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Introduction

Growing interest in natural sweeteners as sugar alternatives has driven global demand for stevia
(Stevia rebaudiana [Bertoni] Bertoni). Its steviol glycosides, which offer greater sweetness and
no caloric impact, constitute a promising product amidst the rise of metabolic diseases such as
obesity and diabetes. However, Stevia rebaudiana’s potential as a leading source of non-caloric
sweeteners is not limited solely to its concentration of sweet compounds but also lies in the
need for genetic improvement. There is still underutilized genetic diversity, which is essential
for improving sensory quality, yield gain, generation of extreme weather-resilient cultivars and
increased resistance to diseases that jeopardize production (Mereles et al., 2013).

The wild relative species of stevia exhibit significant intraspecific genetic variability, creat-
ing opportunities for breeding programmes aiming to improve agronomic traits, biochemical
profiles and adaptability to varied environmental conditions (Yadav et al., 2011; Gantait et al.,
2018). The combined exploitation of plant genetic resources and wild relatives is central to the
development of improved cultivars that can overcome limitations such as unstable glycoside
composition, and strong sensitivity to photoperiod (Abdullateef and Osman, 2011). Over the
past decades, characterizations based on morphological, agronomic, biochemical and molecu-
lar studies have revealed a broad spectrum of genetic materials available for selection and genetic

enhancement (Chester et al., 2013).
NIAB Despite considerable progress in characterizing both cultivated and wild stevia germplasm,

key questions remain about how to integrate underutilized diversity into breeding pipelines
for enhanced sweetness, yield stability and stress resilience. This review, therefore, synthe-
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notable for accumulating sweet steviol glycosides (Borgo et al., 2021). Wild relatives, such as
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S. eupatoria, S. lemmonii and S. micrantha, occur from the south-
ern United States to Argentina, occupying diverse ecological niches
and exhibiting cytogenetic variability (diploid, triploid, tetraploid)
that underlies a multibasic genetic structure (Yadav et al., 2011;
Borgo et al., 2021). Although not all wild species produce high
glycoside levels, they possess adaptive traits, morphological differ-
ences in leaf architecture and growth habit, plus mechanisms to
tolerate drought, fluctuating light and temperature extremes, that
can be introduced into cultivated lines via conventional or biotech-
nological breeding to enhance biomass and glycoside yield under
suboptimal conditions (Brandle et al., 1998; Borgo et al., 2021;
Gantait et al., 2018; Al-Taweel et al., 2021).

Because landraces and wild types often display greater genetic
diversity and a higher number of private alleles than bred cultivars,
these relatives serve as reservoirs of alleles for disease resistance,
yield stability and steviol glycoside biosynthesis (Cosson et al.,
2019; Borgo et al., 2021; Gantait et al., 2018). Molecular and cytoge-
netic analyses confirm that introgressing wild alleles can broaden
the genetic base of commercial stevia cultivars, helping to over-
come narrow genetic bottlenecks and improve overall performance
(Yadav et al., 2011; Gantait et al., 2018).

Intraspecific variability and cultivar diversity within Stevia
genus

Stevia rebaudiana is a perennial shrub 60-120 c¢m tall, with oppo-
site oval leaves with serrated margins, leathery texture, green
stems, white-flowered panicle inflorescences, taproots and a fra-
grant sweet herbal aroma (Fig. 1). This species exhibits exten-
sive varietal diversity, comprising over 90 varieties adapted to
various climatic requirements and production systems (Angelini
et al., 2018). Many studies have demonstrated that significant her-
itability exists for key yield components, such as leaf yield and
glycoside concentrations, indicating that genetic improvement is
feasible through recurrent selection and breeding (Yadav et al.,
2011). Modern germplasm collections incorporate both landraces
and improved clones that have been developed through selective
breeding and vegetative propagation methods (Clemente et al.,
2021). Evaluations of genetic variability using molecular markers,
such as Random Amplified Polymorphic DNA (RAPD), Expressed
Sequence Tag - Simple Sequence Repeat (EST-SSR) and Single
Nucleotide Polymorphism analyses, have confirmed the presence
of valuable polymorphisms underlying differences in key traits
such as glycoside composition and stress tolerance (Cosson et al.,
2019). Detailed biochemical and molecular profiling of these mate-
rials reveals a wide range of steviol glycoside concentrations and
complementarity in metabolic pathways, making them desirable
targets for further improvement (Hastoy, 2018).

Moreover, in trials of four elite stevia populations in North
Carolina, key growth traits proved to be highly heritable, suggest-
ing they respond well to selection (Kozik et al., 2020). For example,
plant height exhibited broad-sense heritability values of 0.68 in
June and 0.60 in August, branch width showed heritabilities of 0.59
and 0.55, and leaf area came in at 0.54 and 0.52. Under a 20% selec-
tion intensity, breeders could expect annual gains of roughly 1.2 Mg
ha~! in dry biomass and about 24 mm in height. Similarly, the
major steviol glycosides displayed strong genetic control: rebau-
dioside A had H?g = 0.60, rebaudioside C was 0.58, rebaudioside
D was 0.50, stevioside was 0.52 and total steviol glycosides (TSGs)
reached 0.62. These values translate to potential per-cycle increases
of about 26.4 mg g~! for rebaudioside A (14.5 % of TSG) and
20.2 mg g~' for rebaudioside C (20.2% of TSG). Given this level
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of genetic variation, adopting marker-assisted selection makes it
possible to accelerate improvements in both yield and glycoside
composition.

Sexual reproduction as a bottleneck in the commercial
scale-up of Stevia rebaudiana

Stevia rebaudiana exhibits two modes of reproduction: sexual
propagation via seeds and asexual propagation via stem cuttings or
tissue culture, each contributing differently to genetic diversity and
uniformity in commercial plantations (Ramakrishnan et al., 2025).
However, seeds present several challenges that limit their util-
ity. Stevia rebaudiana individual seeds develop within achene-type
fruits that act as the primary propagule or dispersal unit. Dark-
coloured achenes tend to be heavier due to successful fertilization
and embryo formation, yet they show highly variable viability,
with germination rates ranging from less than 1% to as high as
59-86%. This variability in seed germinability results from intrinsic
issues with pollination and fertilization compatibility, often lead-
ing to malformed embryos or endosperm. Consequently, viable
seeds exhibit a wide range of physiological vigour, affecting key
germinability parameters such as germination rate, uniformity and
speed within a single seed batch - ultimately impairing seedling
stand uniformity and crop establishment (Joosen et al., 2010).

In contrast, light and tan achenes are typically lighter because
they result from self-incompatibility processes that inhibit viable
seed formation, producing empty achenes or seeds without
embryos, which fail to germinate. Furthermore, a sporophytic
self-incompatibility mechanism renders most self-pollinated seeds
infertile, requiring cross-pollination to produce seeds. This results
in genetically heterogeneous half-sib progenies and inconsistent
steviol glycoside profiles (Angelini et al., 2018).

Additional reproductive and environmental factors, including
premature seed harvest, protandry, low pollen viability, nutrient
deficiencies affecting pollen tube growth and the need for spe-
cific light and temperature conditions, further depress viable seed
production (Al-Taweel et al., 2021). Moreover, stevia seeds are
extremely small (~3 mm), contain minimal endosperm reserves
and deteriorate rapidly unless stored at low temperatures. These
characteristics hinder seed handling, storage and quality mainte-
nance, making sexual propagation inefficient for large-scale mul-
tiplication due to poor, inconsistent germination rates and geneti-
cally mixed offspring (Sharma et al., 2023).

Consequently, vegetative propagation, either via stem cuttings
or in vitro micropropagation, has become the preferred method for
ensuring genetic uniformity, achieving higher propagation success,
and faster multiplication of selected clones with consistent phyto-
chemical profiles (Abdullateef and Osman, 2011; Al-Taweel et al.,
2021; Khan et al., 2021).

Linking genetic resources with strategies to cope with
biotic and abiotic stress in stevia cultivation

Although less documented than in other crops, several biotic stres-
sors, such as foliar and soilborne pathogens, significantly reduce
yield and quality of stevia. Notable examples include Septoria leaf
spot caused by Septoria steviae (Sanabria-Velazquez et al., 2024),
foliar spots due to Alternaria steviae and A. alternata infections
(Maiti et al., 2007; Yan et al., 2018), and rots caused by Sclerotinia
sclerotiorum and Rhizoctonia solani (Koehler et al., 2019; Kessler
and Koehler, 2020). Likewise, Fusarium oxysporum causes vascular
wilt (Diaz-Gutiérrez et al., 2019), and other secondary pathogens
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Figure 1. Morphological features and cultivation of
Stevia rebaudiana. (A) Field cultivation of stevia plants in
a commercial production area in the South of Paraguay.
(B) Stevia leaf showing its characteristic serrated margin
and elongated oval shape (scale bar = 5 cm). (C) Stevia
seed (achene) with its pappus hairs aiding in wind dis-
persal (scale bar = 1 mm). (D) Flowering stevia plant
grown under plastic mulch conditions, displaying inflo-
rescences with small white flowers and opposite leaves
(scale bar = 10 cm).

such as oomycetes, bacteria, viruses, phytoplasmas and various
fungi may also be present (Samad et al., 2011; Chatzivassiliou
et al., 2015; Koehler and Shew, 2017; Rogers and Koehler, 2021;
Sanabria-Velazquez et al., 2023). Currently, studies reporting the
extent to which the above-mentioned pathogens affect stevioside
content are scarce. However, infections caused by A. alternata
have been observed to reduce the commercial value and qual-
ity of stevia leaves, resulting in a negative impact on stevioside
concentration (Prakash et al., 2022), although no specific quanti-
tative data have been published. Since leaf quality is essential for
stevioside content, it is reasonable to consider that any disease
compromising leaf integrity could decrease the concentration of
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these compounds (Arturo et al., 2009). Nonetheless, further stud-
ies are needed to quantify these effects and better understand the
relationship between infections by these pathogens and stevioside
content in stevia.

Additionally, abiotic stresses, including drought, salinity, water-
logging and chemical treatments, can significantly alter steviol
glycoside accumulation and plant growth. For instance, salinity
and drought stress have been found to enhance the concentra-
tions of stevioside and rebaudioside A, although they simultane-
ously limit biomass accumulation (Debnath et al., 2019). Moreover,
Gupta et al. (2016) highlighted that stevia plant treated with com-
pounds of diverse nature such as Na, CO;, proline and polyethylene
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glycol, displayed specific metabolic changes, which in some cases
enhanced TSG production by up to threefold compared to non-
treated plants, despite negatively impacting shoot growth. The fact
that the expression of several members of the SrMYB transcrip-
tion factor family which is one of the largest regulators of gene
expression and hence a variety of plant functions, is tissue-specific,
stress responsive and highly associated with steviosides content,
turn them into potential targets for engineering weather extreme
resilient varieties and enhanced stevioside profile (Chen et al.,
2024). Therefore, it is necessary to elucidate the molecular basis
that regulates stevia physiological responses to stress combina-
tion, presence of both biotic and abiotic stressors, to ensure yield
stability under adverse climatic conditions.

The species’ ability to withstand or tolerate these biotic and abi-
otic stressors largely depends on the genetic variability present in
its populations. Several studies suggest that, while no genotype
shows complete resistance to major pathogens, there is signifi-
cant variation in how different lines respond to infections like
Septoria leaf spot. Hastoy et al. (2019) have evaluated the response
to Septoria sp. of 10 genotypes from different origins and iden-
tified 2 of them, ‘Gawi’ and ‘Esplacl; as moderately susceptible,
with only 10-15% of symptomatic leaf area, whereas 3 highly sus-
ceptible genotypes, named ‘E8), ‘C’ and ‘E161718, which reached
up to 40% of symptomatic leaf area, were also reported. In a leaf-
disk assay, Le Bihan et al. (2025) have reported minimal severity
(3% symptomatic area) for ‘Cult102_SPA’ and ‘Cult76_GER’ geno-
types confirming their lower susceptibility. Moreover, Yadav et al.
(2011) highlighted the line SF5-1 (No. 103) for its enhanced resis-
tance against Septoria sp., and Huber and Wehner (2021) have
found significant variability in disease resistance, biomass yield
and glycoside content across various seed-derived cultigens, which
emphasizes the pivotal role of genetic studies in unravelling the
molecular basis underlying resistance to pathogen attack in ste-
via genotypes, while highlighting the importance of conserving
and utilizing plant genetic resources for breeding programmes
aimed at developing genotypes with superior adaptive profiles
(Ramakrishnan et al., 2025).

Regarding cold stress, a study conducted by Kozik et al. (2020)
exposed 14 different stevia lines to cold temperatures for up to 10
days. They discovered that only one line, 7947-3, showed almost
no damage after six days at —2°C. When the temperature was held
at 0°C for 8 days, a small handful of lines (including 7947-3 and
7990-17) still looked healthy, while the others began to suffer. Even
at a milder 2°C, it took 10 days before most plants showed signs of
distress, yet lines 7947-3, 7918-1 and 7686-6 continued to hold up
well. Based on these results, a simple way to screen for cold toler-
ance is to check leaf damage after 6 days at —2°C, 8 days at 0°C,
or 10 days at 2°C, all under a light intensity of about 500 umol
m~2 s~1. Therefore, lines like 7947-3, which stay largely unscathed
after these treatments, are especially valuable because they offer
the potential to develop stevia varieties capable of thriving in
temperate regions.

Improving steviol glycoside profile

A glycoside contains glucose and non-sugar parts derivate from
the diterpenoid steviol, and in stevia the major ones are named
stevioside and rebaudioside A (Reb A) (Humphrey et al., 2006;
Brandle and Telmer, 2007; Zhou et al., 2021). These compounds
share a common precursor (kaurenoid) with that of the plant hor-
mone gibberellic acid and their production occurs mainly in leaves.
The first step of steviol glycoside biosynthesis pathway and its
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related genes is very well described (Bondarev et al., 2003). In brief,
through the action of four consecutive enzymes, geranylgeranyl-
diphosphate is converted into steviol, followed by its glycosylation,
via specific glycosyltransferases to form different steviol glyco-
sides (Sharma et al., 2023). Several studies have reported attempts
to improve steviol glycosides through genetic transformation
and metabolic pathway engineering. For instance, plants overex-
pressing UDP-glycosyltransferase 76G1(SrUGT76G1), enzyme that
catalyses stevioside to Reb A conversion, displayed a significant
increase of Reb A: stevioside ratio, which also improved organolep-
tic properties (Richman et al., 2005; Kim et al., 2019). Note that 68
putative UGTS have been identified in stevia, and particularly, the
functionality of SrUGT76G1 was characterized through transient
expression in Nicotiana benthamiana. This approach could be used
to study the genetic control of steviol glycoside composition in this
crop, which remains unknown (Petit et al., 2020). Concordantly,
Zheng et al. (2019) reported that transgenic plants overexpress-
ing 1-deoxy-d-xylulose-5-phosphate synthase 1 (SrDXS1) and kau-
renoic acid hydroxylase (SrKAH), both enzymes involved in steviol
synthesis, showed enhanced content of steviol glycosides, up to
42-54% and 67-88%, respectively.

In this context, Bogado-Villalba et al. (2021) assessed the
genetic relationship among several Paraguayan Stevia rebaudi-
ana lines and varieties, along with their steviol glycoside profile
using SSR and ISSR markers. Genotyping revealed two main clus-
ters, one of which was predominantly composed of Eriete and
Katupyry varieties, as well as other lines characterized by high
steviol glycoside content. Similar clustering pattern have been
reported by Bhandawat et al. (2014), Dyduch-Sieminska et al.
(2020) and Subositi et al. (2011), with Cosson et al. (2019) iden-
tifying three clusters across 145 global genotypes using EST-SSR
markers. These studies collectively demonstrate how molecular
markers can unravel genetic structure and diversity, facilitating
the identification and incorporation of valuable traits into stevia
breeding programmes (Barbet-Massin et al., 2016).

Photoperiod plasticity and polyploidy as breeding targets
for enhancing biomass and environmental resilience

Stevia rebaudiana is an obligate short-day plant with a critical day
length of 13 h (Ramesh et al., 2006), making its phenology highly
sensitive to day length. Interestingly, several studies have reported
enhanced stevia production under long-day conditions, likely
due to reduced glycoside synthesis at or near flowering. Under
extended photoperiods, genes for steviol glycoside biosynthesis are
upregulated in leaves, while gibberellin-related genes are downreg-
ulated; in stems, gibberellins increase, promoting elongation and
biomass (Yoneda et al., 2017; Gantait ef al., 2018; Rengasamy et al.,
2022; de Andrade Mv et al., 2023). These responses can inform
crop strategies, including artificial lighting or breeding, to boost
vegetative growth and glycoside content. Photoperiodic responses
in Stevia rebaudiana indicate the need for distinct cropping proto-
cols: short days favour flowering and seed production, while long
days or extended lighting enhance vegetative growth and glycoside
yield. Optimizing protocols for each purpose, vegetative produc-
tion or seed harvesting, requires aligning cultivation with suitable
latitudes or seasons to meet photoperiod needs and maximize crop
performance.

Stevia rebaudiana is cultivated across Asia, South America and
North America, where it encounters diverse environmental condi-
tions, including varying day lengths. Despite this wide distribution,
no stevia species have shown long-day photoperiodic behaviour.
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A comprehensive phenological and physiological assessment of
accessions from different latitudes is essential to uncover naturally
occurring allelic diversity and to optimize cultivation under con-
trasting photoperiods (de Oliveira Vm et al., 2004; Ramesh et al.,
2006; Gonzalez-Delgado et al., 2025; Ramakrishnan et al., 2025).

Genome-wide association studies (GWAS) are powerful tools
to explore natural genetic variation in wild stevia and iden-
tify loci linked to adaptive traits like photoperiodic responses.
Applying GWAS to native accessions may reveal quantitative
trait loci (QTLs) associated with day-length sensitivity, improv-
ing understanding of ecological adaptation and supporting breed-
ing for environmental suitability. Additionally, identifying stevia
orthologs of florigen and components of the Arabidopsis circadian
clock could enable targeted genetic engineering. This foundational
knowledge may facilitate manipulation of growth habit genes, sup-
porting the development of cultivars with extended vegetative
phases, indeterminate growth or reduced photoperiod sensitivity
— traits successfully modified in crops like tomato and sorghum
(Murphy et al., 2011, 2014; Klein et al, 2015; Vicente et al., 2015).

Polyploidization, the presence of three or more chromosome
sets, can be induced in stevia using colchicine and has been applied
as a breeding tool. Autotetraploid plants often develop larger and
thicker leaves than diploids, increasing total glycoside yield (Yadav
et al., 2013; Xiang et al., 2019; Joshi et al., 2025). Beyond enhancing
plant and organ size, polyploidy plays a key role in stress responses
(Bhosale et al., 2019; Lang and Schnittger, 2020). Stress condi-
tions such as heat and drought have been shown to raise ploidy
levels, indicating a general adaptation mechanism involving upreg-
ulation of metabolic and defense-related genes (Cookson et al.,
2006; Monjardino et al., 2006; Scholes and Paige, 2015; Tossi et al.,
2022). In support, Markosyan et al. (2021) found that polyploidy
modified resistance gene expression in stevia, while in Arabidopsis,
increased ploidy correlated with changes in cell wall structure
linked to enhanced pathogen resistance (Hamdoun et al., 2016;
Bhosale et al., 2018).

The genus stevia exhibits considerable chromosomal variation,
with basic numbers of x = 11, 12 or 17. Diploid (2n = 22), triploid
(2n = 33) and tetraploid (2n = 44) species have been documented
(Yadav et al., 2011). Polyploid populations often differ ecologically
and morphologically from diploids (de Oliveira Vm et al, 2004).
In Mexican stevia species, agamospermous polyploids occupy
broader geographic ranges than diploids, suggesting greater col-
onization potential and ecological adaptability (Watanabe et al.,
2001). Their dominance in marginal habitats highlights poly-
ploidy’s role in adaptation and range expansion. This natural
chromosomal variation offers valuable genetic resources for breed-
ing, especially to enhance resilience to environmental stress.
Polyploid individuals, particularly those reproducing agamosper-
mously, tend to exhibit reproductive stability and greater abiotic
stress tolerance. Selecting triploid and tetraploid genotypes from
diverse habitats could allow breeders to capture beneficial ploidy-
related traits, such as increased leaf biomass and stress tolerance,
without requiring artificial chromosome doubling.

Genome editing as a tool to harness the natural variation
of stevia wild relatives

Although breeding efforts face methodological and conceptual
challenges, genotypes with more desirable glycoside profiles have
been identified. Nonetheless, a systematic framework for gen-
erating pathogen-resistant and enhanced glycoside profile vari-
eties with large-scale availability still does not exist. The genetic
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complexity underlying steviol glycoside synthesis, combined with
fragmented information on key genes, metabolic pathways and
factors of disease resistance, limits the rational design of superior
varieties (Singh et al., 2017; Xu et al., 2021).

Biotechnological tools, including genetic editing, enable the
molecular breeding of crops with specific properties. However, it
requires an in-depth understanding of the genetics basis that con-
trols development and physiology in the crop of interest (Younes
et al., 2019; Taak et al., 2020; Biswas et al., 2021). As previously
described, this has been addressed for steviol glycoside biosyn-
thesis and certain abiotic stress responses (Pal et al., 2023). The
combination of this fundamental biological knowledge and state-
of-the-art gene editing techniques, such as CRISPR and TALEN,
can be used to target a specific gene to improve traits in a pre-
cise manner. Another strategy that could be implemented in stevia
breeding is called de novo domestication, which exploits the exis-
tence of wild relatives adapted to challenging environments and a
wide range of photoperiod, traits with a diffuse polygenic basis, as a
suitable raw material where monogenic domesticated-related and
yield-determinant traits can be manipulated, instead of introduc-
ing alleles from wild relatives into cultivated crops. This approach
is suitable for stevia breeding as plant transformation and delivery
of CRISPR-based vectors have been successfully achieved in this
crop and its genome is sequenced (Ghose et al., 2022). Lastly, de
novo domestication has been reported in tomato, maize and wheat
(Zs6gon et al., 2017, 2018; Fernie and Yan, 2019).

Besides molecular tools, other approaches have been reported
to be applied to enhance steviol glycoside levels. The variability
observed in different Stevia genotypes in nature results from the
accumulation of naturally occurring mutations, at a very low rate,
throughout evolution. Hence, to produce novel genetic variation,
mutations can be induced via physical and chemical mutagens
(Raina et al., 2016). Kumar et al. (2024) applied gamma ray to the
stevia variety ‘Madhuguna’ to induce mutations, followed by selec-
tion of mutant with an improved steviol profile. This technique was
found to be effective, at mild doses (5 and 10 kR), in improving
steviol glycoside content.

Conservation and utilization of Stevia genetic resources:
Bridging legal framework and breeding innovation

Conserving and harnessing Stevia’s genetic diversity is essential for
creating lines with enhanced agronomic performance. Exploring
this diversity enables researchers to identify genes that enhance
disease resistance and stress tolerance, thereby reducing reliance
on agrochemicals and promoting more sustainable production sys-
tems. Such variability also underpins stevia’s ability to maintain
stable yields amid extreme weather, as shifting weather patterns can
influence pathogen prevalence and crop productivity.

Although market demand for stevia is growing, much of the
available germplasm remains underused (Borgo et al., 2021); there-
fore, it is crucial to evaluate how current conservation measures
and breeding programmes preserve and deploy genetic variation,
not only to refine sweetness and yield but also to bolster overall
crop health and long-term resilience (Ramakrishnan et al., 2025).
It is crucial to continue characterizing existing germplasm banks.
This ongoing effort allows us to accurately assess their current
diversity and, critically, evaluate the need for an influx of new
germplasm (Ribeiro et al., 2021).

Conservation strategies have been predominantly limited to ex
situ methods (seed banks, field collections) and in vitro propaga-
tion, lacking comprehensive plans that integrate wild diversity to
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Figure 2. Proposed pipeline to promote conservation of Stevia rebaudiana genetic resources and their integration into breeding programmes and basic research. (A) The
Stevia genus comprises close to 230 species, and their distribution areas extend from the southern United States to the South American Andean region. (B) This tremendous
diversity should be conserved in situ, allowing the dynamic evolution of wild population and co-adaptation to local pathogens, or ex situ, under controlled environment where
samples are stored (seedbanks, germplasms, gene banks, etc.). (C) Screening, through physiological and biochemical assays, of wild relatives to find key traits related to
abiotic and biotic stress tolerance and steviol profile, followed by identification and selection of candidate genes or loci (QTL) via molecular tools. Altogether, via biotech-
nological approaches genes governing different economically important traits would be unravelled. (D) Introgression breeding and use of DNA marker technology in back
cross programmes. Moreover, gene editing in breeding allows for precise manipulation of target traits by directly altering specific genes once their molecular basis has been
identified. (E) Generation of new lines showing extreme weather resilient, pathogen attack resistance and improved glycosides profile. (F) Risk assessment and approval
processes for the cultivation, consumption and commercialization of new materials. Lastly, adoption of the latter by growers and consumer markets.
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meet producers/farmers and market needs. In situ conservation,
which would safeguard the dynamic evolution of wild populations
and their co-adaptation with local pathogens, has received scant
attention (Salgotra and Chauhan, 2023).

Global conservation of genetic resources for crops like potato
and maize has benefited from robust institutional support. The
International Potato Center (CIP) in Peru maintains a compre-
hensive in-trust collection of virus-free potato germplasm using
advanced cryopreservation protocols, ensuring safe and equitable
distribution of genetic material worldwide (Vollmer et al, 2017).
Similarly, Brazil has developed a coordinated national system for
germplasm conservation through Empresa Brasileira de Pesquisa
Agropecuaria (EMBRAPA), combining in situ and ex situ strategies
including cryobanks for both plant and animal genetic resources,
backed by international agreements and national laws protect-
ing biodiversity and traditional knowledge (Machado et al., 2016;
Morrell and Mayer, 2017).

Moreover, international agricultural research centres such as
Centro Internacional de Agricultura Tropical (CIAT) in Colombia
have demonstrated the enormous economic value of the unre-
stricted flow of genetic resources across countries. For example,
Latin American nations have significantly benefited from bean
germplasm shared through CIAT, with improved varieties boosting
agricultural productivity throughout the region, even in coun-
tries that did not originate the genetic material (Johnson et al,
2005). This reinforces the argument that shared access to well-
preserved and documented genetic resources can yield widespread
and equitable benefits, especially when supported by transparent
legal frameworks.

These initiatives required the support of public policies and
legal frameworks that guarantee access, traceability and fair
benefit-sharing. The case of Stevia rebaudiana, native to the
Paraguay-Brazil border and traditionally used by the Guarani peo-
ple, illustrates the critical need for such mechanisms. Research
has shown that major companies are using stevia-derived prod-
ucts as sugar alternatives in their products without consent from
the Guarani communities, raising serious concerns under the
Convention on Biological Diversity and exposing legal gaps, par-
ticularly in Paraguay, which has not ratified the Nagoya Protocol.
While Brazil has developed legal mechanisms for access and
benefit-sharing, its laws exclude food products like stevia, fur-
ther complicating Guarani efforts to claim compensation or legal
protection (Relly, 2023).

These examples show how the success of germplasm conserva-
tion and equitable access depends on institutional infrastructure,
legal harmonization and long-term political will. To prevent future
biopiracy and secure fair benefits for Indigenous peoples, especially
in the case of stevia, it is urgent to consolidate similar interna-
tional and national frameworks, such as those provided by CIP,
CIAT or EMBRAPA, tailored to minor or neglected crops of high
commercial interest.

New approaches and future perspectives

Integrating diversity from both cultivated germplasm and wild
relatives remains a critical challenge in exploiting Stevia rebau-
diana’s full genetic potential. The species’ high heterozygosity
and sporophytic self-incompatibility pose significant challenges
to traditional breeding efforts, hindering the development of sta-
ble seed-based lines and requiring the use of precise molecular
tools to assemble and fix desirable alleles (Yadav et al., 2011;
Ramakrishnan et al., 2025). In this context, reproductive biology
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emerges as a fundamental yet often overlooked bottleneck that
must be addressed through targeted research, especially given the
increasing global demand for steviol glycosides and the need for
scalable propagation systems.

The development of curated germplasm collections, with robust
phenotypic and genotypic characterization, lays the groundwork
for effective introgression strategies while minimizing linkage drag
and preserving genetic integrity (Abdullateef and Osman, 2011;
Hastoy, 2018). Wild relatives of stevia, adapted to environments
from the Paraguayan highlands to arid zones, harbour traits for
abiotic stress tolerance that could be introgressed into elite lines
(Gantait et al., 2018). However, fully harnessing such diversity will
require resolving the challenges imposed by the species’ reproduc-
tive system.

To advance beyond current strategies, we propose an integra-
tive framework (Fig. 2). First, expanding the genetic base through
targeted collections in centres of origin, coupled with genomic
and metabolomic profiling, enables a comprehensive characteri-
zation of available germplasm (Vallejo and Warner, 2021). These
data streams (genetic, phenotypic, chemical, phytosanitary) should
feed continuously into breeding pipelines to optimize agronomic
traits and glycoside profiles. Second, combining ex situ and in situ
conservation ensures that populations can evolve under natural
selection and pathogen pressure, yielding more adaptable genetic
sources while engaging local communities in areas of original
diversity (Benelli ef al., 2021).

Third, omic-based approaches, genomics, transcriptomics,
metabolomics and phenomics, should be embedded into marker-
assisted selection to accelerate the identification of loci controlling
key traits (van Der Hooft Jj et al., 2020). These methods can also
support the dissection of complex traits related to sexual reproduc-
tion and germination performance. Finally, genome-editing tools
such as CRISPR/Cas represent a promising frontier not only for
enhancing steviol glycoside biosynthesis and stress tolerance but
also for resolving reproductive barriers by targeting genes control-
ling self-incompatibility, embryo development and seed viability
(Ghose et al., 2022). Established transformation protocols in ste-
via already demonstrate that generating transgenic or edited lines
is technically feasible (Taak et al., 2020).

While Stevia rebaudiana has long been considered a species
resistant to full domestication due to its reproductive complex-
ity, emerging molecular technologies open new avenues to over-
come these barriers. Future research should explicitly target the
genetic and physiological basis of sexual reproduction in stevia,
which remains one of the least understood yet most critical aspects
limiting its scalable propagation. Addressing this challenge could
transform stevia from a semi-domesticated medicinal plant into a
fully cultivated, seed-propagated crop.

Conclusions

In this review, we have clarified the breadth of Stevia’s genetic
diversity, its biotechnological applications, and its commercial
relevance. However, realizing these potential hinges on integrat-
ing those findings into both breeding programmes and conser-
vation efforts. Beyond its sweetness, Stevia’s genetic variability
can drive more sustainable cultivation, enhanced disease resis-
tance, improved tolerance to extreme weather stress and novel
sensory qualities. Achieving these gains requires integrating in-
depth germplasm characterization, dynamic in situ and ex situ
conservation, advanced biotechnological tools and supportive
public policies into a cohesive and coherent framework. Only by
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uniting these elements can Stevia rebaudiana evolve from a trend-
ing sweetener into a resilient, diverse and long-term sustainable
crop.

Crucially, we identified a major biological bottleneck involv-
ing photoperiod sensitivity, pollination mechanisms and sexual
seed reproduction. Addressing this constraint is fundamental for
enabling large-scale stevia cultivation and meeting the growing
global demand for steviosides. Future research must prioritize
this issue to unlock the species’ full reproductive potential and
scalability.

Equally important, this integrated framework must operate in
parallel with the development of efficient seed-based production
systems, including large-scale multiplication of elite, photoperiod-
adapted germplasm; optimized agronomic protocols; and high
seed quality through standardized postharvest practices. Such
progress will require close cooperation between plant breeders and
the seed industry to ensure that improved genotypes are multiplied,
certified and delivered at scale. Strategic partnerships among pub-
lic breeding programmes, private seed companies and regulatory
institutions will be essential to translate genetic innovation into
practical solutions for sustainable stevia cultivation worldwide.
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