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POWERFUL NUMBERS IN SHORT INTERVALS

JEAN-MARIE DE KONINCK, FLORIAN Luca AND IGOR E. SHPARLINSKI

Let x > 2 be an integer. We show that there exist infinitely many positive integers
N such that the number of x-full integers in the interval (N", (N + 1)") is at least
(log N)1/3+o() We also show that the ABC-conjecture implies that for any fixed
5 > 0 and sufficiently large N, the interval (N, N + N1-(2+9)/%) contains at most one
s-full number.

1. INTRODUCTION

Let £ > 1 be an integer. An integer m > 1 is called x-full if p* | m holds for all
prime factors p of m. For example, x-powers, that is, numbers m of the form n", are
k-full. Usually, for £ = 2 such numbers are called squarefull.

It is clear that for any integer N, the open interval (N*, (N + 1)*) does not contain
any k-powers. In this paper, we show that the intervals of the above form can contain
arbitrarily many k-full numbers. This result extends some of the results obtained in (3],
where squarefull numbers have been investigated. It is useful to recall that the counting
function of the x-full numbers up to z is of the same order of magnitude as the counting
function of the x-powers (see [1]), thus this difference in their behaviour is based on
purely arithmetic reasons.

The proof is an extension of that given in [3] but uses the Roth Theorem instead of
a result on continued fractions of some quadratic irrationalities. Alternatively, one can
use the fully effective Liouville Theorem (which leads to a marginally weaker but more
uniform statement). In fact, even in the case x = 2 both these approaches lead to a
slightly better constant than that of [3].

We recall that the Roth Theorem asserts that for any irrational root & of a monic
irreducible polynomial f(X) € Q[X] and any § > 0, there exists a constant C(a,§) > 0
such that for any integers r and s > 0, we have

’ r| C(a,d)

L
s g2+é
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However, this result is not effective in a sense that no explicit expression for C(a, d) is
known (see [5, Theorem 2A of Chapter 5]).
We also recall the Dirichlet Theorem which asserts that, for any real numbers

y,...,0, and integer @ > 1, there exist integers ry,...,7, and 0 < s € @ such
that '
Tj 1
s - 2| < o

(see [5, Theorem 1A of Chapter 2]).

We also show that the ABC-conjecture implies that for any § > 0 and sufficiently
large L, the shorter interval (L, L + L'~*+9/%) contains at most one x-full number.

We also obtain an unconditional (but much weaker) upper bound on the num-
ber of integers in short intervals (L,L + K), which are x-full numbers for at least
one k > 2. This complements the result obtained in [4], where the upper bound
exp(40(log log L log loglog L)'/?) on the number of perfect powers in the interval (L, L
+ L'/2?) (provided L > 16) is established.

Throughout this paper, we use Vinogradov symbols > and <« as well as Landau
symbols O and o with their regular meanings. We recall that the notations A <« B,
B > A and A = O(B) are all equivalent to the fact that |A| < ¢B holds with positive
constant c.

2. SHORT INTERVALS WITH MANY k-FULL NUMBERS

THEOREM 1. For any integer k > 2, there are infinitely many N, such that the
open interval (N*, (N + 1)) contains at least

3 logN \'7
> bt —5
M > ((8 + 0(1)) loglogN)
k-full integers.

PROOF: Let 1 < d; < ... < dg be the first 2¢ squarefree integers greater than 1,
that is, d; = 725 /6 + o(j). We also denote

and remark that D < (4€)%, provided that £ is large enough.
Let o = d; /%, j=1,...,2¢
We define
R = (k2= (40)2+1/x)

and let g be the smallest integer
gz R
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for which, for some integers ;,

(1) |aj-:1—’|\q—l+—11/7, j=1,...,2
We see that
7<Q,
where Q@ = R*(+9C(a;,6)~%. Indeed, otherwise applying the Dirichlet Theorem, we
see that . 1
Iaj—ﬂ <sgum I=Loo%

for some positive integer s < Q. Due to the minimality condition on ¢, we have s < R.
On the other hand, by the Roth Theorem, we have

Clay,d T 1

M < Ial — 1

—lg ——.
§2+90 sl = sQu/2e

Therefore
s> (Clar, Q)™ = R,

which is impossible.
We see from (1) that, for j =1,...,2¢,
di’*  (ag)/=

o= dor) < 3

g S g S

Therefore,
d;/"rjzaj‘lrqu+1, ji=1,...,2¢L

We now derive,

Kk—1

lg* = dyrf| = lg = d5*r;| 3 ¢* ' (djrs)” < w(g+1)*lg - di"r;]
v=0
< 54V (g + 1)~
= RY/2t :

Putting n = Dq we derive

Kx(4€)/*D"(g + 1)~!

In* — d;D*rf) <

R1/2¢
R K(4£)2l+1/~(1 + l/q)lc—l
< D¢ R/
_ a1 K(402HYR(1 4+ 1/q) !
=n R/
K_1K2x—l(4e)2l+l/n e
<n ——_Rﬂ/ﬂ—' =n .
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Therefore one of the intervals ((n — 1)*,n") or (n®, (n + 1)*) contains at least M > ¢ of
the integers d,-D"r;-‘, J =1,...,2¢, which are obviously pairwise distinct (because d; is
squarefree for all j = 1,...,2¢), and «-full. We now have

n= Dq g DQ - DR21(1+6)C(a1’5)_2l
< (48/C(0n,8)) ™ (k271 (40)2+1/m)s201+9)
= exp((8(1 + 8) + (1)) log ¢).

Hence, since « is fixed,

Slogl > ( + 0(1)) logn,

1
8(1+4)

which implies that

v> ((sare) +o0) (ogegn)

Recalling that ¢ is arbitrary, the proof is complete. 0

3. UpPER BOUNDS
We first recall the statement of the ABC'-conjecture. For any nonzero integer m let
ym) =]]»
pim
CONJECTURE 1. For every € > 0 there exists a constant C(¢) such that for any
integers a, b, ¢ with ¢ = a + b and gcd(a, b) = 1, the bound
max{|al, [b], [¢]} < C(e)y(abe)'**

holds.

THEOREM 2. The ABC-conjecture implies that if x and § > 0 are fixed, then
there exists Lo such that the interval (L,L + L'~(**®)/%) contains at most one k-full
number for L > L.

PROOF: Let € = §/k. Assume that the above interval contains at least two x-full
numbers, say a < b. Then y(a), v(b) < (2L)Y/* and ¢ = b — a < L}-(@+9/% Applying
the ABC-conjecture to the equation ¢ = b — a, we get

L<bg C(E)(22/KL1—6/K,)1+E — C((S/n)22/~+26/"2L1_62/“2.

Hence
L < (C(6/m)2m+231s) 1%,
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which completes the proof. D

We remark that, unfortunately, the best known results towards the ABC-conjecture
(see [6]), are not strong enough to produce any nontrivial estimates for x-full numbers
in short intervals.

We now obtain a much weaker but unconditional bound.

THEOREM 3. For any positive integers L and K the interval (L, L + K) contains
at most O{K loglog K/ log K') squarefull numbers.

PROOF: Let
© _ logK

w= loglog K~
We separate the squarefull numbers of the interval (L, L + K) into two nonintersecting
subsets. The set S; consists of the squarefull numbers which have a prime divisor p with
w € p € K (and thus are divisible by p?). The set S, consists of all other squarefull
numbers in this interval. Clearly,

K K K K
S £ —+1 .
#51 w<pZ<K(p2 + ) < wlogw + log K < log K

Using the Brun sieve (see [2, Theorem 2.2]), we also derive

#a<k [] (1-7) <

wgp<K

Kloglog K
logk ’

which completes the proof. 0

4. REMARKS

As we have mentioned, the Roth Theorem is not effective. However, our arguments
can be used with the completely explicit Liouville Theorem which asserts that for any
irrational root a of a monic irreducible polynomial f(X) € Q[X] of degree deg f = k > 2
and any integers r and s > 0,

o3> 2
s s
where ¢(a) > 0 depends only on a (see [5, Theorem 1A of Chapter 5]). It is easy to see

from any standard proof of this inequality that the constant c(a) can be taken to be

of0) = (& _max {1, @i}

where A is the least common multiple of all the denominators of the coefficients of f. For
example, when f(X) = X* —1/d with some positive integers x > 2 and d and a = d~'/*,
we can take c(a) = 1/(dx2%!).
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Using this result leads to a uniform and explicit version of Theorem 1 with respect
to x (the constant (3/8)!/% becomes (3/8(x — 1))1/ %). In particular, there are infinitely
many NV, such that the number of x(N)-full integers in (N*™) (N + 1)*™) is at least
(log N)'/3+°()  where x(N) is any function of N satisfying x(N) = (log N)°"), for exam-
ple. Moreover, the -above interval can contain arbitrarily many «(/N)-full integers, where
x(N) = o((log N)'/?).
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