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WIDTH-DIAMETER RELATIONS FOR PLANAR CONVEX SETS
WITH LATTICE POINT CONSTRAINTS

POH W. AWYONG AND PAUL R. SCOTT

We obtain an inequality concerning the width and diameter of a planar convex
set with interior containing no point of the rectangular lattice. We then use the
result to obtain a corresponding inequality for a planar convex set with interior
containing exactly two points of the integral lattice.

1. INTRODUCTION

Let A" be a compact, non-empty convex set in E2 with minimal width w(K) = w

and diameter d(K) = 6. Let K° denote the interior of K and let F denote the integral
lattice. A number of results are known concerning the relationship between the width
and the diameter of a convex set. The following elegant result was obtained by Scott
[3].

THEOREM 1 . If K" contains no point ofT, then (w - 1)(S - 1 ) ^ 1 with equal-

ity when and only when K is a triangle oi diameter 6 and width w = 6/(8 — 1) (Figure

1)-

Figure 1.

Theorem 1 has been extended to sets containing exactly one point of F in the
interior [4]. The analogous result is:

THEOREM 2 . UK" contains one point of V, then (w - y/2) (6 - %/2) ^ 2 ; the
inequality is best possible.

The purpose of this paper is to generalise Theorem 1 to rectangular lattices and
to use the result to obtain analogous inequalities for convex sets containing exactly two
points of F in the interior. Let Afl(u,») be a rectangular lattice generated by the
vectors (v.,0) and (0,«). We prove the following two pretty results:
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470 P.W. Awyong and P.R. Scott [2]

THEOREM 3 . Suppose that u < v and that K° contains no point of AR(U,V).

Then (w - v)(S - u) < uv; equality is attained when and only when K is a triangle
with diameter 6 and width tv = Sv/(S - u) (Figure 2).

THEOREM 4 . If K° contains exactly two points of F then (w — 2){8 — 1) ^ 2;
equality is attained when and only when K is a triangle with diameter S and width
w = 26/(8 - 1) (Figure 3).

Figure 2. Figure 3.

2. THREE USEFUL LEMMAS

We shall denote lines by lower case letters: thus a; is a line containing the point
X of Afl(«, v). Let the slope of x be mx and let d(Y, x) denote the perpendicular
distance from the point Y to the line x.

Let if be a set containing no point of AR(U,») in its interior. A set for which
(w — v)(6 — u) is as large as possible is called a maximal set. Clearly we may assume
that 6 ^ w > v ^ u. We first establish three lemmas which will help us narrow down
the possibilities for a maximal set.

We say that a triangle circumscribes a rectangle (or equivalently, a rectangle is
inscribed in a triangle) if all vertices of the rectangle lie on the sides of the triangle.
Lemma 1 establishes the maximal value of (w - v)(d — u) where K is a triangle cir-
cumscribing a fundamental rectangular cell of A.R{U,V). Lemmas 2 and 3 will help us
eliminate those cases for which K is not maximal.

LEMMA 1. Let K be a triangle circumscribing a fundamental rectangular cell of
AR(U, V) . Then (w — v)(6 — u) < uv with equality when and only when the side of the
rectangular cell having length u lies on the edge of K with length 6 (Figure 4).

PROOF: Let the vertices of K be X, Y and Z and let C denote the fundamental
rectangular cell inscribed in K. Without loss of generality, let XY be the side of K
containing two vertices of C. Let XY have length b and let the altitude from Z to
XY be h.

We first let the side of C with length u lie on the edge XY. Then the area of K
is (l/2)Wi(= (\/2)w6). The edges of C partition K into four regions. The area of K
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may therefore be calculated as the sum of the areas of the four component parts (Figure

4).

Hence

Figure 4.

-w8 = -bh = -(& — u)v + -(h — v)u + uv
2t A A Ji

that is,
w8 = bh = bv + hu.

From the identity (a + f3) = (a — /3) +4a/3, we note that the sum of two numbers
with a given product is smallest when the difference between them is least. Applying
this first to the pair (bv,hu) and then to the pair (8v,wu), and noting that bv — hu ^
8v — wu, we have

bv + hu ^ 8v + tou.

We thus have
w6 ^ 6v + wu.

Adding uv to both sides of the inequality gives

{w — v)(8 — u) ^ uv.

Equality is attained here when XY = b — 8 and h = w.
If, on the other hand, the side of length v of C lies on XY, then by the same

argument we obtain (to — u)(S — v) ^ uv. In this case we write

(1) {w - v)(S - u) = (to - u)(S - v) + (to - 8){v - u).

Since u ^ v and w < 6 for triangles, we have

(w — v)(S — u)<(w — u)(8 — v) ^ uv.

Hence for circumscribed triangles K, (to - v)(8 — u) < uv with equality when and
only when the side of C of length u hes on the edge of K with length 8. D

From Lemma 1, we deduce that if if is a maximal set, then (to — v)(8 — u) ^ uv.
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LEMMA 2. Let ABCD be a fundamental rectangular cell of AR(U,V) labelled
in an anticlockwise direction. Let A be a triangle determined by the lines a, b and
c with points A, B and C interior to the edges of A and point D exterior to A.
Further, let line c containing an edge of A intercept tie closed line segment AD.
Then (w(A) - v)(d(A) -u)<u».

PROOF: Let b.c — P, a.c = Q and a.b — R. By a suitable rotation of the plane
together with a reflection of the set A in the mediator of the segment AB, if necessary,
we may assume that mj > mc ^ 0 (see Figure 5).

Suppose first that Z.Q ^ 7r/2. Let c make an acute angle 6(^ 0) with the line
CD. Let V be a point on QR with BV parallel to PQ. Then BV < AB and BV is
distant BCcos8 < BC from PQ. We rotate A about B until PQ is parallel to CD.
Let the rotated triangle be A'. Clearly A' contains no lattice point in its interior and
B is the only lattice point on the boundary of A'. Hence A' may be enlarged to a
triangle A* inscribing the rectangle ABCD. Using Lemma 1,

(2) (w(A) - v)(d(A) - u) < {w(A*) - v)(d(A*) -u)^ uv.

Figure 5.

Now suppose that ZQ > TT/2 . We consider the following two cases:

CASE (i): Q lies in the closed rectangle ABCD. We show that

(w(A) - v)(d(A) -u)< uv.

We first inscribe a rectangle R& in A with side lengths u' < u and v' = v as follows:
Let b' be a line parallel to 6 and distant v from 6. Since w > v, b' intersects A in a
line segment M'N' of length a > 0 (see Figure 6).

Let M and N be the feet of the perpendiculars from M' and N' to the line 6 and
let i?A be the rectangle with vertices M, N, N' and M'. We shall show that a < u.
Let b' intersect the lines CD and AD in the points Z and Y respectively. Clearly
a<YZ.
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We now consider the following two subcases:
(a) If AB has length u and BC has length v, we take the coordinates of B, Z

and Y to be (u,0), (x,v) and (0,y) respectively. Hence

Area of A BZY = \v.ZY = ]•
u
X

0

0
V

y

l
l
l

that is,
) -

V

Figure 6.

Now since x < u, we have ZY < u. We now rotate R& so that the edge of R&
of length a hes on the edge of ABCD of length u and R& is contained in the closed
rectangle ABCD. The same rotation transforms A to A' say. Clearly A' contains
no interior lattice points and since a < u, at least one of C and D lies in the exterior
of A'. Hence A' may be enlarged to a triangle A* inscribing the rectangle ABCD,
and (2) applies immediately.

(b) If now AB has length v and BC has length u, we inscribe a rectangle in A
with side lengths u' = a and v' = v as described above. We now let the coordinates of
B, Z and Y be (v,0), (x,u) and (0,y) respectively. Noting that x < v, we obtain

ZY = ) -
v

By the rotation argument above, we again obtain (2).

CASE (ii): Q lies exterior to the closed rectangle ABCD. Let a make an acute
angle <p(^ 0) with the line AD. Let T be the point on PQ with BT parallel to QR.
Now BT < BC and BT is distant AB cos <p < AB from QR. We rotate A clockwise
about B until BT lies on the edge BC. Let the transformed triangle A' have vertices
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P', Q' and R' corresponding to points P, Q and R respectively. Then clearly Q'R' is
parallel to AD. We note also that points A and C are exterior to AP'Q'R'. We can
now construct a triangle A" with vertices P", Q", R" such that line P"Q" is parallel
to P'Q' and contains the point C, line Q"R" is coincident with line AD and line
R"P" is coincident with R'P'. Clearly AP"Q"R" is a triangle of the type described
in Case (i). Hence

- v)(d(A') - u)(w(A) - v)(d(A) -u) =

< uv.

This completes the proof of Lemma 2. []

Suppose now that K is contained in a triangle satisfying the conditions of Lemma
2. Since K C A, w{K) < w(A) and d(K) ^ d{A). From Lemma 2, it follows that K
is not maximal.

Henceforth we shall use the shorthand notation £2(o, 6, c) to mean:

K is contained in a triangle determined by the lines a, b, c satisfying the
conditions of Lemma 2. Hence K is not maximal.

LEMMA 3 . Let ABCD be a rectangular cell of AR(U,V) labelled anticlockwise
and let Q be a proper convex quadrilateral determined by lines a, b, c, d, with A,
B,C and D interior to the edges of Q on a, b, c and d respectively. Then amongst
all convex sets containing no interior lattice points, a set K contained in Q can not be
maximal.

PROOF: Since K CQ, it suffices to show that Q is not maximal. Let a.b = X,
b.c — Y, c.d = Z and d.a — W (Figure 7).

Figure 7.

https://doi.org/10.1017/S0004972700017238 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017238


[7] Planar convex sets 475

We now recall that the diameter of a polygonal set is the maximum distance be-
tween a pair of vertices of the polygon. Suppose first that 6 is the length of an edge,
XY say, of Q. Without loss of generality, suppose that W is the vertex of Q furthest
from b. Then w ^ d(W,b). Let A be the triangle XYW. Clearly d(A) = XY
and so xo(A) = d(W,b) and w ^ w(A). But since A C Q, «J(A) ^ w. Hence
w = w(A) = d(W,b). Since A and Q have the same width and diameter, it suffices
to show that A is not maximal. Noting that the edge WY contains no lattice points,
A may be enlarged about the point X to A' = AW'XY' where WY' contains the
point D. By a simple variant of Lemma 2,

- v)(d(A) - ' ) - v)(d(A') -u)< uv.

Hence A (and so Q) is not maximal.
We now suppose that 6 is the length of a diagonal of Q, WY say. Let t be the

width of Q in a direction perpendicular to WY (see Figure 8). Since the (minimal)
width of Q occurs in a direction perpendicular to an edge of Q (see for example [1]),
we have w < t. Let WY make an acute angle 9 with CD and let XZ intersect WY
in the point 0. Now the area of Q is (l/2)t6. This area is also obtained by adding
the areas of the quadrilaterals ODWA, OBYC to OCZD, OAXB.

D

\

A \ 1
z

\
\ \\

\\

C

s

B

Figure 8.

Suppose first that AB has length u and BC has length v. Then we have

-tS = -vS cos 6 -\—ut cos 6.

Hence
t5 = (tu + Sv) cos 0 ^ tu + Sv.

Adding uv to both sides of the inequality and factorising, we have

[t — v)[S — u) ^ uv.
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Since w < t, we have
(w — v)(S — w) < uv.

Hence Q is not maximal.

Now suppose that AB has length v and BC has length u. Repeating the above
argument, we obtain the corresponding inequality

(w — u){6 — v) < uv.

By (1), (w — v)(6 — u) < uv. So again, Q is not maximal. U

3. P R O O F OF THEOREM 3

We now assume that K is a maximal set. We may assume that 6 ^ w > v ^ u.
Let the radius of the largest circle inscribed in K be r. It is shown in [2] that for any
convex set K,

(w - 2r)S ^ 2v/3r2.

If r < M / 2 ^ V/2, then

(w - v){6 -u)<(w- v)S ^(w- 2r)6 < 2V3r2 ^ 2 \ / 3 . - . - = — uv < uv.

Hence K is not maximal. We may therefore assume that K contains a disk 2? of radius
r > u / 2 .

By translating K through a suitable lattice vector, we may bring the centre of T>
to lie in 0 < y < v. For easier reference, we list the properties of 23 as follows:

Dl. r > u/2.
D2. The centre of V lies in 0 < y < v.

Since w > v, K" intercepts one of y = 0 and y = v. Without loss of generality,
we may assume that K° intercepts y = 0. Since K" contains no point of AR(U,V),

we may assume that K" intercepts y = 0 between two adjacent lattice points. By
translating through a suitable lattice vector we may take these points to be .E(0,0) and
F(u,0). Let G and H be the points (u,«) and (0,v) respectively. We shall show that
if is a triangle with diameter 8 and width w = Sv/(S — u) (see for example Figure 2).

From Dl and D2, K" must intercept one of the edges EH and FG. Without
losing generality, we may assume that K° intercepts FG. Hence K lies above a line
/ with m,f > 0. We now consider the following two cases:

CASE 1: if is bounded by y = t>. By Dl and D2, lines e and / intersect in the
halfplane y < 0 and K is contained in the triangle A determined by the lines e, /
and y = v. Since K° intercepts EF, me ^ 0. If me > 0, then H is exterior to A
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and L2(e,f,g). We may now assume that me < 0 (possibly infinite). In this case, A
circumscribes the rectangular cell EFGH. By Lemma 1, A" is maximal when K is the
triangle bounded by y — v and the lines e and / with me < 0 (possibly infinite) and
m,f > 0, and having diameter on the line y = v.

CASE 2: K crosses the line y = v. We again show that K is not maximal.
Suppose that K crosses the line y = v between the adjacent lattice points X and Y
on the line y — v. Without losing generality, we may assume that X and Y are the
points (ku,v) and ((k + l)u,v) respectively where k ^ 0. If k = 0, then X = H
and Y = G and we have mg < 0 and m^ ^ 0. If mh. > 0 and me < 0, then K is
contained in a proper convex quadrilateral Q, and by Lemma 3, K is not maximal. If
m-h. < 0 then L2(f,g,h) or if me > 0 then L2(f,g,e). Finally, if h has infinite slope,
K is contained in a triangle circumscribing the rectangle EFGH with the edge EH
of length v on x = 0. By Lemma 1, if is not maximal.

We may therefore assume that XY ^ GH. The set K is therefore bounded by
lines x and y with mx > 0. By Dl and D2, e and / intersect in the halfplane y < 0
and x and y intersect in the halfplane y > v. If m / > mx > 0, if is contained in a
triangle A determined by lines e, / and x. Let gf denote the line containing G and
parallel to / and let ITH be the open half plane bounded by gf and containing the point
H. Since iu(A) > v > d(G,f), e and x intersect in a point Q lying in the intersection
of the half planes y ^ v and TTH . It follows that K is also contained in a triangle A'
determined by lines e, / and gx where gx is a line containing G and parallel to x.
Hence L2(e,f,gx). If, on the other hand, mx > mj > 0, then by a similar argument,
K is contained in a triangle determined by the lines x, y and Wf where Wf is the line
containing the point W(ku,0) and parallel to / . Hence L2(y,x,Wf).

This completes the proof of Theorem 3. D

4. P R O O F O F THEOREM 4

Let K now be a set satisfying the conditions of Theorem 4. We may assume that
the origin O is one of the lattice points. Let L(zi,z2) denote the other lattice point
contained in K". Without loss of generality, we may assume that z\ ^ 0 and z?. ^ 0.
By a reflection about the line y — x if necessary, it suffices to consider the cases for
which z\ ^ Z2 • Since K° contains no other lattice points, the open line segment OL
contains no lattice point. Hence we may assume that Z\ and 22 are relatively prime.

If z\ and 22 are both odd, we consider the sublattice

T' = {(x,y):x + y = l (mod 2)}.

Clearly O & V, LgF and K° contains no point of V. By Theorem 3, we have

(w - N/2~) (6 - v/2) ^ 2.
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However,

- l ) - (w -

-3 ) <o.

It follows that (w - 2)(6 - 1) < (w - \/2) (6 - \/2) ^ 2. Hence K is not maximal.
If say, z\ is odd and Z2 is even, we consider the sublattice

T' = {(x,y) : x = n, y = 2m + 1, m,n G Z}.

Clearly O g T', L gT' and K" contains no point of V. By Theorem 3, we have

(w - 2)(6 - 1) 5* 2.

Equality occurs when and only when if is a triangle with diameter 6 and width w =

26/(6 - 1) as shown in Figure 3. 0
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