Adv. Appl. Prob. 47, 425-449 (2015)
Printed in Northern Ireland
© Applied Probability Trust 2015

DISTRIBUTION OF THE NUMBER OF
RETRANSMISSIONS OF BOUNDED DOCUMENTS

PREDRAG R. JELENKOVIC * ** AND
EVANGELIA D. SKIANL* Columbia University

Abstract

Retransmission-based failure recovery represents a primary approach in existing com-
munication networks that guarantees data delivery in the presence of channel failures.
Recent work has shown that, when data sizes have infinite support, retransmissions can
cause long (-tailed) delays even if all traffic and network characteristics are light-tailed. In
this paper we investigate the practically important case of bounded data units 0 < L;, < b
under the condition that the hazard functions of the distributions of data sizes and channel
statistics are proportional. To this end, we provide an explicit and uniform characterization
of the entire body of the retransmission distribution P[N; > n] in both n and b. Our
main discovery is that this distribution can be represented as the product of a power law
and gamma distribution. This rigorous approximation clearly demonstrates the coupling
of a power law distribution, dominating the main body, and the gamma distribution,
determining the exponential tail. Our results are validated via simulation experiments and
can be useful for designing retransmission-based systems with the required performance
characteristics. From a broader perspective, this study applies to any other system, e.g.
computing, where restart mechanisms are employed after a job processing failure.
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1. Introduction

Failure recovery mechanisms are employed in almost all engineering networks since complex
systems of any kind are often prone to failures. One of the most straightforward and widely
used failure recovery mechanism is to simply restart the system and all of the interrupted jobs
from the beginning after a failure occurs. It was first recognized in [6] and [19] that such
mechanisms may result in long-tailed (power law) delays even if the job sizes and failure
rates are exponential. In [11], it was noted that the same mechanism is at the core of modern
communication networks where retransmissions are used on all protocol layers to guarantee
data delivery in the presence of channel failures. Furthermore, [11] shows that the power law
number of retransmissions and delay occur whenever the hazard functions of the data and
failure distributions are proportional. Hence, power laws may arise even if the data and channel
failure distributions are both Gaussian. In particular, retransmission phenomena can lead to
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zero throughput and system instabilities, and therefore need to be considered carefully for the
design of fault tolerant systems.

More specifically, in communication networks, retransmissions represent the basic building
blocks for failure recovery in all network protocols that guarantee data delivery in the presence
of channel failures. These types of mechanisms have been employed on all networking layers,
including, for example, automatic repeat request (ARQ) protocol (see, e.g. Section 2.4 of [4])
in the data link layer where a packet is resent automatically in case of an error; contention based
ALOHA type protocols in the medium access control (MAC) layer that use random backoff
and retransmission mechanism to recover data from collisions; end-to-end acknowledgment for
multi-hop transmissions in the transport layer; HTTP downloading scheme in the application
layer, etc. It has been shown that several well-known retransmission based protocols in different
layers of networking architecture can lead to power law delays, e.g. ALOHA type protocols
in MAC layer [12], [14] and end-to-end acknowledgments in transport layer [10], [16] as well
as in other layers [11]. For other (non-retransmission) mechanisms that can give rise to heavy
tails, see [15] and the references therein. In particular, the proportional growth/multiplicative
models can result in heavy tails [7], [15].

Traditionally, retransmissions were thought to follow light-tailed distributions (with rapidly
decaying tails), namely geometric, which requires the further assumption of independence
between data sizes and transmission error probability. However, these two are often highly
correlated in most communication systems, meaning that longer data units have higher proba-
bility of error, thus violating the independence assumption. Recent work [10]-[12], and [16]
has shown that, when the data size distribution has infinite support, all retransmission-based
protocols could cause heavy-tailed behavior and possibly result in zero throughput, regardless
of how light-tailed the distributions of data sizes and channel failures are. Nevertheless, in
reality, data sizes are usually upper bounded. For example, WaveLAN™’s maximum transfer
unit is 1500 bytes, YouTube™ videos are of limited duration, email attachments cannot exceed
an upper limit, say 25MB, etc. This fact motivates us to investigate the transmission of bounded
data and approximate uniformly the entire body of the resulting retransmission distribution as
it transits from the power law to the exponential tail.

We use the following generic channel with failures [11] to model the preceding situations.
This model was first introduced in [6] in a different application context. The channel dynamics
are described by the independent and identically distributed (i.i.d.) channel availability process
{A, A;}i>1, where the channel is continuously available during periods {A;} and fails between
these periods. In each period of time that the channel becomes available, say A;, we attempt to
transmit the data unit of random size L. We focus on the situation when the data size has finite
support on the interval [0, b]. If L, < A;, we say that the transmission is successful; otherwise,
we wait for the next period A; 1 when the channel is available and attempt to retransmit the
data from the beginning. It was first recognized in [6] that this model results in power law
distributions when the distributions of L = L, and A have a matrix exponential representation,
and this result was rigorously proved and further generalized in [3], [11], and [16]. A related
study when L = £ is a constant and failure/arrival rates are time-dependent Poisson distributions
can be found in [2].

It was discovered in [11] that bounded data units result in truncated power law distributions
for the number of retransmissions, see Example 3 in [11]; see also Example 2 in [12]. Such
distributions are characterized by a power law main body and an exponentially bounded
tail. However, the exponential behavior appears only for very small probabilities, often
meaning that the number of retransmissions of interest may fall inside the region where the
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distribution behaves as a power law. It was argued in Example 3 of [11] that the power
law region will grow faster than exponential if the distributions of A and L, are lighter than
exponential. The retransmissions of bounded documents were further studied in [20], where
partial approximations of the distribution of the number of retransmissions on the logarithmic
and exact scales were provided in Theorems 1 and 3 of [20], respectively. In this paper we present
a uniform characterization of the entire body of such a distribution, both on the logarithmic as
well as the exact scale.

Specifically, let N, represent the number of retransmissions (until successful transmission)
of a bounded random data unit of size L, € [0, b] on the previously described channel. In
order to study the uniform approximation in both n and b we construct a family of variables
Ly, such that P[L, < x] =P[L < x]/P[L < b], for0 < x < b when L = L is fixed. This
scaling of Lj, was also used in [20]. For the logarithmic scale, our result, stated in Theorem 2,
provides a uniform characterization of the entire body of log P[N}; > n], i.e. informally,

logP[Np > n] = —alogn +nlogP[A < b]

for all n and b sufficiently large when the hazard functions of L and A are linearly related as
logP[L > x] =~ aloglP[A > x]; see Theorem 2 for the precise assumptions. Note that the first
term in the preceding approximation corresponds to the power law part n =% of the distribution,
while the second part describes the exponential (geometric P[A < b]") tail. Hence, it may be
natural to define the transition point n; from the power law to the exponential tail as a solution
to np logP[A < b] = o logny.

In addition, under more restrictive assumptions, we discover a new exact asymptotic equation
for the retransmission distribution that works uniformly for all large n, b. Surprisingly, the
approximation admits an explicit form (see Theorems 3 and 4)

o o0

n®l(n AP[A > b17Y) J_,10aPra<)

P[N, > n] ~ e 7% ldz, (1
where x Ay = min(x, y) and £(-) is a slowly varying function; note that the preceding integral
is the incomplete gamma function I" (x, «).

Clearly, when —n log P[A < b] | 0, the preceding approximation converges to a true power
law I'(a+1)/(£(n)n®). And, when —n log(P[A < b]) 1 oo, approximation (1), by the property
I'(x,a) ~ e *x* ! as x — o0, has a geometric leading term P[A < b]". Interestingly, for
the special case when « is an integer and £(x) = 1, one can compute the exact expression for
P[N}p > n], see Proposition 2. Furthermore, our results show that the length of the power law
region increases as the corresponding distributions of L and A assume lighter tails. All of the
preceding results are validated via simulation experiments in Section 3. It is worth noting that
our asymptotic approximations are in excellent agreement with the simulations.

This uniform approximation allows for a characterization of the entire body of the distribution
P[Np, > n], so that one can explicitly estimate the region where the power law phenomenon
arises. Introducing the relationship between n and P[A > b] also provides an assessment
method of efficiency and is important for diminishing the power law effects in order to achieve
high throughput. Basically, when the power law region is significant, it could lead to nearly
zero throughput (¢ < 1), implying that the system parameters should be more carefully
adjusted in order to meet the new requirements. On the other hand, if the exponential tail
dominates, the system performance is more desirable. Our analytical work could be applicable
in network protocol design, possibly including data fragmentation techniques [13], [17] and
failure recovery mechanisms.
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Also, from an engineering perspective, our results further suggest that careful re-examination
and possible redesign of retransmission based protocols in communication networks might
be necessary. Specifically, current engineering trends towards infrastructure-less, error-prone
wireless technology encourage the study of highly variable systems with frequent failures. In
these types of systems, traditional approaches, e.g. blind data fragmentation, may be insufficient
for achieving a good balance between throughput and resource utilization. For example, IP
packets are lower bounded by the packet header of 20 bytes and cannot be more than 1500 bytes.
Thus, it is not efficient to create very small packets since the 20-byte packet header carries no
useful information. In fact, one may consider merging smaller packets to reduce the overhead
and, hence, increase the efficiency. Overall, we consider a generic model when the maximum
size of data units is limited, which, in general, can be used towards improving the design of
future complex and failure-prone systems in many different applications.

The rest of the paper is organized as follows. After a detailed description of the channel
model in the next Subsection 1.1, we present our main results in Section 2. Finally, Section 3
contains simulation examples that verify our theoretical work.

1.1. Description of the channel

In this section we formally describe our model and provide necessary definitions and notation.
Consider transmitting a generic data unit of random size L, over achannel with failures. Without
loss of generality, we assume that the channel is of unit capacity. As stated in the introduction,
the channel dynamics are modeled by the channel availability process {A, A;};>1, where the
channel is continuously available during time periods { A; } whereas it fails between such periods.
In each period of time that the channel becomes available, say A;, we attempt to transmit the
data unit and, if A; > Ljp, we say that the transmission was successful; otherwise, we wait for
the next period A; 41 when the channel is available and attempt to retransmit the data from the
beginning. A sketch of the model depicting the system is shown in Figure 1.

We are interested in computing the number of attempts N, (retransmissions) that are required
until Lj, is successfully transmitted, which is formally defined as follows.

Definition 1. The total number of retransmissions for a generic data unit of length Ly is defined
as
Ny 2{n=>1:A4A,> L.

We denote the complementary cumulative distribution functions for A and L, respectively, as
G(x)2P[A>x] and F(x)2P[L > x],

where L is a generic random variable that is used to define the distribution of L.

Ly

Failure-prone
—_— channel = A, > Ly -

{An) ]

resend no

FIGURE 1: Documents sent over a channel with failures.
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Throughout this paper we assume that L and A are continuous (equivalently, F(x) and G (x)
are absolutely continuous) and have infinite support, i.e. G(x) > 0and F(x) > Oforall x > 0.
Then, the distribution of L, is defined as

P[Lb<x]=—P[L§x], 0<x<bh. ()
- P[L < b] -
To avoid trivialities, we assume that b is large enough such that P[L < b] > 0.

In this paper we use the following standard notation. For any two real functions a(¢) and
b(t) and fixed tp € R U {oo}, we use a(t) ~ b(t) ast — to to denote lim;_,,, a(t)/b(t) = 1.
Similarly, we say that a(t) 2 b(t) as t — to if liminf,;, a(¢)/b(t) = 1; a(t) < b(t) has a
complementary definition.

2. Main results

In this section we present our main results. Under mild conditions, we first prove a general
upper bound for the distribution of N, on the logarithmic scale in Proposition 1. In Theorem 2,
we present our first main result, which under more stringent assumptions, characterizes the
entire body of the distribution on the logarithmic scale uniformly for all large n and b, i.e.
informally we show that

logP[Np > n] =~ —alogn + nlogP[A < b],

as previously mentioned in the introduction. Roughly speaking, when —logPP[A < b] =
o(logn/n), P[Np > n] is a power law of index «. Our results on the exact asymptotics are
given in Subsection 2.1 in Theorems 3 and 4; the results are stated in two different theorems
since Theorem 4 requires slightly stronger assumptions. The uniform approximation implied
by these two theorems is presented in (4), or previously in (1).

Recall that the distribution of L;, has finite support on [0, b], given by (2). First, we prove
the following general upper bound.

Proposition 1. Assume that
.. logP[L > x]
liminf ——— >«
x—oo logP[A > x]

and let bg be such that P[L < bg] > 0, P[A < bg] > 0, then for any ¢ > 0, there exists ny,
such that, for alln > ngy, b > by,

logP[Np > n] < (1 —¢)[nlogP[A < b] — alogn].
Remark 1. Note that this result can be restated as
P[Np > n] < P[A < p]"1—8)p=a(=8),

for n, b sufficiently large. Hence, the distribution P[N;, > n] is bounded by the product of a
power law and a geometric term.

Proof. By assumption, there exists 0 < ¢ < 1 such that for all x > x, > by > 0,

F(x) < G(x)*179), 3)
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Next, it is easy to see that P[Ny, > n|Lp] = (1 — G(Lp))", and, thus,
P[Ny > n] = E[l — G(Lp)]"
=F[l — G(Lb)]n(lfers)
< (1 =G®)'""PEll — GLp)I" ULy < x) + E[1 = G(Lp)I" L(Lp > xe)]

b
=(1- G(b))"“‘“[(l — G(xe))™ + f (1—Gx)™ —dFF ((b"))}

. b _ dF(x)
_ n(l—e)| ne _ (1/a(1—¢))\ne
< (1=Gb) |:77x£+/0 (1 - Fx) ) —F(b)],

where n,, =1 — G(x,), and the last inequality follows from (3); in the x; > b > by case,
the integral in the second inequality is zero and the last inequality trivially holds. Now, by
extending the preceding integral to oo, we obtain

PNy > 1] < ——(1 = G(b))"0— [ni?sF(b) + / (1 = Fry/at-enye dF(x)}
F(b) ¢ 0

1 _ _
— — (1 — n(l—g)yr, ne _ (1/a(1—¢))\ne
= F(b)(l G(b)) [k, F(b) + E(1 — F(L) )]

1 ~ — _F (1/a(1—¢))
< ——1=GW0» n(l—e) nEp(ph E F(L) ne7
< 5y~ GO O ) + Ee ]

where we use the elementary inequality 1 — x <e™", x > 0, and, thus,

1 - a(l—¢
PINy > 1] = £ (1= GO)" D F o) + Ee U ney

by F(L) = U, where U is uniformly distributed on [0, 1] by Proposition 2.1 in Chapter 10
of [18]. Hence,

1 ~ [ ! a(l—¢
P[Nb > n] = _(1 - G(b))n(l_g) r);EF(b) _|_/ e—x(l/ A=Npe dx
F(b) | e )

1 - [ ne 1—
UG PR OR e B dzi|
L 0

F(b) (ng)‘x(l—f)
1 - N a(l—¢) [ _ e
<— 1=G(®o n(l—e¢) ne pp S z'oc(l £) 1(.‘1,
< F(b)( ) _nxe (b) + Tl e 'z z
_ L(l — G(b))"1=9) [ " (b) + MF(O[(I —g))
T F(b) | e (ne) (19 ;
which follows from the definition of the gamma function I"(a) = fooo e~'t?~1 dr. Therefore,
- _al a(l —e¢)
P[N, > n] < (1 — G(b)"" = n}e ool @l = s))]

a(l —g)e=@!-9)

o n(l—s)_ ne
= (1= GO i+ e

[(ee(l - 8))}

_ H
1 n(l—e)| ne £
= (1 G(b)) nxg + na(ls):|’

since b > by, whereas, in the last inequality, we set H, = a(1 —&)e =T (a(1—¢))/F (bp).
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Now, we can choose ng, such that for any ¢ > 0 and for all n > ny, 17”8 < eH.n2(1-9) g0
that

P - n(l—a)|: H, H, ]
[Ny >n] =1 —=Gb) €

a(l—s) na(l—s)

=(1-GB)""™—L—(1+e),

a(l 5)
and by taking the logarithm in the preceding expression, we obtain
logP[Np > n] <log (Hs(1 +¢)) +n(l —¢)log(l — G(b)) —a(l —¢)logn
=log (Hs(1 4+ €)) + (1 — &)[nlog(1 — G(b)) — alogn].
Next, since —n log(1 — G (b)) > 0 and alogn >0,n > 1,

log P[Np > n] - log (H:(1 + ¢))
—nlog(1 — G(b)) + alogn ~— —nlog(l — G(b)) + alogn
_log(Hte)
alogn

—(1-¢)

and o log n being increasing in n, we can choose n¢ such that for any n > ng,

log (Ho(1+6)) _
alogn -

Thus,

log P[N,
og [_b>n] < —(1-2e),
—nlog(l1 — G(b)) + alogn
which completes the proof by replacing & with ¢/2.

Next, we determine the region where the power law asymptotics holds on the logarithmic
scale.

Theorem 1. If
logPP[L > x] ~ alogP[A > x] asx — oo,

o > 0, then, for any ¢ > 0, there exists positive no, such that for all n > ng, for which
n'teP[A > b] < 1, we have

—log P[Np > n]

— 1| <e.
alogn

Note that this result appeared in Theorem 1 of [20]. The proof can be found in Section 4
of [9]; see also [8].

This result holds in the region n I+2 < 0(1/G(b)). Also, note that one can easily characterize
the logarithmic asymptotics of the very end of the exponential tail of P[N;, > n] for small b
and large n. In particular, for fixed b, it can be shown that log P[N, > n] ~ nlog(l — G (b))
as n — oo, see Theorem 1 of [20]. However, our objective in this paper is to determine the
entire body of the distribution of P[N};, > n] uniformly in n and b.

Next, we extend Theorem 1 to the entire region n > ng, b > by, which includes the
geometric term P[A < b]". For this theorem, we need slightly more restrictive assumptions.
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The reason why this is the case is that P[N;, > n] behaves like a power law in the region
where n = o(logn/G(b)), while for n > logn/G(b), it follows essentially a geometric
distribution; see Theorem 2 below. Hence, more restrictive assumptions are required since
the geometric distribution is much more sensitive to the changes in its parameters (informally,
(14 &)x)™* a~ x~® but e~ 1+8)¥ 2 e=¥),

Definition 2. A function £(x) is slowly varying if £(x)/£(Ax) — 1 as x — oo for any fixed
A > 0.

If not directly implied by our assumptions, £(x) is assumed positive and locally bounded.

Theorem 2. IfP[L > x] = £(P[A > x]’l)IP’[A > x]%, for a > 0, £(x) slowly varying, then
for any ¢ > 0, there exist no, by, such that for all n > ngy, b > by,
—log P[N}p > n]

1| <e.
—nlogP[A <b]+alogn

The proof appears in [8] and the extended version of this paper, see Section 4 of [9].
Remark 2. Note that the statement of this theorem can be formulated in an equivalent form

—log P[N} > n]
nP[A > b] + alogn

1| <e

= ©y

since —n logP[A < b] ~ nPP[A > b] as b — oo.

Remark 3. This theorem extends Theorem 1 of [20]. In particular, it proves the result uniformly
in n and b, while Theorem 1 of [20] characterized the initial power law part of the distribution
(n <Gb)™",0 < n < 1) and the very end with exponential tail (fixed b, n — 00).

2.1. Exact asymptotics

In this section we derive the exact approximation for P[N, > n] that works uniformly
for all n, b sufficiently large (Theorems 3 and 4). As noted earlier in the introduction, this
characterization is explicit in that it is a product of a power law and the gamma distribution

o o0

n®l(n AP[A > b]~Y) J_, 108 Pra<s

P[N), > n] ~ e ?z% 1 dg, “4)
where x A y = min(x, y) and £(-) is slowly varying. Implicitly, the argument of £(x) is altered
depending on whether nP[A > b] < C or nP[A > b] > C for some constant C. Hence, we
can choose C = 1 since £(n A 1/P[A > b]) = £(n A C/P[A > D]) for large n, b. Note that
when —nlogP[A < b] | 0, the power law dominates, whereas when —n log P[A < b] — oo,
the integral determines the tail with the geometric (exponential) leading term.

We would like to point out that approximation (4) actually works well when P[A > b]~!
is large rather than b; this can be concluded by examining the proofs of the theorems in this
section. Hence, (4) can be accurate for relatively small values of b provided that A is light-
tailed. This may be the reason why we obtain accurate results in our simulation examples in
Section 3 for small values of b.

First, in Theorem 3, we precisely describe the region where the distribution of N, exhibits
the power law behavior, nP[A > b] < C, for any fixed constant C. Then, Theorem 4 covers
the remaining region, nP[A > b] > C, where P[N;, > n] approaches the geometric tail.
Additional discussion of the results and the treatment of some special cases are presented at the
end of this section; see Propositions 2 and 3.
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Theorem 3. Let P[L > x]7! = ¢(P[A > x] DHP[A > x]™% a > 0, x >0, and C > 0
be a fixed constant. Then, for any ¢ > 0, there exists ng such that for all n > ng, and
nP[A > b] < C,

P[Np > nln“L(n) .

al (—nlogP[A < bl,a) |~

where T'(x, &) is the incomplete gamma function defined as |, xoo e z% ldz

Remark 4. A related result was derived in Theorem 3 of [20] where it was required that n <
G(b)™",0 < n < 1. Note that here we broaden the region where the result holds by requiring
n<cC/ G (b), which is larger than n < G (b)~". Furthermore, this is the largest region where
the exact power law asymptotics O (n~%/£(n)) hold since for nG®) > C,TnG®),a) <
I'C,a) > 0as C — oc.

Remark 5. Note here that the incomplete gamma function I'(e, x) = | xoo z%~le~?dz can be

easily computed using the well known asymptotic approximation (see Section 6.5.32 in [1]),
as x — oo,

-1 — D —2
F(oc,x)fvx“_le_x|:1+a +(a )goc )+...i|.
X X
Proof. This proof uses some of the ideas from the proof of Theorem 2.1 of [16]. However,
it is much more involved since we have to incorporate the assumption nlP[A > b] < C, which
ensures the power law body.

Let ®(x) = €(x)x*. Then, ®(x) is regularly varying with index « and, thus, for any ¢ > 0,

. DP(ex) o
lim =c" < o0,
xX—00 ¢>(_x)
and, in particular, we can choose ¢ = e, which implies that there exists n, such that for
k
n/e* > ng,
& < eklatl) (5)
®(n/ek)

Without loss of generality, we may assume that ® (-) is eventually absolutely continuous, strictly
monotone and locally bounded for x > 0 since we can always find an absolutely continuous
and strictly monotone function

X
a/ <I>(s)s_1ds, x>1,
1

O (x) = (6)
0, 0<x <1,
which for large enough x satisfies
Fo) =G ~ %G ™.
This implies that, for any 0 < ¢ < 1 and x > x(, we have
1 _ 1
<G{x) < (7N

P ((1+e)F(x)~h ~ (1 —e)F(x)™!)’

where ® < (-) denotes the inverse function of ®*(-); note that the monotonicity of ®*(x), for all
x > 1, guarantees that its inverse exists. To simplify the notation in this proof, we shall use @ (-)
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to denote ®*(-). Furthermore, ® < (-) is regularly varying with index 1/« (see Theorem 1.5.12
of [5]), implying that

14\
O (1 +8)x) ~ (1 — 8) O ((1 —&)x)

as x — oo. Therefore, for n, = n(e) = [(1 +¢)/(1 — &)]¥/* and x large,

1 1
P ((1+e)F(x)™) = O (1 —e)F(x)~1)

N 'G(x) < < 7:G(x). (8)

First, notice that the number of retransmissions is geometrically distributed given the data
size Lyp,

P[N, > n] = E[1 — G(Ly)]"
=E[1 — G(Ly)I"1(Ly < x0) + E[1 — G(Lp)I"1(Lp > xq). ©)

We begin \jvith the lower bound. For H > C and xg as in (9), we choose x,, > xq such that
®<((1 —&)F(x,)~ ") =n/H, for large n, and, thus,

P[Np > n] = E[1 = G(L)]"
> E[(1 — G(Lp))"I(Lp > x,)]

1 n
I = - 1(L "
= [( o—((1 —e)F(Lb)‘)> (Lo =x )}

_/"(1_ 1 )"dF(x)
s, O ((1—e)F(x)~h) Fb)’

where we use our main assumption (7). Now, since F(b) < 1 and using the continuity of F(x)
and change of variables z = n/® < ((1 — &)F(x)~1), we obtain,

vz [ (1-2) o 0o

n/®=((1-e)F(b)~h T n) 2mfz) 22

H n /

) 1—

Z/ (1 3 g) 2(n/z) ( 28)11 dz.
nenG(b) n) ®(n/z) =z

where we use ngé(b) > l/CD‘_((l_— €)F(b)~") from (8), which holds for large b, or equiva-
lently large n by our assumption nG (b) < C. Now, we consider two distinct cases:

dz

() If n.nG (b) < h, where h > 0 is a small constant, then

H n oz
]P[Nb>n]2(1—8)/ <1_£> /o) n
h

n) ®X(n/z) 2
a " V'
2(1—8)3/2—/ - =) 27,
@(n) Ju n
where we use the properties of regularly varying functions that for all 7 < z < H and large n,

@ (n) 1/2_a
1 —
(/2) > (1 —e)/°z",
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and
P'(n/z) ez

d(n/z) o
forn > H [see (6)]. Next, using 1 —x > e U+)X for § > 0and 0 < x < xs, for n large
enough (n > H/x5) we obtain

H
P[Np > n] > (1 — 8)3/2L/ e~ D)z a=1 4.
@) Jn

a H
2 (1 _ 8)3/26—5H®(n) / e—ZZC(—l dZ,
h

and by choosing § > 1/H so that e 0 > (1 - 8)1/2, we have

H

PN, > n] > (1 — E)zﬁfh —20-lg,

e
o H h
>(1—g)l— / e 2% ldz — / e iz% ! dz]
S(n) LJné o) nG(b)

Sl " 1 1
>(1—g)— / e 7% dz—/ e % dz]
S(n) LJnéw) 0

o B o0 o0 h(x
>(1—g)l——o0 / e % ldz — / e % 1dz — —:|
O() L/ném H o

B o0 hO(
> (1—e)? 2 f e 2% ldz —2e HpH* ! = —}

= Q

®(n) | JnG(b) o
o« - _ 2e7MH! +h0‘/oz>
=(-¢ —q)(n)F(nG(b),a)<l TC.D ,

where the second to last inequality follows from the approximation for the incomplete gamma
function for large H (see Remark 5 of Theorem 3) and the last inequality uses the assumption
nG(b) < C. Now, picking H, h such that 2 7 H*=! 4+ h% /o < ¢T'(C, a), yields
o
P (n)

P[Ny > n] > (1 — 3¢) (G (), ).

(i) If h < nenG(b) < C, then

H _, ®(n/2) n
P[Ny > n] > (1 —¢) /ngn(_}(b) o 2 &

o H
> (1—¢)? / e iz 14y,
D) Jy.nG )

which follows from the regularly varying properties in the region 1 /5, < nG(b) <z < H.
For the preceding integral, similarly, as before, we have

H H nenG(b)
/ ) e—ZZ(X—l dZ — /_ e—zZa—l dZ _ [_ e—ZZOl—l dZ
nenG(b) nG(b) nG(b)

H nenG (b)
> / efzz"‘*ldz—/_ 2 ldz
nG(b) nG(b)
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H B noz -1
- / e ?7% 1 dz — (nG(b))* ~-—
nG(b) o
00 00 not -1
> / efzzafl dz — / efzzotfl dz — cvle
nG(b) H o
o o
> / e 7%y —2e H et — ﬁ
nG(b) o
—H rga—1 o
— TG D). a)( 27" H* 4+ 4eC /a>’
I'c,a)

where we use the approximation for the incomplete gamma function for large H, thatny — 1 —
4ease — 0andnG(b) < C. Now, letting H be such that 2e ™7 H* ™1 +4¢C* Jo < Vel (C, )
yields

P[Nb>n]>(1—8) (1 -

Finally, since G (b) < —log(1 — G (b)), we obtain

PNy > n] = (1 —¢) (1—\/_

G()), o), (10

which proves the lower bound after replacing (1 — £)*(1 — /&) with 1 — ¢.
Next, we derive the upper bound. Note that for xg as in (7),

P[Np > n] = E[1 = G(Ly)]"
< (1—Gx0)" +E[l — G(Ly)I"I(Lp > x0)

- l n
G0 L g1 - _ ) 1(L ,
© * ( S+ oFLy ) =

which follows from (7) and the elementary inequality 1 — x < e™*. Now, for any H >
max (C, 1), we obtain

1
(1 +e)F(Lp)™)

e_nG(-XO) + E(l _ 1 _ )l‘l
P ((L+e)F(Lp)™h

(s=re v)
1 = < —
(1 +e)F(Lp)™ Y n
[log(n/ne)]

+ Z e—ekP[ek< n 1 k+li|+e—n/n€
i (1 +e)F(Ly)) ~

- n
P[Np, > n] < e "6 4 E(l — ) 1(Ly > x0)

S+ L+ b+ (11)
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First, we upper bound /; in (11), which equals

I :L/b<1_ L )n1< A <H)dF(x)
F(b) Jo P ((1+e)Fx)™h P ((1+e)Fx)™h
l1+e H (1_£>" ®(n) ¥'(n/z) n
SWF®) Jujo-roin-n\ 1) Sw/) wj 2
__l+e H ( 5)” () '(n/z) n .
T OMFb) Juéwy/me d(n/z) ®(n/z) 2>

n

where we use the change of variables z = n/® < ((1 +¢)F (x)__l) and the a?solute continuity
of F(x). For the last inequality, observe that 1/®<((1 + &)F(b)~!) > G(b)/n, from (8).
Now, similarly, as before, we consider two cases:

() If nG(b) < nehe < C, where hy > 0 is a small constant, [; is upper bounded by

I < i H(l — E)n ®0) CD/(n/z)i z—l—]P’( " < hg).
Fb)®(n) Jp, n) ®n/z) ®n/z) ? (1 +e)F(Lp)~hH

12)
Now, since ®(-) is absolutely continuous and regularly varying, it follows that for all 2, <
z<H,
[
() < (1 +e)l/2z%,
d(n/z)
for large n, and, by (6),
®'(n/z) _ oz
d(n/z7) o’

forn > H.
Next, we compute the second term in (12) as

IP’(F(L;,) < i) < /Ool(ﬁ(x) < i) dF(x)
®(n/he) 0 ®(n/he)) F(b)
= L[[DI:F(L) < i}
F(b) @(n/he)
1+¢

< o

T FO)®(n/he)

_a +s)2hg’

d(n)

which follows from the uniform distribution of F (L) and using ®(n)/®(n/hs) < (1+¢)/2h®

for large n, along with F (5)~! < (1 + &)//2. Now, observe that the first term in (12) is upper
bounded by

a(l +¢)? /”(1 B g)"zal 4 < @ +¢)? /” <1 B g)"zaldz
®(n) . n - oM Jucwy/me n ’
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since nG(b) < hene. Also, for the integral we obtain

H 2\ H 2\ nG(b) 2\
/ (1 — —) 2 ldz = / (1 — —) 2%~ ldg ~I—f (1 — —) 2 dz
nG(b)/ne n nG(b)/ne n

z\! nG(b)
1 - —) z"‘_ldz—i—/_ % ldz
n nG(b)/ne

(I=n-%
o

N

n

1— E) 2=1g, +5Ca8
o

n

Lo
H ( Z>n a—1 ~ o
5 1——) % " dz+ (nG(b))

after observing that 1 — % — 4e ase — 0. Now, by changing the variables 1 —z/n = e u/n,

we have
;< ed +¢)? /” (1 z>"za] gox +)25C% (1 +¢)*h%
<=7 _=
D (n) Gb) n d(n) D (n)
< all + 8)2 /—nlog(l—H/n) e—u(l _ e—u/n)a—lna—le—u/n du + a+ 8)2(5Co{‘9 + h(sx)
QM) J_n1og(1-G by D (n)
1 2 1 2
L odrer / et gy L Seag ey
D) Jonlog(1-Gby) ®(n)

2 00 o o
_alte) / o du[l L 5C% +h8}
D) Jontog(1-Gby) al’(2C, a)

_al+e)’(+6)
- o (n) —nlog(1-G(b))

e u* 1 du, (13)

where, in the second inequality, we use e */" < 1, the inequality 1 —e™* < x, x > 0 and
extend the integral to infinity. Last, we pick e small, such that 5C%s 4 hY < Jeal'(2C, a).
Note that the preceding equation along with (10) imply that I; is lower bounded as I} >
a - s)aF(ZnG(b) a)/D(n) > (/)T 2C,a)/P(n), for all n > ng and ¢ < 5, by the
inequality 1 — x > e~2* for x > 0 small, since by assumption nG (b) < C, i.e. G(b) is small.

() If hene < nG(b) < C, we have
P L (1_5>” ®(n) '(n/z) n
'S FEGOM) Juoym, ®(n/7) D(n/z) 22

and, by the properties of regularly varying functions in the interval n/H < n/z < 1/G(b) <
n/he, for H > C, and using the same arguments as in (13), we have

1 2 H n
Ilimf (1_£> 2 ldz
Qm)  JuGw) /e n

2 o
- a(l+e) / o] dZ|:1 n 5C% ]
D) Jonlog(1-Gby) al’(2C, a)
_al+e)?0+ 6
- D (n) “nlog(1—-G(b))

)

n

e 7% 1dz.
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Therefore, from both cases, it follows that for all n > ng,

/< a(l +¢)

) I'(—nlog(l — G(D)), ), (14)

after replacing (1 + )21 + V&) with 1 + €.
Next, we evaluate the second term in (11) as

[log(n/ne)l . n
I = e ¢ P|:ek < - < ek+1:|
k=£HJ P ((1+&)F(Lp)~h)

Mog(n/ne)l

- Y e_ekIP’[(l Jrs)[<1><L>}_1 < F(Ly) < (1 +8)|:<D<£>i|_li|
okt 1 = = ok
k=|log H ]

[log(n/ng)]
ek [ = 14+¢e \dF(x)
s 2 e /0 I(F(x) = <1>(n/ek>> Fb)

k=|log H |
00

ok 1+¢
= 2 e Fb)d(n/ck)’

k=|log H]

which follows from the fact that the integral in the second inequality is equal to P[F(L) <
(14 &)/ ®(n/e*)1/F(b) and F(L) is uniform in [0, 1]. Thus,

o o

< Lt 3o Pm) _ l+e S eekletD

—_— k — 9
FOOm ,_ & ° on/h) = Fodm, £

where we make use of (5). Since the preceding sum is finite, we obtain that for large H and all
n > no,

P
L < -1. 15
2=5h0 (15)

Last, we observe that, for fixed xg, it follows that for n > ny,
A £
Io+ I3 = e 000 /e < SN (16)
Finally, using (14)—(16), we obtain for (11) that for all n > no,

PN} > n] < (1 + £)>—>—T(=nlog(l — G(b)), @),
d(n)

which completes the proof after replacing (1 + &) with (1 4 £)!/2.

The following corollary is an immediate consequence of Theorem 3 and it represents a small
generalization of Theorem 2.1 of [16].

Corollary 1. If P[L > xI7P = ¢P[A > x] HP[A > x]79, x > 0, a > 0, where £(x) is

slowly varying, then, as n — oo and nP[A > b] — 0,

C(a+1)

P[Np > n] ~ o
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Now, we characterize the remaining region where nP[A > b] > C. Informally speaking,
this is the region where P[N, > n] has a lighter tail converging to the exponential when
n >> G(b)~!. In the following theorem, we need more restrictive assumptions for £(x); see
the discussion before Theorem 2. In particular, we assume that £(x) is slowly varying and
eventually differentiable with ¢'(x)x/£(x) — 0 as x — oo.

Theorem 4. Assume that P[L > x]™! = L(P[A > x]_l)]P’[A >x]7% a >0, x >0, where
£(x) is slowly varying and eventually differentiable with £'(x)x /€(x) — 0 as x — o00. Then,
for any ¢ > 0, there exist by, no, such that for alln > ng, b > by, nP[A > b] > C,

P[N, > nln®e(P[A > b]™})

—1| <e.
all'(—nlogP[A < b], @)

Remark 6. Observe that Theorems 3 and 4 cover the entire distribution P[ N}, > n] for all large
n and b. Interestingly, the equation for the approximation is the same except for the argument
of the slowly varying part, which equals to n and P[A > b]~!, respectively. Furthermore, when
nP[A > b] = C the equations are asymptotically identical as £(n) = £(CP[A > b]™!) ~
2(P[A > b] Y asn — oo.

Remark 7. Note that most well-known examples of slowly varying functions satisfy the condi-
tion £/(x)x/€(x) — 0 as x — oo, including log? x, log? (log x), B > 0, exp(log x /log log x),
exp(log? x), for 0 < y < 1 [see Section 1.3.3, p. 16 of [5]].

Proof. Recall that

P[Ny > n] = E[1 — G(Ly)]"

- /b (1 - Gy £
~J F(b)

dF ()
= 1-G [Lp— 1-G " 17
/()( ) F(b)+f< 0" (17)

Now, giventhat £(x) is eventually differentiable (x > X0) and slowly var_ying wit_h O (x)x/e(x)—
0as x — oo, it follows that dF (x) = (1 + o(1))aG(x)*~1¢~1(1/G(x)) dG(x) as x — oo.
Thus, for any 0 < ¢ < 1, we can select x large enough such that

b ~ a—1 4/
N Vo N ¢ 6 i C46))
PNy > n] < (1 — G(x0))" — (I + &) / = O 6 Fb)

G(xo) az®™ le

= (1 -G+ (1 1/2/ ATV YI0) '
(1= Guo+a+a'? [ 5 —2 s, "

which follows from the absolute continuity of G (x), i.e., G(A)is uniformly distributed in [0, 1].
Now, for & > 1, we consider two different cases: (a) nG(b) > logn and (b) C < nG(b) <
logn.

Case (a): nG(b) > logn. Observe that, for any fixed H > « + 6, we can make HG (b)
small enough by picking by large. Now, by continuity of G(x), there exists xo such that
G (x0) = HG(b); we can choose x¢ larger than in (18) by picking bg large enough. Next, using
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the elementary inequality 1 —x < e™, x > 0, we upper bound the preceding expression by

@ a(l 4+ ¢)l/2 [HG®) 21 dy
PN} > n] <7000 4 —/ (1—2)"
F®)  Jow €(1/z2)
_emntiGwy | @0+ 2
L(1/G (b)) F (b)
¢(1/Gb)) [HG®
X sup M i (1 _ Z)nzot—l dz
Gwy<z<ncpy /2D Jew)
= HG(b)
< e nHG®) | & (1 — 2" 1dz
L(1/GD)F () Jaw
2+ 1, (19)

where, for the third inequality, by the uniform convergence theorem (see [5]) of £(x), Gb)~!
can be chosen large enough such that sup 4 ;))-1 <y<G(h)-! UGB H/ey) < (1 +e)l/2,

Now, we derive a lower bound for /7 in (19). Using the monotonicity of 221 a>1and
since F(b) < 1, we obtain

1 HG(b)
> —— (1—-2)"z*""dz
(1/G (b)) JGw)
_ | HG(b)
> — Gb)*™ / (1—-2)"dz
G(b)~¢ G(b)
1 . 1—HG®b) ™
- G — G(b))"“(l - (ﬁ) )
n+1 1-G(®)
where in the second inequality, we use the property of slowly varying functions £(x) < x¢ for x
large enough. Now, observe that for all x > 0 small enough, 1 — x > e~2*, yielding

11 > ié(b)ae_4né(b),
4n

vyhere the last inequality follows from the fact thatn/(n + 1) > % forn > 1 and G(b)*~1*¢ >
G (b)¥ since ¢ < 1. We also note that

¢ +1 —HG® _
1-HG®B)Y (¢ H_G( Y — o~ (H=2nG() _ o—(H-2C _ 1
1—-G(@b) e=2G®) -

-2
where we use our assumption nG (b) > C and choose H large enough. Finally, we obtain
1 - _
I > —G(b)*e GD), (20)
4n
Now, we proceed with proving that Ip/I; in (19) is negligible as n — oo. To this end,
observe that
e—HnG(b)n e—(H—4)n(';(b)na+1

Io <4 oy . < 4o~ (H-9nG®) ja+] _ go—(a+2)logn o+l
I G (b)xe=4nG () (nG (D))

https://doi.org/10.1239/aap/1435236982 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236982

442 P.R. JELENKOVIC AND E. D. SKIANI

where we use our assumption that nG (b) > logn > 1 forn > 2, whereas for the last inequality,
we also use the fact that H > o 4 6. Thus, the preceding expression is upper bounded by

4

< -
n

<e, 21

==

foralln > 4/¢.

Now, we upper bound I; in (19) by changing the variables z = 1 — e /",
o a(l+e) —nlog(1=HG®B)) g—untD/n(] _ g=u/nya—1 w“
FD)L(1/G(b)) J-nlog1-G (b)) n
a(l+ f) o e 4(l — e u/mye-l du.
— FO)A/GD)) J-ntog1-Gby) n

where for the inequality we use e /" < 1 and extend the integral to infinity. Thus, for o > 1,
from the preceding expression using the inequality 1 — e™ < x, for x > 0, we obtain

00 a—1
< 4o eu<z> du
Fb)nt(1/G(b)) J-nlog(1-G b)) n
a(l+¢) OO —u, a—1
< = e "u" " du
Fb)n*l(1/G(b)) —nlog(1-G (b))
_ O N el — GO, @) 22)
~ F(b)n*t(1/G (b)) g T
Combining (21) and (22), we obtain for (19) that for all n > ng, b > by,
a(l+e)? =
P[N, — I'(—nlog(l — G(b)), a),
[b>n]§F(b)n“€(1/G(b)) (= log( (b)), @)

which completes the proof after replacing (1 + ¢) with (1 4 ¢)'/2.

Case (b): C < nG(b) < logn. In this region, for any fixed H > 5, we choose the smallest
m > 1 such that He”™ —4 > (¢ +2)logn/C,i.e. m = [log((« +2)logn/C +4) —log H].
Furthermore, it is important to note that this choice of m allows for H e” G (b) to be small
enough, since He" G (b) < He™ logn/n = O(log>n/n) — 0, as n — 00, by the assumption
that nG (b) < log n. Then, by continuity of G (x), there exists xo such that G(xp) = He"G(b)
(larger than xg in (18) for by large enough) and using the elementary inequality | —x < e™, x >
0, we upper bound the expression in (18) by

P[Np > n]
_ 1/2 HG (b -1 m—1 L Hek1G -1
< e Gk 4 a(l +8) [/ ( )(1 - z)nza dz / o )e—nzza dzi|
F(b) Gb) /) = Jhekéw) £(1/2)
_ 1/2 12 HG(®
< g G (o) a(l +o)! [(1 +f) / ) " (1—2)"z%"dz
F(b) L(1/G(b)) JGw»)

m—1 172
+ 3 LED T ekt /

Hek G (b)
2 e_”zi|,
=0 £(1/(ekG(b))) HekG(b)
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where the last inequality follows from the monotonicity of z*~! for & > 1 and the uniform
convergence theorem of £(x), SUP G p))- 1<Z<]/G(b))€(1/G(b))/£(z) < (1 4 ¢)'/2, while for
the second term, note that SUP (1 ¢k+1 G (b))~ <2< (He G (b))~ L1/ GB) /L) < (A +&)l/?,
k=0...(m — 1), since He" G (D) is small enough. Now, since £(x)/¢(x/e) < e for large x,
it follows that

" 1 HG(®b)
P[N, > n] < e "H"G0) 4 a(——i_f) i (1-27"z%""dz
F®)1/Gb)) Jew)
m—1

a(l +e) ke—nHEGb) (g ak+1 G (pyye=]
Fbnt(1/G (b)) ,;e ) (e oo

S+ 1L+ Db (23)

Now, we derive a lower bound for /; following similar arguments as in (20). Note that, for
x > 0 small enough, 1 —x > e~2% and, thus, for H large enough, we have

C/GBYFb) - a_lf”"“b) o
e NZ0® o) (1-2)"dz
> Gy (1=G®)' — (1 — HG(b))"*!
- n+1
n+1 ¢ n+1
=G(b)“ l(1 G(b)) + (1_<1—H_G(b)) )
n+1 1—-G()

~ —1 _
> GO G (24)

where the expression in brackets is bounded from below by % as in (20).
Now, we prove that o/ in (23) is negligible as n — oo. To this end, observe that

Iy _ 4F(®) e He"nG®) p(1/G(b))n
I 7 a(l+eg) G(b)a—le—4né(b)

’

where we use (24). Next, since « > 1, F(b) < 1, and using the standard property of slowly
varying functions that £(x) < x for large x (see Theorem 1.5.6, p. 25 of [5]), we obtain

Io e—(He" —4nG(b) n
e S 4_— N
L G(b)¥
and since nG (b) > C, we have

Io e—(He" 74)n(_}(b)na+1

Y <y _ <4c™ o 7(Hc’”74)C a+1 <4C~ o 7(ot+2)logn oz+1
I — nGb))*

where the last inequality follows from the fact that m was chosen so that (He™ — 4) > (« +
2)logn/C. Thus, the preceding expression can be rewritten as

~

0
I

< o <

(25)

:
NSRS

foralln > 8C~%/e.
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Next, for the ratio I/I; we proceed, similarly, as before

2 B 4 ka:—()l eke—nHek(_?(b) (Hek+1(';(b))a—1

L G (b)e—le—4nG®)
m—1 . ~
<4 Z eke—(He —4)nG(b)(Hek+l)ot—l
k=0

m—1
_ —(Hek— —k—
S4_[_]04 12:eke (He 4)Ceoc(k+l) k—1
k=0

o

< 4 1e=HC N o =5 =D CHatk+1) -1
e
>
where for the last inequality we use H > 5. Now, we further observe that the preceding sum
is finite and, thus, letting H — oo, the above ratio converges to 0, i.e. Iy < ¢l;/2 for large H.

Hence, since the upper bound for I} from (22) holds in this case as well, by putting (25) and
(26) together, we obtain for (23) that for all n > ng, b > by,

(26)

=

2
PN, > n] < — 20T

S F et (/G Tloel —GD. @),

which completes the proof after replacing (1 4 &) with (1 4+ &)1/2.

Last, we prove the lower bound for nG (b) > C; here, we do not need to distinguish two
cases. Thus, starting from (17) and proceeding with similar arguments as in the proof for the
upper bound, we obtain

b ~ a—1 307
P[Np > n] = —(1 — s)lﬂf (1 - G(x))nw

0 £(1/G(x))F (b)
HG(b) a-lyg
=(1 8)1/2/ (1_Z)”u
Gb) e(l/Z)F(b)
a(l —¢) —(n+1)log (1—HG (b)) e (1 — efu/(n+]))ot7]
Z -_— du,
FD)LA/G b)) J-(n+1)log(1-G (b)) n+1

where we use the uniform convergence theorem of slowly varying functions (Theorem 1.2.1,
p. 6 of [5]) and pick x¢g < b such that G(xg) = HG (b). Next, using the inequality 1 —e™ >
(1 — 8)x, for some § > 0 and all x > 0 small enough, we have

1 — &)1 — 821 —nlog(1—HG (b)) a—1
PN, = n—1]> 24 =80 =9 / e—“<5> du
FD)L1/Gb)n  J-nlog1-G b)) n

a(l — 5)2 HnG(b)
T Fbne(1/G (b)) J-niog1-G»))

_ )2 o) 00
— ad 8)_ [/ e Uy ldy — / e Uyl duj|
FD)n*L(1/G (b)) LJ-n10g(1-G b)) HnG(b)

e “u* " du
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where, in the second inequality, we choose § > 0 small enough such that (1 — $el>(1—-e
and note that —nlog(1 — H G(b)) > HnG(b). Next, we proceed with showing that I/1;
is negligible for large n. Note that —nlog(l — G (b)) < 2nG(b), which follows from the
elementary inequality e=>* < 1 — x for all x > 0 small enough. Thus,

B _ Jinew "0 du_2(HnG (b)) le HG®
07 gy e~ e~ du = @nGyeteno®)

where we use the approximation for the incomplete gamma function for large H [see Remark 5
of Theorem 3]. Now, using the main assumption nG(b) > C, we obtain

b —1 —(H-2)C
Z <Y e (H=2C o
I — -

for H large enough. Then, using the preceding observation, we obtain

a(l —3e)

P[Nb >l’l] > m

T(—nlog(l — G (b)), @),
which completes the proof after replacing ¢ with ¢/3.

Now, if & < 1, the proof uses almost identical arguments coupled with the fact that u®~! is
a decreasing function. We omit the details to avoid unnecessary repetitions.

Remark 8. From the preceding two theorems we observe that P[N; > n] behaves as a true
power law of index o when —nlogP[A < b] — ¢, 0 < ¢ < 00, and has an exponential tail
(geometric) when nPP[A > b] — oo (n > P[A > b1~ ). More specifically:

(i) If —nlogP[A < b] — c, then by Theorem 3, as n — oo, nlP[A > b] — c,

o

P[Np > n] ~ e

I'(c, ).

(i) If nP[A > b] — oo, then —nlogP[A < b] — o0 and, thus, asn — oo, b —
00, nlP[A > b] — o0,

o

~ a=1 _ ~ n
Z(l/G(b))nG(b) I=G®)",

P[Np > n] ~
which follows from Theorem 4 and the asymptotic expansion of the gamma function (see

Remark 5 of Theorem 3).

Interestingly, one can compute the distribution of P[N;, > n] exactly for the special case
when the parameter o takes integer values and £(x) = 1.

Proposition 2. IfP[L > x] = P[A > x]%, for all x > 0 and « is a positive integer, then

1 * aln!P[A > b2t

PINy > nl = 53 ; @ —D)(nti)

IP)[A S b]n"rl'.

Proof. 1t follows directly from (17) using integration by parts.

Finally, in the following proposition, we describe the tail of P[N;, > n] for fixed and possibly
small b. This complements the conclusion of Remark 8(ii), however, we need £(x) = 1.
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Proposition 3. Let b be fixed. If P[L > x] =P[A > x]* o > 0, x > 0, then

aP[A > b]*~! P[A < p]"H!
P[Np > n] ~ P[L < b] . asn — oo.

Proof. See Section 4 of [8].

3. Simulation experiments

In this section we illustrate the validity of our theoretical results with simulation experi-
ments. In all of the experiments, we observed that our uniform exact asymptotics are literally
indistinguishable from the simulation. In the following examples, we present the simulation
experiments resulting from 10% (or more) independent samples of N ;, 1 < i < 108. This
number of samples was needed to ensure at least 100 independent occurrences in the lightest
end of the tail that is presented in the figures (Np ; > nmax), thus providing a good confidence
interval.

Example 1. This example illustrates the uniform exact asymptotics presented in Theorems 3
and 4, i.e. approximation (4), which combines the results from both theorems. We assume that
L and A follow exponential distributions with parameters A = 2 and . = 1, respectively. It
is, thus, clear that F(x) = e 2 = G(x)"‘, where @« = 2 and ¢(x) = 1. Now, approximation
(4) states that P[N, > n] is given by (1 — e 20)=12,2I"(ne=?, 2). Note that we added a
factor P[L < b]~! = (1 - e 2b )_1, as in Propositions 2 and 3, for increased precision when
b is small; we add such a factor to approximation (4) in other examples as well. We simulate
different scenarios when the data sizes Lj; are upper bounded by b equal to 1, 2, and 4. The
simulation results are plotted on a log-log scale in Figure 2(a).

From Figure 2(a), we observe that the numerical asymptote approximates the simulation
exactly for all different scenarios, even for very small values of n (large probabilities). We
further validate our approximation by considering scenarios where L, A are exponentially
distributed but @ < 1; in fact, this case tends to induce longer delays due to larger average data
size compared to the channel availability periods. In this case, we obtain « = 0.5 by assuming
that . = 1 and u = 2. Again, the simulation results and the asymptotic equations are basically
indistinguishable for all #, as illustrated in Figure 2(b).

10° — - 10°

: Simulation .
Exact asymptote |

Simulation
= Exact asymptote

Retransmissions(a): n Retransmissions(b): n

FIGURE 2: (a) Example 1(a). Exact asymptotics for > 1. (b) Example 1(b). Exact asymptotics for
a < 1.

https://doi.org/10.1239/aap/1435236982 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236982

Distribution of the retransmissions of bounded documents 447

10° —
Simulation | —e— k=2
Exponential tail asymptote o ‘| —=— Exponential
= = = = Power law asymptote 10 3 —— k=12 E
— — = == = Power law asymptote |F
102 N ; T
10° 4
—
/T T 107
A
= 1074
= =
= =, 10" 4
A &
10° 4
10°
10° 3
10 10”7
10° 10° 10' 10°
Retransmissions(a): n Retransmissions(b): n

FIGURE 3: (a) Example 2. Power law versus exponential tail asymptotics. (b) Example 3. Power law
region increases for lighter tails of L, A.

For both cases, we deduce that for small b the power law asymptotics cover a smaller
region of the distribution of N} and, as n increases, the exponential tail becomes more evident
and eventually dominates. As b becomes large—recall that b — oo corresponds to the
untruncated case where the power law phenomenon arises—the exponential tail becomes less
distinguishable.

Example 2. In this example we demonstrate the exact asymptotics for the exponential tail as
n — oo and b is fixed, as in Proposition 3. Note that this proposition gives the exact asymptotic
equation for the region 7 > 1/G (b) and lends merit to our Theorems 2 and 4. Informally, we
could say that a point nj such that —nj log(1 — G(b)) ~ npG(b) = « log n;, represents the
transition from the power law to the exponential tail. We assume that L, A are exponentially
distributed with A = 2 and i = 1 (as in the first case of Example 1). Roughly speaking, we can
see from Figure 3(a) that the exponential asymptote appears to fit well starting from n;, ~ ae’,

ie.np &~ 6,15,100 for b = 1, 2, 4, respectively.

Example 3. This example highlights the impact of the distribution type of channel availability
periods G(x) = P[A > x]. We consider some fixed b, namely b = 8, and assume that
the matching between data sizes and channel availability, as defined in Theorems 3 and 4, is
determined by the parameter « = 4. We assume Weibull distributions for L, A with the same
index k and piy,, (4, respectively, such that @ = (ua/u )% In general, a Weibull dlstrlbutlon
with index k has a complementary cumulative distribution function P[X > x] = e~/ wk

where u is the parameter that determines the mean. The simulations include three dlfferent
cases for the aforementioned distributions: Weibull with index k = 1 (exponential) where
ur = 1 and ua = 4, Weibull (normal-like) with index k = 2 (uy = 1, ua = 2) and Weibull
with k = % (ur =1, ug = 16). Figure 3(b) illustrates the exact asymptotics from (4), shown
with the lighter dashed lines; the main power law asymptote appears in the main body of all
three distributions. We observe that heavier distributions (Weibull with k = %) correspond to
smaller regions for the power law main body of the distribution P[N;, > n]. On the other hand,
the case with the lighter Gaussian-like distributions for k = 2 follows almost entirely the power
law asymptotics in the region presented in Figure 3(b). This increase in the power law region
can be inferred from our theorems, which show that the transition from the power law main
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10" 4 104 3
= 1074 = 1074 3
A A E
El —3— El 73-
& 1073 & 1074 3
10 3 107 Simulation ‘ E
3 Simulation Initial asymptote | E
] Exactasymptote | : + it v Lo ] e Trail asymptote |
10° 10' 107 10° 10° 10' 107 10°
Retransmissions(a): n Retransmissions(b): n

FIGURE 4: (a) Example 4(a). Exact asymptotics for the case where L is gamma distributed. (b) Exam-
ple 4(b). The asymptotes from Theorems 3 and 4 for gamma distributed L.

body to the exponential tail occurs roughly at n;, &~ G(b)~!. Hence, the lighter the tail of the
distribution of A, the larger the size of the power law region.

Example 4. In this last example, we study the case where there is a more general functional
relationship between the distributions of availability periods A and data sizes L, as Theorems 3
and 4 assume. In particular, we consider the case F(x) = G(x)*/£(G(x)~"), where £(x) is
slowly varying. We validate the approximation (4) in this more general setting.

In particular, the availability periods A are exponentially distributed with parameter u while
the data sizes L follow the gamma distribution with parameters (A, k); the tail of the gamma
distribution function is defined as A" (k) ™! [*° e “**x*=1 dx = I'(Ax, k)/ I'(k) and, therefore,

the tail distribution of L can be approximated by_F (x) N_()»k’l /T (k))x*~1e=** for large x.
We can easily verify that F(x) = fu™! log G(x)"HG(x)*, where o = A/ and

00 k—1
g k=1 —1 -z 2
fx)=A""T(k) /0 e (A—i—x) dz.

Hence, the slowly varying function in Theorems 3 and 4 is £(x) = 1/f (u_l log x). From the
preceding integral representation for f (x), it can be easily shown that £ (x) ~ T (k)a! ¥ log! =% x,
which is indeed slowly varying, and

= (! A= Ik=1 F
F(x) ~ <F(k) > log(G(x)™ )" G(x)".
We take A = 2,k = 2, and u = 2 and run simulations for » = {2, 3, 4}. In Figure 4(a), we
demonstrate the results using the approximation (4). Interestingly, our analytic approximation
works nicely even for small values of n and b although the conditions in our theorems require
n and b to be large.
In Figure 4(b), we elaborate on the preceding example. To this end, we plot two asymptotes:
(1) the ‘Initial Asymptote’ corresponding to the power law asymptote provided by Theorem 3 and
(ii) the ‘Tail Asymptote’ from Theorem 4. Combining the two, we derive the approximation (4),

https://doi.org/10.1239/aap/1435236982 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236982

Distribution of the retransmissions of bounded documents 449

as we have already shown in Figure 4(a). Hereby, we see from Figure 4(b) that both asymptotes
are needed to approximate the entire distribution well, i.e. the ‘Initial Asymptote’ fits well the
first part of the distribution, whereas the ‘Tail Asymptote’ is inaccurate in the beginning but
works well for the tail. Recall that these two asymptotes differ only in the argument of the
slowly varying function £(-), which is equal to n for the ‘Initial Asymptote’ and G (b)~' for
the tail.
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