if they are conjugate in A (E). In
particular, conjugation by a translation preserves A and K, but replaces f with
a cohomologous cocycle; it therefore suffices to study the cohomology group
HY(K, V/A) for given K and A.

The conjugacy classes of space groups in 4 (E£) can be determined as follows.
Call a subgroup K of O(V) crystallographic if it leaves invariant a lattice in V'
and find the conjugacy classes of such groups in GL(V). For each class {K},
determine the set of lattices invariant under K. The normaliser N(K) of K in
GL (V) acts naturally on L(K). For each orbit { A} in L(K) under this action,
calculate the cohomology group H'(K, V/A). The subgroup N (K, A) con-
sisting of all elements of N(K) leaving A invariant acts on H' (K, V/A) by
the rule (h.f)(g) = hi(h—'gh). The orbits of this action correspond to in-
equivalent space groups with ‘point group’ K and ‘lattice’ A.

The principal purpose of this paper is to carry out this procedure in the case
n = 2. Earlier, Janner and Ascher [4; 5] had studied possibilities for K and A
by applying the theory of binary integral quadratic forms. We prefer, however,
to give a more self-contained geometric discussion of the problem which, per-
haps, throws some light on the theory of quadratic forms. In particular, we can
derive a complete set of inequivalent ambiguous primitive quadratic forms for
a given discriminant D. On counting them, we rediscover the classical result
[3; 6] that their number is a certain power of 2, which must divide the total
class number.
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Further discussion of space groups can be found in [7; 8].

1. Point groups. Recall that a similarity f : V— V is a linear map such
that (f(v1), f(v2)) = m(vy, v2) for some constant m 5 0, called the multiplier of
f, and all vy, vs € V. There exists a basis {e;, €2} of V such that (e, ;) =
(e, €2) = 0 and (e, €2) = 1. The matrices of similarities with respect to this
basis have one of the forms

58] [0 o)

where ab # 0is the multiplier m, and are accordingly called ‘direct’ or ‘opposite’.
In particular, the elements of O(1) have matrices of the form

a 0 0 o!
0 a1’ a 0|’

according to whether they are ‘rotations’ or ‘reflections’. The fixed line of such
a reflection is spanned by the vector e; + aes; the line spanned by e; — ae,
is orthogonal to this line and will be called the normal line of the reflection.

Let W be an abstract group with two generators w; and w,, subject to the
relations w,?> = w2 = 1; W is a ‘Coxeter group’ with the graph

00
«—0,

Consider those representations p: W — O(V) for which p(w;) = s; are re-
flections for 2 = 1, 2. Suppose

_[0 a_l] _[0 b_l}
1Tl o0l 2Ty o

and define n(p) = tr (s152) = a~' + ab~l. Since n(p) is a real number of the
form x + x~!, we have |n(p)| 2 2. The element s;s. is of finite order if and
only if & = za, in which case n(p) = #2; otherwise, the representation p is
faithful. Conversely, given a real number # such that |#] = 2, we can construct
a representation p : w — O(V) for which n(p) = 7 by defining

N A N 1)

where «, is the root of a, 4+ a,7' = n for which |a,| = 1. The image of this
representation in O(1V) will be denoted by W (n).

1.1 PROPOSITION. If representations p;: W — O(V) (2 = 1, 2) are conjugate
by an element of GL(V), then n(p1) = n(p2). Conversely, if n(p1) = n(ps), then
p1 and py are conjugate by an element of S(V).

Proof. Since n(p) can be characterised as the numerically least trace of the
elements in p(W), the first assertion is clear. Conversely, suppose n(p;) =
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n(ps). If the fixed lines of p;(w;) and p2(w;) are spanned, respectively, by
e1 + aes and e, + be,, the similarity

]
£= 10 ba?

has the property that gpi(w)g=' = ps(w;). Replacing p, by the conjugate
representation g=!p,¢, we may assume that

-1
p1(w1) = pa(w1) = [2 ao :| .

Suppose

pr(ws) = I:S C(_)l:I » pa(wn) = |:((i) d(;l] ’

Since n(p;) = n(p2), we have a=¢c + ac™! = a~'d + ad~' or (a* — ¢d)(c — d)
= 0, so that either d = ¢ or d = a?¢~'. In the first case, ps = p;, while in the
second p; is the conjugate of py by pi(wi), which is still a similarity.

The group W (n) and its rotation subgroup W (»)* do not contain, for |n| > 2,
the element —1; adjoining it, we obtain groups denoted by W (n) and
+W(n)*. Since =W (—n) = £W(n), the latter groups will only be con-
sidered for positive values of n > 2.

1.2 ProposiTION. 4 crystallographic subgroup K of O(V) is conjugate in S(V)
to one of the groups W(n), W(n)*+, =W n), £ W (n)* for some integer n such that
|n| Z 2. No two of these groups are themselves conjugate in GL(V).

Proof. Consider the rotation subgroup K+ of K. If § € K+, then tr (§) € Z
since K is crystallographic. If Kt is not contained in {1}, there exists an
element

0
b= [((; a_l:l = £y

in K+ for which |tr (8)] is least among all such elements. By replacing 6 with
6~!, we may assume that |e| > 1. Suppose

b 0
v = [o b_l}

is another element of K+ different from =1, and for which |b] > 1. Then
[tr ()| = |tr (8)], which is equivalent to |b] = |e|, with equality holding only if
¥ = =+0. Let £ > 0 be an integer such that |e[f < |b] < |a/*t, 1e. 1 £ |ba™¥|
< l|al. Since

e [ba" 0] N
¢0 _[ 0 b_lak EKy
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the choice of § implies that ¢ = 6% Thus K* is either equal to {1}, {£1},
generated by 8 or generated by # and —1. In other words, it equals W (2)*,
W(=2)*, W(n)t or =W (n)*, where n = tr (§) € Z; in the last case, we can
ensure that # > 0 by replacing 6 with —4.

If K # K*, then K must contain a reflection s. In the first three of the
above cases, K is the image of a representation which maps w; and w. to,
respectively, s and s, s and —s, s and 6s. By Proposition 1.1, K is conjugate in
S(V) to the group W(n). In the last case, it is clear that K is conjugate to
+W(n).

The final statement follows from the fact that conjugation by an element of
GL(V) preserves determinants, traces and the element —1y.

We have not yet shown that the groups in Proposition 1.2 are actually
crystallographic. This will be done below when we determine «ll the lattices
left invariant by them.

1.3 PROPOSITION. For all crystallographic subgroups K of O(V), we have
HY K, V) =0.

Proof. If n = =2, this is true for the groups W(n) and W(n)* since they
are finite. For any # > 2, this holds for =W (n) and W (n)* since they con-
tain —1y, (if ¢t : K — Vis a cocycle, we have t(—1y) =t(g(—1y)g™1) = 2(g)
+ gt(—1y), so that ¢ is the coboundary corresponding to ¢t(—1y)/2). For the
infinite cyclic groups W(n)*, n > 2, this follows from the invertibility of
1 — s152. There remain the groups W(n), |n| > 2. If t : K — V is a cocycle,
we must have #(s;2) = (1 + s)t(s;) = 0 for 2 = 1, 2, so that {(s;) =
x1(er — aqe2), t(s2) = x2(e; — e2) for some x1, x2 € R. This is the coboundary
corresponding to the vector

(1 — a7 )7 (%1 — ay"wa)er + (X1 — x2)es).

1.4 CorROLLARY. Two space groups are isomorphic if and only if they are con-
jugatein A (E).

Proof. This follows from Proposition 1.3 of [7].
For n = +£2, the finite groups W (n) and W(n)* leave invariant a positive
definite symmetric bilinear form on V. The corresponding space groups can

therefore be also viewed as Euclidean space groups and are well known [2; 7].
We shall assume henceforth that |n| > 2.

2. Normalisers. If H is the group of all homotheties of V, HK is clearly a
normal subgroup of the normaliser N(K) of K in GL(V). Let u denote the

similarity
1 0
0 -1
of V' with multiplier —1; we have us u=! = —s for any reflection s in O(V).
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For n > 0, let ¢, denote the reflection

0 an—llz
L 5]

2.1 ProrositiON. (a) If K = W(n), we have N(K) = HK\JU HKo,if n > 0
and N(K) = HK\UHK o_,uifn < 0.

(b) IfK = £W(n),then N(K) = HK\JU HK ¢, \JU HKu \JU HK o,p.

() If K = Wn)tor 2W(n)*t, then N(K) = S(V).

Proof. 1t is easily verified that conjugation by ¢, or o_,, according to whether
n > 0 or n < 0, interchanges s; and s,; conjugation by u reverses the signs of
sy and s,.

In case (a), consider an element g € N(K); then gs;g—! is a reflection in K.
Since all reflections in K are conjugate within X to one of si, s;, we may
suppose that gsig=! = s; by multiplying g by an element of K and possibly
0, OF o_,u. Since 5152 and s,s; are the only elements of trace » in W (n), we must
have gsis2g™! = $152 0r $a51, 80 that gssg™! = 55 0r $15251. The second case can be
reduced to the first by multiplying g by s1, which does not affect the assumption
gs1ig~! = s1. Now g commutes with both s; and s; and is consequently a homo-
thety [1, Chapter V, § 2, Proposition 1].

In case (b), the argument is similar, except that there are now 4 conjugacy
classes of reflections in K, represented by =51, =5, so that g may have to be
multiplied by any one of a,, p or o,u to achieve the equation gs;g~! = s;.

In case (c), if g € N(K), we must have gs;s2¢g71 = 5152 or s95; for the same
reason as above. In the second case, we can multiply g by s; and reduce it to
the first. It is easily verified that an element of GL(V) commuting with sis2
is a direct similarity and, conversely, that any similarity normalises K.

Note that in all cases N(K) is contained in S(V).

3. Lattices. Since —1, leaves every lattice invariant, the groups W(n),
W(—n) and &= W (n) have precisely the same invariant lattices. It is therefore
sufficient to consider only the group W (n), for n > 0. This is a ‘linear Coxeter
group’ in the sense of (8], so that we may apply the results of that paper.

Leta; = a,7V?(e; — aqes), a2 = — (n + 2)1/%2(e; — e2) and &; the functional
(, @;) = 2(v, a;)/ (@i, @;) on V for 7 = 1, 2. Then s,(v) = v — (v, &;)a;. Let
ni; = {a;, &;) and define N to be the matrix (n,,); we find that

| 2 —-(+2)
N_|:—1 2 ]

A ‘basic system’ [8] of W(n) is a set B = {biai1, beaz}, where b; > 0 for
1 =1, 2,and n;;b; € Zb, for 1, j = 1, 2. This amounts to requiring B to be a
positive multiple of a set of the form B, = {pai, az}, where p > 0is an integer
dividing #» + 2. The lattice spanned by B, is called the root lattice of B, and
denoted by Q(B,). The fundamental weights of B, are the elements {pwi, ws},
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where

(2 = n)7' (20 + az)
2 = n)"H((n + 2)as + 2a3)

satisfy (w;, @;) = §;;, the Kronecker delta.

If A is a lattice invariant under K, we have earlier defined [7] A* to be the
additive group of all v € V such thatv — g(v) € Aforall g € K. [t suffices to
fulfil this condition for a set of generators of K, in view of the equation v —
218:(v) = (v — g1(¥)) 4+ g1( — g2(v)). Clearly A* contains A and every
lattice between A and A* is also invariant under K. In our case, it is easily
seen (8] that Q(B,)* = P(B,) is the lattice spanned by {pwi, w.} and called
the weight lattice of B,. The quotient group P (B,)/Q(B,) is of order |det N| =
n — 2 for every p.

w1

I

w2

3.1 ProrosiTiON. If A is a lattice invartant under W(n), n > 0, then there
extists @ constant ¢ > 0 and a unique divisor p > 0 of n + 2 such that Q(B,) C
cA C P(B,) and (cA)* = P(B,). Conversely, every lattice of this form 1is in-
variant under W(n).

Proof. This follows from Proposition 1.3 of [8].
The condition A* = P(B,) is equivalent to saying that
(1) ANRay=Zpa;, AN Ray = Za,,

or that the elements pa;/2 and as/2 do not belong to A whenever they happen
to be weights (the first for p even, the second for (n + 2)/p even).

If p > 0isadivisor of # + 2 and ¢ > 0 a divisor of # — 2, we shall denote
(n + 2)/p and (n — 2)/q by p and § respectively. Note that the GCD of p
and ¢ must divide 4.

3.2 Definition. (a) If p and g are both odd, let A, , be the lattice spanned by
Pal, a9 and qul.

(b) If p and g are both even and 4|p only if g is odd, let A, , be the lattice
spanned by pai, as and Jpw;/2.

(c) If p, p, gand g are all even, 4|¢if » = 2 mod 8 and 4|p if » = 6 mod 8,
let A, be the lattice spanned by pai, @y and (gpw: + as)/2.

It is easy to verify that a lattice A of the form A, , or A, ¢’ lies between
Q(B,) and P (B,) and satisfies (1). Furthermore, we have

2) [A:0(B)] =g¢

Since A, # A,,,, for otherwise both would contain as/2, this shows that the
lattices A, ,and A, , are all distinct and in fact not even related by a homo-
thety.

3.3 Remark. The only case in which both A, ,and A, are defined is when
P, P, gand Jarealleven, n = 2 mod 8 and 4|q.
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3.4 ProPOSITION. Every lattice invariant under W(n), W(—n) or =W (n),

for n > 0, is a multiple of one of the lattices A, ,or A, [ for unique divisors p of
n+ 2and g of n — 2.

Proof. In view of Proposition 3.2, it is sufficient to consider a lattice A be-
tween Q(B,) and P(B,) which satisfies (1).

If p is odd, the class of pw; generates the group P(B,)/Q(B,). Therefore A is
spanned by pai, az and Jpw for some g|n — 2. If ¢ is even, A contains ggpw:/2
= ay/2 mod Q(B,), contradicting (1). If gisodd, A = A, ,.

When p is even, but p is odd, P(B,)/Q(B,) is still cyclic (the class of w; is a
generator) but the class of pw; is only of order 3(n — 2). Therefore either A =
P(B,) or else A is spanned by pai, a; and §pw;/2 for some ¢q|3(n — 2), so that
g is even. The first case is excluded since P (B,) contains 3(n — 2)ws = pai/2
mod Q(B,). In the other cases, ¢ must be odd if 4|p, since otherwise A would
contain q¢Jpwi/4 = pai/2 mod Q(B,). Therefore A = A, ,.

When both p and p are even, so that # = 2 mod 4 the group P(B,)/Q(B,)
is no longer cyclic, but rather generated by the class of pwi, of order 3 (n — 2),
and the class of a2/2, of order 2. Since A cannot contain as/2, it follows readily
that A is spanned by pai, a» and one of the elements Gpwi/2, (Jpwi + az)/2
for some ¢|3(n — 2), so that ¢ is even. In the first case, one sees as above that
4|p only if ¢ is odd, so that A = A, ,. In the second, ¢ must be even since
otherwise A would contain q(gpwi + a2)/2 = a2/2 mod Q(B,). Furthermore,
since ¢(gpw1 + a2)/4 = —pai/2 + (¢/2 — p/2)as/2, we must have ¢/2 #
p/2mod 2. Thus, if n = 2mod 8, p/2 is odd so that 4|g, whereas if n = 6 mod 8,
g/2 is odd so that 4|p. We have proved that A = A, .

The next step is to sort out the action of the normaliser on these lattices.
Write A1 ~ A, if A;and A, are related by a homothety.

3.5 PrROPOSITION. We have 0,( A, ) ~ Ay and o,(A, ) ~ Az, unless one of
the following holds:
(i) n =2 mod 8 and 4 t §, when o,(A, ) ~ Az, and o,(A,)) ~ As.4;
(ii) » = 6 mod 8 and 2|q, when ,(A,.,) ~ Az, or 4 { D, when o,(A, ) ~
Ay o

Proof. For a given p|n + 2, let ¢ be the composite of ¢, and the homothety
with respect to (n 4+ 2)12/p. We find that

¢ (por) = as, ¢laz) = pay, ¢(pw1) = w2, ¢(w2) = powr.

Therefore ¢ maps lattices between Q(B,) and P(B,) to those between Q(Bj)
and P (Bjg). Since it preserves indices and condition (1), the assertion follows
from (2) and Remark 3.3, except possibly in the case specified there. To settle
this case, we note that ¢ (A, ,) is then spanned by pa;, as and Gws/2. Since
2wy = ppwi + az and p/2 is relatively prime to n — 2, Jws/2 can be replaced
by gpwi/2 if 4| and by (gpw: + a2)/2 if 4 + G. Correspondingly, we have
¢(Ay,) = Aj,or Ay, and therefore ¢(4A, ) = Az, or Az,
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3.6 ProposITION. (a) If nis odd, u( A, ) ~ Asz

(b) If 4|n, u(A,.) ~ Agpe.ze if p is odd and u(Az,) ~ Asg e if P is even.

(c) If n = 2 mod 4, then u(Ay ,) ~ Mgz if pisodd, u( A, ,) ~ A5z tf P
and p are even and 4|q, while u( A, ,) ~ As5.72 otherwise. Furthermore, u( A, ')
~ Az 7 if4|por4|gand u(A,,) ~ Ag.7,2 otherwise.

Proof. For a given p|ln + 2, let ¢ be the composite of u and the homothety
with respect to (n + 2)V2/p(n — 2)'2. Then

Y(pay) = wy, Ylas) = —pwy, Y(pw1) = —as/n — 2,
Y(ws) = —pay/n — 2.

Consider the lattice A = ¢(4A,,,), where p and ¢ are odd; it is spanned by
pwi, we and as/q. Suppose A M Ray = Zcay for some ¢ > 0; then cas —
xay/q € P(Bjy) for some x € Z, which implies that ¢ — x/¢g € Z and hence
gc € Z, since p is odd. As as/q € A, we have ¢ = 1/q. Secondly, let A M Ry
= Zda, for some d > 0; then da; — xaz/q € P(Bj). Applying &, and &, to
this element, we deduce that 2d + (n + 2)x/q € pZ and —d — 2x/q € Z.
This is equivalent to saying that d = p(gy — px)/2q for some y ¢ Z such that
(3)  —py+gx € 2L
If pis even, sois §and (3) is always satisfied. Since GCD (p, ¢) = 1 there exist
y and x such that ¢y — px = 1, showing that d = p/2q. If p is odd, so is ¢,
and (3) requires that ¥y = x mod 2, so that ¢y — px iseven and d = p/q. In
view of condition (1), we conclude that gA is one of the standard lattices
associated with the divisor p of n + 2, if pis odd, and $/2 if p is even.

To determine the index of the corresponding root lattice in ¢ A, we note that
A containsy (A, 1) = P(Bjy) as a sublattice of index ¢. The diagram of inclusions

T T
Q(Bz) — ¢7'Q(By)

shows that [¢gA: Q(Bp)] = [A: ¢ 'Q(Bj)] = q(n — 2)/¢®> = G, so that
[gA: Q(Bz2)] = §/2. In view of Remark 3.3, ¢ A is uniquely determined, except
if n = 2 mod 8. Since we then have

(gpwr + @2)/2 = —5(p — 1)ghwr + quws — 3(¢ — Do € g4,

g A must equal Az 79
The argument is similar in the remaining cases, and leads to the stated
results.

In view of Proposition 2.1, one can deduce

3.7 ProposiTiON. If n > 0, a complete set of representative lattices for the
groups K = W(n), W(—n) and =W (n), with respect to the action of the nor-
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maliser N(K), 1s given in Table 1. (The notation ‘p & p' means that only one
of the values p, p is to be used for the first index, etc.)

TaBLE 1
n A b q K=Wmn) K=W(n) K = +Wn)
n = 1mod 2 Ap.g — p=2p ¢9=7 P=p9=7
n = 0 mod 4 Ap.g 2 |p — — P, @) = (2p,3/2)
n = 2mod 4 Apq 2 f pord £ 7 — _ 24 p
Apg 2(p, 21,417 p=p g=7g/4 p=pq=7/4
Apd’ 4|pordlg p =7 g=7 p=$9=7

3.8 Remark. 1t can be seen from Table 1 that the lattices A, , need only be
considered if 4|7 or 4|p, according to whether # = =2 mod 16. Furthermore,
if n is even, the lattices A, , need only be considered for even values of p.

When K = W(n)t, W(—n)* or =W (n)* (n > 0), lattices invariant under
W (n) are of course still invariant under X However, there may exist further
lattices invariant only under K. The first example occurs for n = 15. Let A be
the lattice spanned by a; and 6 = (3a; + @2)/5; then

Sle(al) = 20[1 - 50, 5251(0) = _5a1 +' 130,

so that A is invariant under W(15)*. It is not invariant under W (15), but
contains the lattice A;,, spanned by «; and a,, as an invariant sublattice of
index 5. Since the normaliser of K is now all of S(7'), it may happen that
distinct lattices listed in Table 1 for =W (n) may become equivalent for K.
In fact, the situation in this case is better described by the classical theory of
quadratic forms (see Section 6).

4. The groups H'(X, V/A). In accordance with Remark 3.8, we may omit
certain possibilities for A from the discussion.

4.1 PrROPOSITION. Suppose K = W(n) or W(—n), withn > 0. Then:
(a) HY(K, V/A) = 04f A = A, withnodd,or A = A, .
(b) HY(K, V/A) =X Z/2Z if A = A, ,, with n even and either p odd or 4 { q.
(¢c) H(K, V/A) = (Z/21)*if A = A, , withn = 2 mod 4, p and p even
and 4]§.

Proof. First consider the case K = W(n). A function ¢: {s;, s} — V will
induce a cocycle f: K — V/A if and only if

(4) s = A +s)is) € A (=1,2).

Using the invertibility of N, one can show as in Proposition 3.7 of [7] that
is a coboundary if and only if {(s;) = x,a; mod A for some x; € R.
By subtracting from ¢ the coboundary inducing function s; — (¢(s;), &;)a:/2,
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we can assume that {({(s;), &;) = 0. Condition (4) then simply requires that
2t(s;) € Afori=1,2.
Let t(s1) = «gws/2, t(s2) = bgpwi/2 for some ¢, b € R. We must have

() aqws € A, bJpwi € A.
It is easy to verify that

ANRw, = Zgpw, if A = A, withnodd, or A = A, /.
= Zgpw,/2 if A = A, , with n even.
(6) ANRw =Zgw, if A = 4A,, with p odd or p, p even and
and 4 t g,or A = A, .
= Zqwy/2 if A = A,, with p, p even and 4|7.

Furthermore, for all A,

{m € RlmJpwi/2 = xas mod A for some x € R} = Z.

0 {m € Rlmgws/2 = xa; mod A for some x € R} = Z.

Condition (5) therefore requires b and « to be either in Z or in 3Z, according to

the two cases in (6). In view of (7), we may correspondingly assume that b or
a equals 0, or conclude that the choices of 0 and 1 for b or « produce non-
cohomologous cocycles. This proves the statement for K = W(n).

With the above notation, the group K = W(—mn) is generated by —s, and
s2. A function ¢: { —sy, 52} — 1V will induce a cocycle f: K — V/A if and
only if (1 — s1)i(—s1) € A and (1 + s2)t(s2) € A. The cocycle { will be a
coboundary precisely when {(—s;1) = xiws mod A and {(s2) = x:a2 mod A for
some x1, X2 € R. Subtracting a suitable coboundary from a function ¢ allows us
to assume that t(—s1) = apay, t(s2) = bGpwi/2 for some a, b € R. The cocycle
conditions require that 2t(—s;) = 2apa; € A, i.e. 2¢ € Z, and bgpw; € A.
Using the fact that

{m € Rlmpa; = xw; mod A for some x € R}
=3Z if A = A,, with § odd or p, p even and
4 t g,or A= A,
=7 if A= A,,with p, p even and 4|q.
the conclusion follows.
In cases (a) and (b) of Proposition 5.1, the action of N(K, A) on H'(K,

V/ A) is necessarily trivial. In case (c), using Propositions 2.1, 3.5 and 3.6, one
sees that N (K, A) = K except for the following cases:

(8) ) K=Wm),n+2=p ,A=4,, when N(K,A) = KU +K¢,
where ¢ (pai) = as, ¢(az) = pa.

9) (i) K=W(—n),n—2=4¢>, A=A, , when N(K,A)==+K\U+Kg,
where ¢ (pa1) = Gpwi/2, {(as) = — Juwe/2.
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In these exceptional cases, the element ¢ or { interchanges the values of the
coefficients ¢ and b in the above construction of the cocycles, so that there are
3 orbits in H'(K, V/A). Otherwise, the action of N(K, A) is again trivial.

Applying Proposition 1.2 of [7], we deduce

4.2 PROPOSITION. Suppose K = =W (n). Then

(a) H(K, V/A) =0 if A = A, with n odd.

(b) H(K, V/A) =xZ/2Z if A= A, .

(c) HY(K, V/A) = (Z/2Z)* if A = A, ,, with either n = 0 mod 4, or n =2
mod 4 and p odd.

(d) HY(K, V/A) = (Z/2Z)* if A = A, withn = 2 mod 4, p and p even
and 4|q.

By counting the lattices in Table 1 and the inequivalent space groups cor-
responding to them, we obtain

4.3 PrROPOSITION. Suppose n > 0 and n®> —4 = 2'N, with N odd. Let A, and B,
be as defined in Table 2 and also let C,*, C,~ be as given there provided that n + 2
or n — 2 1s, respectively, a square and equal to zero otherwise. Then the number of
inequivalent space groups with point group W(n), W(—mn) or £W(n) s equal,
respectively, to 4,6(N) + C,t, 4,6(N) + C,~ or B,o(N) + C,* + C,~, where
¢ denotes the Euler ¢-function.

TABLE 2
n An B, C,*t Cu™
n =1 mod 2 1 b to(n — 2) 3o(n +2)
n = 0 mod 4 2 2 — —
n = =6 mod 16 8 12 d((n — 2)/4) d((n +2)/4)
n = 2 mod 16 (v — 9)/2 9» — 21)/2 o((n — 2)/4) 3¢o((n +2)/4)/2
+é((n — 2)/16)
n = —2mod 16 (v — 9)/2 9» — 21)/2 3p((n — 2)/4)/2 o((n +2)/4)

+o((n + 2)/16)

For the remaining point groups, we have

4.4 PropPOSITION. (a) If K = W(n)t or W(—n)t and A is an invariant lattice,
then HY(K, V/A) = 0.

(b) If K = £W(n)* and A is an invariant lattice, then H' (K, V/A) = 0 if
n = 1mod 2and H(K, V/A) = Z/2Z if n = 0mod 4. If n = 2 mod 4, let d,
and ds be the invariant factors of the sublattice (1 — sis2) (A) in A, with di|ds.
Then HW(K, V/A) = Z/2Z if d, is odd and H' (K, V/A) = (Z/2Z)? +f d, is
even.

Proof. In case (a), the group K is infinite cyclic with a generator g such that
1 — g is invertible; hence H'(K, V/A) = 0. Applying Proposition 1.2 of {7],
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we deduce that in case (b), H'(K, V/A) is isomorphic to the quotient of
(A*/A) by 2(A*/A). Since A* = (1 — s152)71(A), we have A*/A =
A/(1 — s1852)(A) =@ Z/d\Z ® Z/d,Z, where dy and d. are the invariant factors
of (1 — s152)(A) in A, with di|ds and did; = |det (1 — s152)| = n — 2. If n
is odd, both d; and d; are odd, so that H'(K, V/A) = 0. If n = 0 mod 4, d, is
odd and d; even, so that H'(K, V/A) = Z/2Z. Finally, if n = 2 mod 4,
H'(K, V/A) is as stated in the proposition.

5. Proper equivalence. The discussion in this section applies to general
space groups in affine space and is meant also as a supplement to {2] and [7].

In certain situations, it is appropriate to consider stronger notions of equiv-
alence for space groups. Proper equivalence is defined to be conjugacy in the
proper affine group A*(E), consisting of those elements of 4 (E£) whose linear
part has positive determinant. If S is a space group and 6 an element of
A(E)\A*(E), S and 656~ will be conjugate in A*(E) if and only if the nor-
maliser N(S) of S in A (E) is not contained in A*(E). In other words:

5.1 PROPOSITION. An equivalence class {S} of space groups in A (E) splits into
2 proper equivalence classes if and only if the normaliser N(S) of S in A(E) is
contained in A+ (E).

The structure of N(S) is described by

5.2 PROPOSITION. Let A, K and [ be the lattice, point group and cocycle of a
space group S in A(E). An element (b, h) € A(E) belongs to N(S) if and only if
h € N(K, A) and h.i — I = 8,(), where 8, denotes the coboundary K — V/ A
corresponding to the element h(b).

Proof. Since S = {(a + t(g), g)|la € A, g € K} and
(b, k)~ a + 1(g), ) (b, h) = (b — h~'gh(b) + k7' (a) + k™'t (g), h'gh)
the element (b, ) will be in N(S) if and only if » € N(K) and
(10) t(h~'gh) = b — h~'gh + h~'(a) + h~%(g) mod A.

Taking g = 1, we see that h € N (K, A) and, on multiplying by %, (10) simpli-
fies to the statement that h.f — I = 8.

5.3 COROLLARY. T'he projection of N(S) on GL(V) equals the stabiliser of the
cohomology class of I in H' (K, V/A) under the action of N(K, A). The inter-
section of N(S) with V equals A*.

5.4 CorOLLARY. If N(S) C AT (E), then K C GL*(V) and the cohomology
class of tis not of order = 21n H' (K, V/ A) if dim V is odd.

Proof. The first statement is clear from Corollary 6.3, while the second holds
since otherwise —1, € N(K, A) would stabilise the class of f and have nega-
tive determinant.

In the three dimensional Euclidean case, looking at the table in [2], one sees
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that there are 11 cases which satisfy the conditions of Corollary 5.4. Splitting
in fact occurs in all of these cases. In the two-dimensional Euclidean case, the
stabiliser of the class of 7 for a point group K C GL* (V) is the entire group of
orthogonal symmetries of the lattice A, which always contains reflections, so
that splitting never happens.

In the situation of this paper, splitting can only happen if K = W(n)*,
W(—mn)* or £W(n)*, in view of Corollary 6.4. The group N (K, A) is then the
group S(A) of those similarities which leave A invariant. From Proposition 5.4,
we see that splitting occurs if and only if S(A) contains only similarities of
positive determinant (not to be confused with ‘direct’ similarities), except
possibly in case (d) of that proposition (with d; even), if the similarities of
negative determinant in S(A) do not stabilise the class of 7.

6. Quadratic forms. We recall briefly the correspondence between lattices
and quadratic forms. Let 7 be an n-dimensional real vector space and (. ,.) a
nondegenerate symmetric bilinear form on 1 of signature (m, n — m). Given
a lattice A in V, we associate to A the class {Qp} of (integrally) equivalent
real quadratic forms of signature (m, n — m), where B = {u,, ..., u,} varies
over the basesof Aand Qpz = X, ;(uy, u;)X X ;. Conversely, given a quadratic
form Q = >, ¢i;X X, of signature (m, n — m), there exist vectors u, . . .,
u, € V such that (u,, ;) = q;; and we associate the lattice A spanned by
U1, . .., U, to Q. A different choice of u;, . . . , u, produces a lattice of the form
6(A) for some 6 in O(V), the orthogonal group of V. This establishes a bi-
jective correspondence between classes of orthogonally equivalent lattices and
classes of equivalent quadratic forms. It is convenient to extend the concept of
equivalence for quadratic forms by considering all positive multiples of a form
Q to be equivalent to Q. In terms of lattices, this means that one should con-
sider equivalence with respect to the group H.O(V'), where H is the group of
homotheties of V. When 2m = #, the form — Q is also of signature (m,n — m);
the corresponding lattices are related by a similarity with multiplier —1. Since
such similarities exist only when 2m = #, if we consider —Q to be equivalent
to Q in that situation, we obtain in all cases a bijective correspondence between
classes of lattices equivalent with respect to the group of similarities S(V') and
classes of equivalent quadratic forms in the broader sense. We will adopt this
point of view in the following discussion.

Let Aut (A) be the group of all orthogonal automorphisms of a lattice Ain V.
If Ay = 6(A;) for some 8 € S(V), then Aut (As) = 8 Aut (A,)07, so that the
conjugacy class of Aut (A) in S(V) is an invariant of A. Suppose that we have
determined the conjugacy classes in S(V) of subgroups of the form Aut (A)
for some lattice A. It is then sufficient to consider, for each such class {K}, the
set L(K) of lattices A in V such that Aut (A) = K. Members A; and A; of
L(K) will be equivalent if and only if Ay = 6(A,;) for some 6 in N(K), the
normaliser of K in S(V'). The remaining problem, therefore, is to find the orbits
in L(K) under the action of N(K).

https://doi.org/10.4153/CJM-1978-093-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-093-2

1116 GEORGE MAXWELL

We now return to the special situation of this paper. Denote the quadratic
form Q = AX* + BX: X, + CX*by (4, B, C) and let D = B? — 44C be
its discriminant. We must have D > 0 in order for Q to be of signature (1, 1).
A particular lattice corresponding to Q is spanned by the vectors {u1, s}, where

V2uy =e + Aes, V2us = (B+/D)/24 e, + (B —/D)/2e,.
The matrix of a rotation

a

(11) p= I:O (qu:| @+a'=n>0a2z1)
with respect to the basis {u, u.} is

) i(n — Bk) —Ck ]
(1‘2)[ Ak Y+ Bk)J’

where £ = 0 and
(13) mn? — Dk = 4.

Since —1 leaves every lattice invariant, Proposition 1.2 shows that a group
of the form Aut (A) is conjugate in V to either =W (n) or =W (xn)* for some
integer n = 2. If n > 2, we have & % 0in (13) and Ak, Bk and Ck must all be
in Z in order for (12) to represent an automorphism of A. Furthermore, Dk?
cannot be a square in Z, since otherwise (13) would be impossible. Therefore Q
is equivalent to a form with integral coefficients and a non-square discriminant;
we may also suppose that this form is primitive, i.e. that its coefficients have no
common factor. Conversely, since the Pell equation (13) is solvable (with
k 5 0) when D is the discriminant of such a form, a lattice corresponding to the
form is invariant under a rotation (11) with #» > 2. We shall from now on
restict our attention to such forms.

Consider the case when Aut (A) = =W (n), with n > 2. In the literature
(e.g. [6]), such lattices, and the forms corresponding to them, are called ‘ambi-
guous’. Proposition 3.7 describes a complete set of inequivalent lattices in-
variant under =W (n). In order for &=W(n) to be the complete group of auto-
morphisms of A, (n, k) must be the least positive solution of (13). Given #,
there is a finite number of discriminants D for which this is true (since D di-
vides n2 — 4) and which may be said to ‘belong’ to #n. We can pass from the
lattices to the corresponding forms and group them according to the value of D,
retraining only those D which ‘belong’ to #. By doing this forn = 3,4, 5, ...,
we shall eventually obtain, without repetition, lists of inequivalent ambiguous
forms with any allowable discriminant D. Conversely, given D, we can first
find to which # it belongs—i.e. the least solution (n, k) of (13)—and then
apply the procedure to #.
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More specifically, choose the following bases for the lattices A, , and A, ,”:

Ay, (modd) A, (1 even) Ayl
Uy = qul Uy = qul/Q U = ag
1y = (Jpwr 4 as)/2 Us = 02 Uy = (Gpwi + a2)/2.

On multiplying the resulting forms by ¢/2p we obtain, respectively, the forms

Foo= (0323 (07 — P9)),
(14) Gy, = (%P@ 0, _[)g)»
Hp,a = (“[’Q: —ﬁgv %(Pq - ﬁQ))
All of these forms are integral with discriminant #2 — 4; however, some may
not be primitive. If we isolate those for which the GCD of the coefficients
equals &, then upon dividing them by % we shall obtain the primitive forms
with discriminant D.
Since (n + 2)(n — 2) = Dk?, we can express D and k in the form
D =2D,D_ (Diln+ 2,D_|n — 2; D, and D_ odd)
ko= 2120-9% k  (k2n 4+ 2, k_2n — 2; ky and k_ odd),

where 27 is the largest power of 2 dividing n? — 4.

(15)

6.1 PropPoSITION. 4 complete set of inequivalent primitive ambiguous integral
quadratic forms with a non-square discriminant D > 0 is listed in Table 3, where

(16) p = 2*kipo, g = 2°k_q,,

with a and B as shown in the table and po, qo any divisors of D, and D_ respec-
tiely such that

(17)  GCD(po, po) = 1, GCD(qo, Go) = 1,

where po = Dy/po, §o = D_/qo. (The notation ‘py X po’ means that only one
of the values py, po is to be used in p, etc.)

Proof. 1t is easy to see that the odd part of the GCD of any of the forms (14)
is equal to the product of the odd parts of the GCD’s of p and p and of g and ¢
respectively. Consequently, if this GCD is to be equal to k, we can express p
and ¢ in the form (16) for certain exponents «, 8 = 0 and divisors p,, go of D,
and D_ respectively, which satisfy (17).

One now examines various possibilities for n. Consider, for example, the case
when # = —2 mod 16. Then 2"—2 and 22 are the highest powers of 2 dividing
n + 2 and n — 2, respectively, and v = 6. According to Table 1, we first have
the lattices A, , with 2 4 p, so thate = v — 2 and 8 = 0. Since pg is odd, the
GCD of the form G, , is odd, so that & must be odd and § = ». Secondly, there
are the forms A, , with 2|p, 2|p and 4|g, so that 8§ = 0. The highest power of 2
dividing the GCD of the form G, , is

min (@, v — 2 —a) = (v — 2),

so that 8§ 2 2. This power should equal (v — ). Since p & p in this case, we
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can choose & = %(v — §), which eliminates p from further discussion, except
in the case § = 2 since p is then also divisible by exactly the same power of 2
as p; we must then insist that po & py. The condition ¢ & §/4 translates in both
cases into go & §o. Since 2|p, we have 3(» — 8) = 1,ie.6 = v — 2.

Finally, there are the lattices A, ,/ with 4|p, 4]p, 2|¢ and 2|g, so that 8 = 1.
The highest power of 2 dividing the GCD of the form H, , equals

min (@ —1,» —a—3) <i(—4)

if @ # 3(v — 2) and to either (v — 2) or 3v if « = (v — 2), according to
whether D,D_ = 3 mod 4 of D,D_ = 1 mod 4. Correspondingly, we have
8= 5,6 =2o0rd = 0. In the last two cases, p is divisible by the same power of
2 as p, so that we must require that po & po as well as ¢o = §o. In the first case,
wecanleta = §(v — §) + 1, which eliminates p, so that only ¢go X §o is needed.
Since 4|p, we have (v — 8) + 1 =2 2,ie.0 = » — 2.

To see that D, > 1 when § = 0 or 2, we argue as follows. If Dy = 1, we
could write # + 2 = 22k, and n — 2 = D(2k_)* or Dk_?, according to
whether 4 = 0 or 6§ = 2. Therefore either (21/20-2k,)? — D(2k_)? =4 or
(21720=2k )2 — Dk_? = 4, in both cases contradicting the minimality of n.

Since #n — 2 is not a square, we always have D > 1.

7.2 Remark. Let us consider for a moment the more usual concept of strict
equivalence of lattices (or the corresponding forms), namely equivalence with
respect to the group H.O+(1). If a form Q corresponds to a lattice A, then —Q
corresponds to the lattice p(A). In view of Proposition 2.1, we can read off from
Table 1 the ‘negatives’ of the lattices A, ,and A, by comparing the columns
for K = W(n) and K = =W (n). Comparing this with Table 3, we deduce that
the forms listed there are strictly equivalent to their negatives if and only if
‘g0 & Go' appears in the last column and D_ = 1. In the other cases, one should
add the negative of the form in order to obtain a complete set of representatives
for strict equivalence classes. We also observe that D, > 1 whenever ‘py & p¢’
appears in the last column.

Let 7 (x) denote the number of distinct prime divisors of an integer x > 0.
The number of divisors d of x such that GCD(d, x/d) = 1 is then equal to 27®.
Using this fact and Remark 6.2, we deduce the following well-known

6.3 COROLLARY. Let (D) be the number of distinct prime divisors of D and 2°
the highest power of 2 dividing D. The number of strictly inequivalent primitive
ambiguous integral quadratic forms with a non-square discriminant D > 0 1s equal
to 27 P 4f § = Sand to 27?1 if § < 4, unless § = 2and D/4 = 1 mod 4, when
this number 1s 27(P—2,

We can also supplement this with

6.4 COROLLARY. Either all or none of such forms are strictly equivalent to their

negatives. More precisely, the answer is ‘none’ unless D_ = 1 and either § = 0,
0 =2andn = 2mod 16, or 6 =3 and n = 6 mod 16. (This is equivalent to the
extistence of a solution of the equation x* — Dy? = —4.)
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05 = b 9d = 0d by I (g — 1% I<*q'ypowy=-qgtq 0
05 = 0 g = od by I (z— 1% I<*agypowg="qtq 4
b = b Papr g I T+ (¢ — 0% — t—15¢5¢
0h = 0p od = od ey _of 0 (¢ — 1% 1<*q 4
b = % o,y 0 (¢ — 0% — c—15¢5 ¢
— Pany_y 0 T — 1 — a
(seseO R Ul [ < —@) 9T pow g— = u
b = 0b ‘g = 0¢ Pepy (g — 0t I I<*qg'ypowy=-"qtq 0
0p = 0b ‘0d = og Py (g — 1% 1 I1<*q¥powg =-"qtqg Z
0g = od blpr o 1+ (¢ — % I 1<*a t—15¢5 ¢
0 = 0b g = o4 Py 1—(g— % 1 1<*aq 4
g = o¢ b _y I—(¢e— ¢ I 1<*aq t—15¢e5 ¢
— ban,_y 0 4 — a
9T powr g = u
og = ¢ bl _y 0 I 1< *q €
— bany gy 0 4 — g
9T powr 9— = %
0h = 0b by _y 0 4 — g
— Py 0 ¢ — g
9] powr 9 = u
(°b “0g) = (b “0g) Py 0 I ypow g =~qtq 4
K4 1OE O = U
0h = 0p g = oF Py 0 0 I1<*g‘ypowi="q"q 0
N —UOE .n = U
b g 0 2 © a e
¢ a1av]y,
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Little of a systematic nature is known about lattices for which Aut (A) =
+ W (n)*t for some n > 2. We simply remark that the problem, raised in Section
4, of classifying such lattices for the purpose of finding inequivalent space
groups is the same as the problem of classifying them for the needs of the
present Section, since the normaliser of =W (n)* is all of S(V'). This may not
be true for lattices invariant under & W (%) if the corresponding primitive form
has a discriminant D which divides #n?2 — 4 but does not ‘belong’ to #.

Finally, we remark without further elaboration that similar ideas in two
dimensional Euclidean space also lead to a complete classification of ambig-
uous forms with discriminant D < 0. Corollary 6.3 remains true for such
forms, as is well known.
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