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Abstract. We compare the reduced Drinfeld doubles of the composition
subalgebras of the category of representations of the Kronecker quiver

−→
Q and the

category of coherent sheaves on �1. Using this approach, we show that the Drinfeld–
Beck isomorphism for the quantized enveloping algebra Uv(ŝl2) is a corollary of
an equivalence between the derived categories Db(Rep(

−→
Q )) and Db(Coh(�1)). This

technique allows to reprove several results on the integral form of Uv(ŝl2).
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1. Introduction. In this paper we study the relation between the composition
algebra of the category of representations of the Kronecker quiver

−→
Q = • ���� •

and the composition algebra of the category of coherent sheaves on the projective line
�1. As shown by Ringel [33] and Green [19], the generic composition algebra of the
category of representations of

−→
Q is isomorphic to the positive part of the quantum

affine algebra Uv(ŝl2) written in terms of Drinfeld–Jimbo generators.
On the other side, as it was discovered by Kapranov [25] and extended by Baumann

and Kassel [2], the Hall algebra of the category of coherent sheaves on a projective
line �1 is closely related with Drinfeld’s new realisation Uv(Lsl2) of the quantized
enveloping algebra of ŝl2 [16]. Since then, this subject drew attention of many authors,
see for example [45, 40, 28, 44, 37, 38].

In this paper, we work out this important observation a step further and show
that the Drinfeld–Beck isomorphism Uv(ŝl2) → Uv(Lsl2) (see [16, 3, 14, 23]) can be
viewed as a corollary of the derived equivalence Db(Rep(

−→
Q )) → Db(Coh(�1)). The

understanding of this isomorphism is of great importance for the representation theory
of Uv(ŝl2) and its applications in mathematical physics, see for example [22]. Indeed,
since Uv(ŝl2) is the Hopf algebra, the category of its finite-dimensional representations
has a structure of a tensor category. However, in order to describe such representations
themselves, it is frequently more convenient to work with Drinfeld’s new realisation,
Uv(Lsl2). Using the fact that an equivalence of triangulated categories commutes with
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Serre functors, we also show that the Drinfeld–Beck isomorphism, Uv(ŝl2) → Uv(Lsl2),
commutes with the Coxeter transformation acting on both sides. Finally, applying the
technique of stability conditions, we reprove several known technical statements on
the integral form of Uv(Lsl2).

NOTATION. Throughout the paper, k = �q is a finite field with q elements and �̃ = �̃q =
�[v, v−1]/(v−2 − q) ∼= �[

√
q]. Next, P is a set of all integers of the form pt, where p

is a prime number and t ∈ �+. For a positive integer n we set [n] = [n]v = vn−v−n

v−v−1

and [n]! = [1] . . . [n]. We denote by R the subring of the field �(v) consisting of the
rational functions having poles only at 0 or at roots of 1. For the affine Lie algebra,
g = ŝl2, we denote by Uv(g) its quantized enveloping algebra over the ring R, whereas
Uq(g) = Uv(g) ⊗R �̃.

2. Hereditary categories, their Hall algebras and Drinfeld doubles. Let A be an
essentially small hereditary abelian k-linear category such that for all objects M, N ∈
Ob(A) the k-vector spaces HomA(M, N) and Ext1A(M, N) are finite dimensional. In
what follows, we shall call such a category finitary. Let J = JA := (Ob(A)/ ∼=) be the
set of isomorphy classes of objects in A. For an object X ∈ Ob(A), we denote by [X ] its
image in J. Fix the following notations.
� For any object X ∈ Ob(A) we set aX = | AutA(X)|.
� For any three objects X, Y, Z ∈ Ob(A) we denote

PZ
X,Y =

∣∣∣∣{(f, g) ∈ HomA(Y, Z) × HomA(Z, X)

∣∣∣∣ 0 → Y
f→ Z

g→ X → 0 is exact
}∣∣∣∣ .

� Finally, we put FZ
X,Y = PZ

X,Y
aX ·aY

.

Note that the numbers aZ, PZ
X,Y , FZ

X,Y and
PZ

X,Y
aZ

depend only on the isomorphy classes
of X, Y, Z and are integers.

Let K = K0(A) be the K-group of A. For an object X ∈ Ob(A), we denote by X̄ its
image in K . Next, let 〈− , −〉 : K × K → � be the Euler form:

〈X̄, Ȳ〉 = dimk HomA(X, Y ) − dimk Ext1A(X, Y ),

and ( − , − ) : K × K → � its symmetrisation:

(α, β) = 〈α, β〉 + 〈β, α〉, α, β ∈ K.

Following Ringel [33], one can attach to a finitary hereditary category A an associative
algebra H(A) called the extended twisted Hall algebra of A, defined over the field �̃.
As a vector space over �̃, we have

H̄(A) :=
⊕
[Z]∈J

�̃[Z] and H(A) := H̄(A) ⊗�̃ �̃[K ].

For a class α ∈ K we denote by Kα the corresponding element in the group algebra
�̃[K ]. Then we have: Kα ◦ Kβ = Kα+β . Next, for [X ], [Y ] ∈ J the product ◦ is defined
to be

[X ] ◦ [Y ] =
√

|Hom(X, Y )|
| Ext1(X, Y )|

∑
[Z]∈J

FZ
X,Y [Z] = v−〈X̄,Ȳ〉 ∑

[Z]∈J

FZ
X,Y [Z].
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Finally, for any α ∈ K and [X ] ∈ J we have

Kα ◦ [X ] = v−(α,X̄ )[X ] ◦ Kα.

As it was shown in [33], the product ◦ is associative and the element 1 := [0] ⊗ K0

is the unit element. In what follows, we shall use the notation [X ]Kα for the element
[X ] ⊗ Kα ∈ H(A).

Let A be a finitary finite length hereditary category over k. By a result of Green
[19], the Hall algebra H(A) has a natural bialgebra structure, see also [35]. The
comultiplication � : H(A) → H(A) ⊗�̃ H(A) and the counit η : H(A) → �̃ are given
by the following formulae:

�([Z]Kα) =
∑

[X ], [Y ]∈J

v−〈X̄,Ȳ〉 PZ
X,Y

aZ
[X ]KȲ+α ⊗ [Y ]Kα and η([Z]Kα) = δZ,0.

Moreover, as it was shown by Xiao [42], the Hall algebra H(A) is also a Hopf algebra.
Finally, there is a pairing ( − , − ) : H(A) × H(A) → �̃ introduced by Green [19], given
by the expression

([X ]Kα, [Y ]Kβ) = v−(α,β) δX,Y

aX
.

This pairing is non-degenerate on H̄(A) and symmetric. Next, it satisfies the following
properties:

(a ◦ b, c) = (a ⊗ b,�(c)) and (a, 1) = η(a)

for any a, b, c ∈ H(A). In other words, it is a bialgebra pairing.

REMARK 2.1. If A is not a category of finite length (for instance, if it is the
category of coherent sheaves on a projective curve), then the Green’s pairing ( − , − ) :
H(A) × H(A) → �̃ is still a well-defined symmetric bilinear pairing. However, the
comultiplication �([X ]) is possibly an infinite sum. Nevertheless, it is possible to
introduce a completed tensor product H(A)⊗̂H(A) (which is a �̃–algebra) such that � :
H(A) → H(A)⊗̂H(A) is an algebra homomorphism and (� ⊗ 1) ◦ � = (1 ⊗ �) ◦ �.
Moreover, for any elements a, b, c ∈ H(A) the expression (a ⊗ b,�(c)) takes a finite
value and the equalities (a ◦ b, c) = (a ⊗ b,�(c)), (a, 1) = η(a) are fulfilled. In such a
situation we say that H(A) is a topological bialgebra (see Appendix B in [9] for further
details).

From now on, let A be an arbitrary k-linear hereditary finitary abelian category.
Consider the root category R(A) = Db(A)/[2]. Note that R(A) has a structure of a
triangulated category such that the canonical functor Db(A) → R(A) is exact, see
Section 7 in [29]. Moreover, any object of R(A) splits into a direct sum X+ ⊕ X−,
where X+ ∈ Ob(A) and X− ∈ Ob(A)[1].

Our next goal is to introduce the reduced Drinfeld double of the topological
bialgebra H(A). Roughly speaking (although, not completely correctly), it is an
analogue of the Hall algebra attached to the triangulated category R(A). To define
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it, consider the pair of algebras H±(A), where we use the notation

H+(A) =
⊕
[Z]∈J

�̃[Z]+ ⊗�̃ �̃[K ] and H−(A) =
⊕
[Z]∈J

�̃[Z]− ⊗�̃ �̃[K ].

and H±(A) = H(A) as �̃-algebras. Let a = [Z]Kγ and

�(a) =
∑

i

a(1)
i ⊗ a(2)

i =
∑

[X ], [Y ]∈J

v−〈X̄ ,Ȳ〉 PZ
X,Y

aZ
[X ]KȲ+γ ⊗ [Y ]Kγ .

Then, we denote

�(a±) =
∑

i

a(1)±
i ⊗ a(2)±

i =
∑

[X ], [Y ]∈J

v−〈X̄,Ȳ〉 PZ
X,Y

aZ
[X ]±K±Ȳ+γ ⊗ [Y ]±Kγ .

DEFINITION 2.2. The Drinfeld double of H(A) with respect to the Green’s pairing
( − , − ) is the associative algebra D̃H(A), which is the free product of algebras H+(A)
and H−(A) subject to the following relations D(a, b) for all a, b ∈ H(A):∑

i,j

a(1)−
i b(2)+

j

(
a(2)

i , b(1)
j

) =
∑

i,j

b(1)+
j a(2)−

i

(
a(1)

i , b(2)
j

)
.

The following proposition is well known, see for example Section 3.2 in [24] for
the case of Hopf algebras and Appendix B in [9] for the case of topological bialgebras.

THEOREM 2.3. The multiplication morphism mult : H+(A) ⊗�̃ H−(A) → D̃H(A) is
a isomorphism of �̃–vector spaces. Moreover, if A is an abelian category of finite length,
then D̃H(A) is also a Hopf algebra such that the above morphism H+(A) → D̃H(A),
a �→ a ⊗ 1− is an injective homomorphisms of Hopf algebras.

The following definition is due to Xiao [42].

DEFINITION 2.4. Let A be a k-linear finitary hereditary category. The reduced
Drinfeld double DH(A) is the quotient of D̃H(A) by the two-sided ideal

I = 〈
K+

α ⊗ K−
−α − 1+ ⊗ 1− | α ∈ K

〉
.

Note, for a finite length abelian category A, I is a Hopf ideal and DH(A) is also a Hopf
algebra.

COROLLARY 2.5. We have an isomorphism of �̃-vector spaces

mult : H̄+(A) ⊗�̃ �̃[K ] ⊗�̃ H̄−(A) −→ DH(A).

Next, we shall need the following statement, a first version of which dates back to
Dold [15].

THEOREM 2.6. Let A be a hereditary abelian category. Then any indecomposable
object of the derived category Db(A) is isomorphic to X [n], where X is an indecomposable
object of A.
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REMARK 2.7. In what follows, we shall identify an object X ∈ Ob(A) with its image
under the canonical functor A → Db(A).

The following important theorem was recently proven by Cramer [13].

THEOREM 2.8. Let A and B be two k-linear finitary hereditary categories. Assume

one of them is artinian and there is an equivalence of triangulated categories Db(A)
�−→

Db(B). Let R(A)
�̂−→ R(B) be the induced equivalence of the root categories. Then, there

is an algebra isomorphism

� : DH(A) −→ DH(B)

uniquely determined by the following property. For any object X ∈ Ob(A) such that
�(X) ∼= X̂ [−n�(X)] with X̂ ∈ Ob(B) and n�(X) ∈ � we have

�([X ]±) = v
n�(X)

〈
X̄,X̄

〉
[X̂ ]n�(X)Kn�(X)

�̂(X±)
,

where n�(X) = + if n�(X) is even and − if n�(X) is odd. For α ∈ K we have �(Kα) = K�(α).

3. Composition algebra of the Kronecker quiver. In this section, we study
properties of the composition algebra of the Kronecker quiver

−→
Q = 1

a
��

b

�� 2

and the reduced Drinfeld double of its Hall algebra.

DEFINITION 3.1. Consider the pair of reflection functors �± : Rep(
−→
Q ) → Rep(

−→
Q )

defined as follows (see Section 1 in [6]). For a representation

X = V
A

��

B

�� W

consider the short exact sequences

0 −→ U ′
(

C′
D′

)
−−−→ V ⊕ V

(A,B)−−−→ W and V

(
A
B

)
−−→ W ⊕ W

(C′′, D′′)−−−−→ U ′′ −→ 0.

Then, we have:

�+(X) =
(

U ′
C′

��

D′
�� V

)
and �−(X) =

(
W

C′′
��

D′′
�� U ′′

)
.

The action of �± on morphisms is defined using the universal property of kernels and
cokernels. Note that the functor �+ is left exact whereas �− is right exact.

The following theorem summarises main properties of the functors �±.

THEOREM 3.2. Let
−→
Q be the Kronecker quiver, A = k

−→
Q be its path algebra and

A = Rep(
−→
Q ) = A − mod. Then the following properties hold:
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(1) The functors �+ and �− are adjoint, i.e. for any X, Y ∈ Ob(A) we have

HomA(�−(X), Y ) ∼= HomA(X, �+(Y )).

(2) The derived functors ��+ and ��− are also adjoint. Moreover, they are mutually
inverse auto-equivalences of the derived category Db(A).

(3) Let X ∈ Ob(A) be an indecomposable object. Then we have

�0�+(X) =
{

�+(X) if X �∼= S2

0 if X ∼= S2
and �1�+(X) =

{
0 if X �∼= S2

S1 if X ∼= S2
.

Similarly, we have

�0�−(Y ) =
{

�−(Y ) if Y �∼= S1

0 if Y ∼= S1
and �−1�−(Y ) =

{
0 if Y �∼= S1

S2 if Y ∼= S1
.

(4) In particular, the reflection functors �− and �+ yield mutually inverse equivalences
between the categories Rep(

−→
Q )1 and Rep(

−→
Q )2, which are the full subcategories

of Rep(
−→
Q ) consisting of objects without direct summands isomorphic to S1 and

S2, respectively.
(5) Let ν = 	(HomA( − , A)) : A − mod → A − mod be the Nakayama functor and

� := �ν : Db(A) → Db(A) be its derived functor. Then we have an isomorphism
of vector spaces

HomDb(A)(X, �(Y )) −→ 	 HomDb(A)(Y, X),

functorial in both arguments, where 	 is the duality over k. In other words, � is
the Serre functor of the triangulated category Db(A) in the sense of [7].

(6) The functors � and �+ are related by an isomorphism: � ∼= (��+)2[1].

Proof. The first part was essentially proven in Section 1 in [6]. There the authors
construct two natural transformations of functors : �−�+ → 1 and j : 1 → �+�−.
It can be easily shown that they define mutually inverse bijections

HomA(�−(X), Y ) ←→ HomA(X, �+(Y )).

See also Section VII.5 in [1] for a proof using tilting functors.
The fact that the derived functors ��+ and ��− are adjoint, is a general property

of an adjoint pair, see for example Lemma 15.6 in [26]. For the proof that ��+ and
��− are equivalences of categories, see for example Section VII.5 in [1].

By Theorem 2.6, the complexes ��+(X) and ��−(X) have exactly one non-
vanishing cohomology for an indecomposable object X ∈ Ob(A). This proves the
formulae listed in the third item. The fourth statement is proven in Section 1 in [6]
and for the fifth we refer to Section 4.6 in [20].

For a proof of the last statement, first note that the Auslander–Reiten functor

τ = 	 Ext1A( − , A) : Rep(
−→
Q ) −→ Rep(

−→
Q )

is isomorphic to the Coxeter functor 
+ := (�+)2, see Section 5.3 in [17] and
Proposition II.3.2 in [41]. Next, the canonical transformation of functors �
+ →
(��+)2 is an isomorphism on the indecomposable injective modules I(1) and I(2),
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hence it is an isomorphism. Finally, by Proposition I.7.4 in [21] we know that the
derived functors �τ [1] and �ν are isomorphic. �

REMARK 3.3. Let i ∈ Q0 = {1, 2} be a vertex and P(1) = Aei be the indecomposable
projective module, which is the projective cover of the simple module Si. Then
�ν(P(i)) = ν(P(i)) = I(i), where I(i) is the injective envelope of Si.

Let X be an indecomposable object of A and B = EndA(X). By the Serre duality,
we have a canonical isomorphism of B-bimodules

HomA(X, X) −→ 	
(
HomDb(A)(X, �(X))

)
.

Let w be a non-zero element of the socle of HomDb(A)(X, �(X)) viewed as the right
B-module.

LEMMA 3.4. Consider a distinguished triangle

�[−1](X)
u−→ Y

v−→ X
w−→ �(X)

given by the morphism w. Then this triangle is almost split. Moreover, if X is non-
projective, then Hi(�(X)) = 0 for i �= 1 and the short exact sequence

0 −→ τ (X)
u−→ Y

v−→ X −→ 0

is almost split, where τ (X) = 	 Ext1A(X, A) ∼= H1(�(X)).

Proof. For the first part of the statement, see the proof of Proposition I.2.3 in [31].
For the second, see Section 4.7 in [20]. �

DEFINITION 3.5. An object X ∈ Ob(A) is called
(1) pre-projective if there exists a projective object P and m ≥ 0 such that X ∼=

τ−m(P),
(2) pre-injective if there exists an injective object I and m ≥ 0 such that X ∼= τm(I).

Recall the classification of indecomposable objects of the category of
representations of

−→
Q over an arbitrary field k, see for example Section 3.2 in [32].

THEOREM 3.6. The indecomposable representations of the Kronecker quiver
−→
Q over

an arbitrary field k are the following.
(1) Indecomposable pre-projective objects

Pn = kn
Apro

n
��

Bpro
n

�� kn+1 , n ≥ 0,

where

Apro
n =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ and Bpro
n =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .
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In particular, P0 and P1 are the indecomposable projective objects.
(2) Indecomposable pre-injective objects

In = kn+1

Ainj
n

��

Binj
n

�� kn , n ≥ 0,

where

Ainj
n =

⎛⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 0

⎞⎟⎟⎟⎠ and Binj
n =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1

⎞⎟⎟⎟⎠ .

In particular, I0 and I1 are the indecomposable injective objects.
(3) Tubes

Tn,π = knl

Atub
n,π

��

Btub
n,π

�� knl , n ≥ 1,

where π (x, y) ∈ k[x, y] is an irreducible homogeneous polynomial of degree l. For
(π ) �= (x) we have: Atub

n,π = Inl and Btub
n,π = F(π (1, y)n) is the Frobenius normal

form defined by the polynomial π (1, y)n. For (π ) = (x) we set Atub
n,π = F(xn) and

Btub
n,π = In.

Moreover, the Auslander–Reiten quiver of Rep(
−→
Q ) has the following form:

P1 P3
τ

P0 P2
τ

. . .

. . .

T2,π τ

T1,π τ

I3 I1
τ

. . . I2 I0
τ

whereas the Auslander–Reiten quiver of the derived category Db(Rep(
−→
Q )) is the union

of components obtained by applying the shift functor to

I2[−1] I0[−1]τ
P1

τ
. . .

τ

. . . I1[−1]τ
P0

τ
P2

τ

. . .

T2,π τ

T1,π τ

Now we return to our study of the Hall algebras of quiver. Applying Theorem 2.8,
we get the following corollary, which is due to Sevenhant and van den Bergh [39], see
also [43].
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COROLLARY 3.7. The derived reflection functor ��+ induces an algebra isomorphism
of the Drinfeld doubles: �+ : DH(

−→
Q ) → DH(

−→
Q ), whose inverse is induced by the adjoint

functor ��−.

DEFINITION 3.8. Let S1 and S2 be the simple objects of A. Consider the subalgebra
C̄(

−→
Q ) of the Hall algebra H(A) generated by [S1] and [S2]. The composition subalgebra

is defined as follows:

C(
−→
Q ) := C̄(

−→
Q ) ⊗�̃ �̃[K ].

Note that C(
−→
Q ) is a Hopf subalgebra of H(A).

Our next goal is to show the automorphisms �± of DH(
−→
Q ) map the reduced

Drinfeld double of the composition algebra C(
−→
Q ) to itself. In other words, one has

to check that both simple modules Si ∈ Ob(A), i = 1, 2 we have: �±([Si]) ∈ DC(
−→
Q ).

Note that in the notations of Theorem 3.6 we have: �+(S1) = I1 is an indecomposable
injective module and �−(S2) = P1 is an indecomposable projective module. Hence, it
is sufficient to check the following lemma.

LEMMA 3.9. The elements [P1] and [I1] belong to the composition algebra C(
−→
Q ).

Proof. Using a straightforward calculation, we get the following explicit formulae
for the classes of the non-simple indecomposable projective and injective modules:

[P1] =
∑

a+b=2

(−1)av−b[S2](a) ◦ [S1] ◦ [S2](b) [I1] =
∑

a+b=2

(−1)av−b[S1](a) ◦ [S2] ◦ [S1](b),

where [X ](n) = [X ]n

[n]v ! for an object X of category A. �

DEFINITION 3.10. Let C = (
2 −2

−2 2

)
be the Cartan matrix of the affine Lie algebra

g = ŝl2. The Hopf algebra Uv(ŝl2) is generated over R by the elements E1, E2, F1, F2,
K±

1 , K±
2 subject to the relations

(1) the elements Z± := K±
1 K±

2 are central;
(2) K±

i K∓
i = 1 = K∓

i K±
i , i = 1, 2;

(3) KiEj = v−cij EjKi and KiFj = vcij FjKi, i = 1, 2;

(4) [Ei, Fj] = δijv
Ki−K−1

i
v−v−1 , i = 1, 2;

(5)
∑3

k=0(−1)kE(k)
i EjE

(3−k)
i = 0 for 1 ≤ i �= j ≤ 2;

(6)
∑3

k=0(−1)kF (k)
i FjF

(3−k)
i = 0 for 1 ≤ i �= j ≤ 2.

The Hopf algebra structure is given by the following formulae:
(1) �(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, �(Fi) = Fi ⊗ K−1

i + 1 ⊗ Fi and �(Ki) = Ki ⊗ Ki;
(2) η(Ei) = 0 = η(Fi), η(Ki) = 1;
(3) S(Ei) = −K−1

i Ei, S(Fi) = −FiKi, S(Ki) = K−1
i for all i = 1, 2.

The following result is a special case of a more general statement, which is
essentially due to Ringel [33] and Green [19].

THEOREM 3.11. The �̃-linear morphism Uq(g) := Uv(g) ⊗R �̃
evq−→ DC(

−→
Q )

mapping Ei to [Si]+, Fi to [Si]− and Ki to KS̄i
for i = 1, 2, is an isomorphism of Hopf

https://doi.org/10.1017/S0017089511000607 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000607


292 IGOR BURBAN AND OLIVIER SCHIFFMANN

algebras. Moreover, if we set

DCgen(
−→
Q ) :=

∏
q∈P

DC
(
Rep(�q

−→
Q )

)
,

then the R-linear map ev = ∏
evq : Uv(g) → DCgen(

−→
Q ) is injective. The same applies

to the subalgebra Uv(g+ ⊕ h) and the algebra Cgen(
−→
Q ) := ∏

q∈P C(Rep(�q
−→
Q )).

COROLLARY 3.12. The derived functors ��+ and ��− induce a pair of mutually
inverse automorphisms �± of the algebra Uv(g) such that the following diagrams are
commutative:

Uv(g) �+
��

evq

��

Uv(g)

evq

��

DC(
−→
Q )

�+
�� DC(

−→
Q )

Uv(g) �−
��

evq

��

Uv(g)

evq

��

DC(
−→
Q )

�−
�� DC(

−→
Q ).

Their action on the generators is given given by the following formulae:

E1
�+−→ ∑

a+b = 2
(−1)av−bE(a)

1 E2E(b)
1 E2

�−−→ ∑
a+b = 2

(−1)av−bE(a)
2 E1E(b)

2

F1
�+−→ ∑

a+b = 2
(−1)av−bF (a)

1 F2F (b)
1 F2

�−−→ ∑
a+b = 2

(−1)av−bF (a)
2 F1F (b)

2

E2
�+−→ v−1K−1

1 F1, F2
�+−→ vE1K1 E1

�−−→ v−1F2K2, F1
�−−→ vK−1

2 E2

K1
�+−→ K2

1 K2, K2
�+−→ K−1

1 K1
�−−→ K−1

2 , K2
�−−→ K1K2

2

As it was explained in Theorem 13.1 in [39], in the conventions of Remark 3.13,
these automorphisms are the symmetries discovered by Lusztig [27] (strictly speaking,
Lusztig’s symmetries are obtained by composing the automorphisms �± with a flip sending
E1 to E2, F1 to F2 and K1 to K2. This happens because we wish to consider the functors
�± as endofunctors of Rep(

−→
Q ), whereas in [39] one interchanges the direction of the

arrows).

REMARK 3.13. Note that the relations of the quantum affine algebra Uv(ŝl2) given
in Definition 3.10 differ slightly from the classical ones as defined, for instance, in
[12, 27, 22]. Namely, we impose the commutation relation [Ei, Fi] = v

Ki−K−1
i

v−v−1 , whereas

the conventional form would be [Ei, Fi] = Ki−K−1
i

v−v−1 , i = 1, 2. However, one can easily
pass to the conventional form replacing at the first step v by v−1 and then applying the
Hopf algebra automorphism sending Ei to Ei, Ki to Ki and Fi to −v−1Fi for i = 1, 2 at
the second step.

In order to get the relations of the Drinfeld double, which are closer to the
conventional ones, one can alternatively redefine Green’s form by setting

([X ]Kα, [Y ]Kβ)new = v−(α,β)+dim(X) δX,Y

aX
,

where dim(X) is the dimension of X over k viewed as an k
−→
Q -module, and take the

reduced Drinfeld double with respect to ( − , − )new.
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Nevertheless, we prefer to follow the form of the relations as stated in Definition
3.10 because they seem to be more natural from the point of view of Hall algebras.

The following automorphism plays an important role in our study of the algebra
Uv(ŝl2).

DEFINITION 3.14. The automorphism 
 = (�+)2 : DC(
−→
Q ) → DC(

−→
Q ) is called

Coxeter automorphism of DC(
−→
Q ). Using Corollary 3.12, we also obtain the

corresponding automorphism of the algebra Uv(g), given by the commutative diagram

Uv(g) 
+
��

ev
��

Uv(g)

ev
��

DCgen(
−→
Q )

(�+)2
�� DCgen(

−→
Q ).

The inverse automorphism 
− = (�−)2 is defined in a similar way.

Using this technique, we can give a new proof of the following well-known result,
see [45, 40].

LEMMA 3.15. The composition algebra C(
−→
Q ) contains all the elements [X ], where

X is either an indecomposable pre-injective module or an indecomposable pre-projective
module.

Proof. Let X be either pre-projective or pre-injective indecomposable
representation of

−→
Q . Since the automorphism 
+ acts on the Drinfeld double DC(

−→
Q ),

we know that 
+([X ]) belongs to DC(
−→
Q ). Moreover, 
+([X ]) has the form [Y ]±Kα

for some indecomposable pre-projective or pre-injective representation Y and some
α ∈ K . As in Corollary 2.5, we have a triangular decomposition

DC(
−→
Q ) = C̄(

−→
Q )+ ⊗�̃ �̃[K ] ⊗�̃ C̄(

−→
Q )−.

From this fact it follows that DC(
−→
Q ) ∩ H(

−→
Q )± = C(

−→
Q )± := C̄(

−→
Q )+ ⊗�̃ �̃[K ]. Hence,

the element 
+([X ]) has to belong to one of the aisles C(
−→
Q )±. The proof for 
−([X ])

is analogous. Since any indecomposable pre-projective or pre-injective object X is (up
to a shift) of the form 
m(S), where m ∈ � and S is a simple object in Rep(

−→
Q ), this

implies the claim. �

4. Composition algebra of the category of coherent sheaves on �1. In this
subsection, we consider the composition subalgebra of the category of coherent sheaves
on the projective line �1.

First note that the maps Pic(�1)
deg−→ � and K0(Coh(�1))

(rk,deg)−−−−→ �2 are
isomorphisms of abelian groups. Next, recall some well-known facts on coherent
sheaves on �1.

THEOREM 4.1. The indecomposable objects of the category Coh(�1) are
(1) line bundles O�1 (n), n ∈ �;
(2) torsion sheaves Tt,x := O�1/mt

x, where x ∈ �1 is a closed point and t ∈ �>0.
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DEFINITION 4.2. Let Tor(�1) be the abelian category of torsion coherent sheaves
on �1 and H(�1)tor ⊆ H(�1) be its Hall algebra. For any integer r ≥ 1 consider the
element

1(0,r) :=
∑

T ∈Tor(�1): T̄ =(0,r)

[T ] ∈ H(�1)tor.

Next, consider the family {Tr}r≥1 determined by {1(0,r)}r≥1 using the generating series

1 +
∞∑

r=1

1(0,r)tr = exp
( ∞∑

r=1

Tr

[r]v
tr
)
.

Finally, the elements {�r}r≥1 are defined by the generating series

1 +
∞∑

r=1

�rtr = exp

(
(v−1 − v)

∞∑
r=1

Trtr

)
.

In what follows, we set 1(0,r) = T0 = �0 = [0] = 1.

PROPOSITION 4.3. In the notations as above we have the following:
� Any of three families {1(0,r)}r≥1, {Tr}r≥1 and {�r}r≥1 introduced in Definition 4.2,

generates the same subalgebra U(�1)tor of the Hall algebra H(�1)tor;
� For any r, s ≥ 1 we have the equalities:

�(Tr) = Tr ⊗ 1 + K(0,r) ⊗ Tr and (Tr, Ts) = δr,s
[2r]

r(v−1 − v)
.

Proof. The first part of this proposition is trivial, a proof of the second can be
found in [38]. �

Using this proposition, we get the following statement.

LEMMA 4.4. In the notation as above we have (�r, Tr) = [2r]
r for any r ∈ �>0.

Proof. For a sequence of non-negative integers c = (cr)r∈�>0 such that all but finitely
many entries are zero, we set

Tc :=
∞∏

r=1

Tcr
r

cr!
and c =

∞∑
r=1

rcr.

Then, we have

�(Tc) =
∑

a+b=c

TaK(0,b) ⊗ Tb.

In particular, by induction we obtain

(
Tc, Tc

) =
⎧⎨⎩

[2c]
c(v−1 − v)

if c = (0, . . . , 0, 1
c−th pl

, 0, . . . ),

0 otherwise
.
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Using the formula �r = (v−1 − v)Tr + monomials of length ≥ 2 in Ts, the
statement follows. �

Summing up, the first family of generators {1(0,r)}r≥0 of the algebra U(�1)tor has
a clear algebro–geometric meaning. The second set {Tr}r≥0 has a good behaviour with
respect to the bialgebra structure: All the generators Tr are primitive and orthogonal
with respect to Green’s pairing. The role of the third family {�r}r≥0 is explained by the
following proposition.

PROPOSITION 4.5. For any n ∈ � we have

�([O�1 (n)]) = [O�1 (n)] ⊗ 1 +
∞∑

r=0

�rK(1,n−r) ⊗ [O�1 (n − r)].

Proof. We refer to Theorem 3.3 in [25] or Section 12.2 in [37] for a proof of this
result. �

REMARK 4.6. In the next section, we shall need another description of the elements
�r, see for example Example 4.12 in [38],

�r = v−r
∑

x1,...,xm∈�1; xi �=xj 1≤i �=j≤m
t1,...,tm :

∑m
i=1 ti deg(xi)=r

m∏
i=1

(1 − v2 deg(xi))[Tti,xi ].

DEFINITION 4.7. The composition algebra U(�1) is the subalgebra of the Hall
algebra H(Coh(�1)) generated by the elements Ln := [O�1 (n)], Tr and Kα, where n ∈
�, r ≥ 1 and α ∈ K0(Coh(�1)) ∼= �2. We also use the notations δ = (0, 1) ∈ K0(�1),
C = Kδ and K = K(1,0).

A complete list of relations between the generators of the composition algebra
U(�1) was obtained by Kapranov [25] and Baumann–Kassel [2], see also Section 4.3
in [38].

THEOREM 4.8. The elements Ln, Tr, K and C satisfy the following relations:
(1) C is central;
(2) [K, Tn] = 0 = [Tn, Tm] for all m, n ∈ �>0;
(3) KLn = v−2LnK for all n ∈ �;
(4) [Tr, Ln] = [2r]

r Ln+r for all n ∈ � and r ∈ �>0;
(5) LmLn+1 + LnLm+1 = v2(Ln+1Lm + Lm+1Ln) for all m, n ∈ �.
Let U(�1)vec be the subalgebra of U(�1) generated by the elements Ln, n ∈ �.

Then the �̃-linear map U(�1)vec ⊗�̃ U(�1)tor ⊗�̃ �̃[K ]
mult−−→ U(�1) is an isomorphism.

In particular, the elements

Bm, l, a, b =
∏
n∈�

Lmn
n ◦

∏
r∈�+

Tlr
r ◦ KaCb,

where a, b ∈ �, m = (mn)n∈� and l = (lr)r∈�>0 are sequences of non-negative integers such
that all but finitely entries are zero, form a basis of U(�1).

It turns out that in order to relate the reduced Drinfeld double DU(�1) with
Drinfeld’s new presentation of Uv(ŝl2) [16], one has to modify the definition of the
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generators T±
r and �±

r . Similarly to Corollary 2.5, we have a triangular decomposition

DU(�1) = Ū(�1)+ ⊗�̃ �̃[K ] ⊗�̃ Ū(�1)−,

where K = K0(�1) ∼= �2 is the K-group and the element C = K(0,1) is central, see also
[9]. Consider the group K ′ := � ⊕ 1

2 � and the algebra D̃U(�1) obtained from DU(�1)

by adding two central generators C± 1
2 = K(0,± 1

2 ) such that C
1
2 C− 1

2 = 1 = C− 1
2 C

1
2 and

(C
1
2 )2 = C. For any r ∈ �>0 we set T̃±

r = T±
r · C∓ r

2 and �̃±
r = �±

r · C∓ r
2 . Then we

have

�
(
T̃+

r

) = T̃+
r ⊗ C− r

2 + C
r
2 ⊗ T̃+

r , r ∈ �>0

and

�(L+
n ) = L+

n ⊗ 1 + KCn ⊗ L+
n +

∞∑
r=1

�̃+
r KCn− r

2 ⊗ L+
n−r, n ∈ �.

Note that by Lemma 4.4 we have (�̃r, T̃r) = (�r, Tr) = [2r]
r . Using the relations of the

Drinfeld double and rewriting the relations of Theorem 4.8, we obtain the following:
(1) [K, T̃±

n ] = 0 = [T̃±
n , T̃±

m ] for all m, n ∈ �>0.
(2) KL±

n = v∓2L±
n K for all n ∈ �.

(3) [T̃±
r , L±

n ] = [2r]
r L±

n+rC∓ r
2 for all n ∈ � and r ∈ �>0.

(4) [L±
n , T̃∓

r ] = [2r]
r L±

n−rC∓ r
2 for all n ∈ � and r ∈ �>0.

(5) [T̃+
r , T̃−

s ] = δr,s
[2r]

r
C−r−Cr

v−1−v
, where r, s ∈ �>0.

(6) Finally, we have

[
L+

n , L−
m

] =

⎧⎪⎪⎨⎪⎪⎩
v

v − v−1 �̃+
n−mKC

m+n
2 if n > m

0 if n = m
v

v−1 − v
�̃−

m−nK−1C− m+n
2 if n < m

.

DEFINITION 4.9. Consider the R–algebra Uv(Lsl2) generated by the elements
X±

n (n ∈ �), Hr (r ∈ � \ {0}), C± 1
2 and K± subject to the following relations:

(1) C
1
2 is central.

(2) K±K∓ = 1 = K∓K±, C
1
2 C− 1

2 = 1 = C− 1
2 C

1
2 .

(3) [K, Hr] = 0 for all r ∈ � \ {0}, KX±
n = v∓2X±

n K for all n ∈ �.
(4) We have the Heisenberg-type relations

[
Hm, Hn

] = δm+n,0
[2m]

m
Cm − C−m

v − v−1

for all m, n ∈ � \ {0}.
(5) We have the Hecke-type relations

[
Hr, X±

n

] = ± [2r]
r

X±
n+rC

∓ |r|
2

for all n ∈ � and r ∈ � \ {0}.
(6) X±

m X±
n+1 + X±

n X±
m+1 = v±2

(
X±

n+1X±
m + X±

m+1X±
n ) for all m, n ∈ �.
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(7) Finally, for all m, n ∈ � we have[
X+

m , X−
n

] = v

v − v−1

(

+

m+nC
m−n

2 − 
−
m+nC

n−m
2

)
Ksign(m+n),

where 
±
±r(r ≥ 1) are given by the generating series

1 +
∞∑

r=1


±
±rt

r = exp

(
±(v−1 − v)

∞∑
r=1

H±rtr

)

and 
±
±r = 0 for r < 0.

REMARK 4.10. Similar to the case of Uv(ŝl2), our presentation of Uv(Lsl2) slightly
differs from the conventional one, as used in [27, 12, 22]. To pass to their notation, one
has to replace v by v−1 at the first step and then replace vX−

n by −X−
n for all n ∈ � at

the second, see also Remark 3.13.

PROPOSITION 4.11. Let Uq(Lsl2) = Uv(Lsl2) ⊗R �̃q. Then the map evq :
Uq(Lsl2) → D̃U(�1) given by the rule: X+

n �→ L+
n , X−

n �→ L−
−n for n ∈ �, Hr �→ T̃+

r
for r ∈ �>0 and Hr �→ −T̃−

−r for r ∈ �<0, 
+
r �→ �̃+

r for r ∈ �>0 and 
−
r �→ �̃−

−r for
r ∈ �<0, K �→ K and C

1
2 �→ C

1
2 , is an isomorphism of algebras.

Proof. From the list of relations of Theorem 4.8 it follows that the morphism evq

is well defined. Next, consider the elements

Bm′, l′, a, b, m′′, l′′ =
∏
n∈�

[X+
n ](m

′
n) ◦

∏
r∈�>0

(Hr)l′r ◦ KaC
b
2 ◦

∏
n∈�

[X−
n ](m

′′
n ) ◦

∏
r∈�<0

(Hr)l′′r

of Uv(Lsl2), where (m′
n)n∈�, (m′′

n)n∈�, (l′r)r∈�>0 and (l′′r )r∈�>0 run through the set of all
sequences of non-negative integers such that all but finitely many entries are zero, and
a, b ∈ �. Using the defining relations it is not difficult to show that all the elements
Bm′, l′, a, b, m′′, l′′ generate Uv(Lsl2) as R-module. Indeed, observe first that any element
of Uv(Lsl2) can be written as an R-linear combination of elements of the form A+ ·
Z · A−, where Z ∈ 〈C± 1

2 , K±〉 and A± ∈ 〈X±
n , H±r| n ∈ �, r ∈ �>0〉. Next, using the

Hecke-type relations of Definition 4.9, we can write any element A ∈ 〈Xn, Hr, C± 1
2 | n ∈

�, r ∈ �>0〉 as an R-linear combination of elements of the form V · T , where V ∈
〈Xn| n ∈ �〉 and T ∈ 〈Hr, C± 1

2 | r ∈ �>0〉. Finally, it remains to note that for all m, n ∈
� such that m > n we can write XmXn as an R-linear combination of the elements
XnXm, Xn+1Xm−1, . . . , Xn+lXm−l, where l is the entier of m−n

2 .
Moreover, for any q ∈ P the elements evq(Bm′, l′, a, b, m′′, l′′ ) are linearly independent

in D̃U(�1). Hence, Uv(Lsl2) is free as an R-module and Bm′, l′, a, b, m′′, l′′ is its basis over
R. In particular, the morphism evq is an isomorphism for any q ∈ P . �

COROLLARY 4.12. Let D̃Ugen(�1) := ∏
q∈P

DU(�1(�q)), then the R-linear map

ev =
∏
q∈P

evq : Uv(Lsl2) −→ D̃Ugen(�1)

is injective. Moreover, the elements Bm′, l′, a, b, m′′, l′′ form the Poincaré–Birkhoff–Witt
(PBW) basis of Uv(Lsl2) viewed as an R-module.
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REMARK 4.13. The Hall algebra approach to the construction of the PBW bases
of quantum groups is due to Ringel [34]. The case of U+

v (Lsl2) was considered by
Baumann and Kassel [2], see also [45]. The PBW bases of quantum loop algebras were
studied by Beck [3] and Beck et al. [4].

REMARK 4.14. Consider the functor 
 = O�1 (−2) ⊗ − : Db(Coh(�1)) →
Db(Coh(�1)). Then it induces an automorphism of the algebra D̃U(�1) preserving
the subalgebra DU(�1) and given by:

L±
n


−→ L±
n∓2, T±

r

−→ T±

r , �±
r


−→ �±
r , T̃±

r

−→ T̃±

r , �̃±
r


−→ �̃±
r ,

C
1
2


−→ C
1
2 , K


−→ KC−2.

In particular, it corresponds to the algebra automorphism 
 of Uv(Lsl2) such that

X±
n


−→ X±
n∓2, Hr


−→ Hr, 
r

−→ 
r, C

1
2


−→ C
1
2 , K


−→ KC−2.

Moreover, the following diagram is commutative:

Uv(Lsl2) 
 ��

ev
��

Uv(Lsl2)

ev
��

D̃Ugen(�1)

 �� D̃Ugen(�1).

5. Categorification of the Drinfeld–Beck isomorphism for Uv(ŝl2). Next, we
elaborate a connection between the reduced Drinfeld doubles DC(

−→
Q ) and DU(�1).

THEOREM 5.1. Let F = O�1 (−1) ⊕ O�1 and B = End�1 (F). Then,

� := � Hom�1 (F , − ) : Db(Coh(�1)) −→ Db(mod − B
)

is an equivalence of triangulated categories. Identifying the category of right B-modules
with the category of representations of the Kronecker quiver

−→
Q we have the following

statements.
(1) In the diagram of categories and functors

Db(Coh(�1))
� ��

O
�1 (∓2)⊗ −

��

Db(Rep(
−→
Q ))

(��±)2

��
Db(Coh(�1))

� �� Db(Rep(
−→
Q ))

both compositions are isomorphic.
(2) �(O�1 (n − 1)) ∼= Pn if n ≥ 0 and I−n−1[−1] if n < 0.
(3) � induces an equivalence between the category Tor(�1) of torsion coherent sheaves

on �1 and the subcategory Tub(
−→
Q ) of Rep(

−→
Q ), which is the additive closure of

the category of modules lying in the tubes.
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Proof. The result that � is an equivalence of categories is due to Beilinson [5],
see also [18]. Next, the functor 
 = O�1 (−2) ⊗ − is the Auslander–Reiten translate
in Db(Coh(�1)), see [7, 31]. On the other hand, by Theorem 3.2 the functor (��±)2

is the Auslander–Reiten translate in Db(Rep(
−→
Q )). Since � is an equivalence, we have

� ◦ 
 ∼= (��+)2 ◦ �, see for example Proposition I.2.3 in [31].
It is clear that the algebra B = End�1 (F) is isomorphic to the path algebra of the

Kronecker quiver. However, in order to describe the images of the indecomposable
objects of Db(Coh(�1)) in a precise way, we have to specify this isomorphism. Recall
that a choice of homogeneous coordinates (x : y) on �1 fixes two distinguished sections
x, y ∈ Hom�1 (O�1 ,O�1 (1)) vanishing at (0 : 1) and (1 : 0), respectively. Let e1 and e2 be
the primitive idempotents of A := Bop corresponding to the identity endomorphisms
of O�1 and O�1 (−1), respectively. Then we have: �(O�1 ) ∼= Ae1 and �(O�1 (−1)) ∼= Ae2.
We identify the path algebra of the Kronecker quiver

−→
Q with the algebra A in such

a way that the sections x and y got identified with the upper and lower arrows of
−→
Q

under

Hom�1

(
O�1 ,O�1 (1)

) �−→ HomA
(
Ae2, Ae1

) = e2Ae1
∼= e2 · k

−→
Q · e1.

Note that for all n ∈ � the triangle

O�1 (n − 1)
(−x y)−−−→ O�1 (n)⊕2 ( y

x )−−→ O�1 (n + 1) −→ O�1 (n − 1)[1]

is almost split in Db(Coh(�1)). Since � maps almost split triangles to almost split
triangles, Theorem 3.6 implies the formula for the images of line bundles under functor
�. Applying Theorems 2.6, 3.6 and 4.1, one can easily deduce that � restricts to an
equivalence of abelian categories Tor(�1) and Tub(

−→
Q ).

This correspondence can be made more precise. Let π = (a : b) ∈ �1 be a closed
point of degree one given by the homogeneous form pπ (x, y) = ay − bx. Then the
unique simple torsion sheaf T1, π supported at π has a locally free resolution

0 −→ O�1 (−1)
pπ−→ O�1 −→ T1, π −→ 0.

Since �(O�1 (−1)) = P0 and �(O�1 ) = P1, we conclude that �(T1, π ) ∼= T1, π . It implies
that for any n ∈ �>0 we have �(Tn, π ) ∼= Tn, π . The general case can be treated similarly.
�

Applying Cramer’s Theorem 2.8 we obtain the following.

COROLLARY 5.2. The assignment DH(�1)
�→ DH(

−→
Q ) is an isomorphism of algebras.

Our next goal is to show this isomorphism restricts on the isomorphism between
the reduced Drinfeld doubles of the composition subalgebras DU(�1) → DC(

−→
Q ). For

this it is convenient to consider a functor � : Db(Rep(
−→
Q )) → Db(Coh(�1)), which is

quasi-inverse to �.

THEOREM 5.3. The algebra isomorphism � : DH(
−→
Q ) → DH(�1) restricts on the

isomorphism of the reduced Drinfeld doubles of the composition subalgebras � :
DC(

−→
Q ) → DU(�1).
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Proof. We use the notation Ei = [Si]+, Fi = [Si]− and Ki = KS̄i
, i = 1, 2 for the

elements of the algebra DC(
−→
Q ). Then we have:

E1
�−→ v−1L−

−1KC−1, E2
�−→ L+

0 , F1
�−→ v−1L+

−1K−1C,

F2
�−→ L−

0 , K1
�−→ K−1C, K2

�−→ K.

This implies that the image of the subalgebra DC(
−→
Q ) is contained in DU(�1).

Moreover, from the commutativity of the diagram

DC(
−→
Q )

� ��
� �

��

DU(�1)
��

��
DH(

−→
Q )

� �� DH(�1)

we derive that the algebra homomorphism � : DC(
−→
Q ) → DU(�1) is injective. To show

it is also surjective, we have to prove that all the elements T±
r and �±

r are in the image of
� for all r ≥ 1. Note that for any pair of integers n > m we have the following relation
in DU(�1): [

L+
n , L−

m

] = v

v − v−1
�+

n−mKCm.

This implies that �±
r belong to �(DC(

−→
Q )) for all r > 0. Hence, the elements T±

r belong

to �(DC(
−→
Q )) for all r > 0. This shows the surjectivity of the map � : DC(

−→
Q ) →

DU(�1). �
As an application of the developed technique, we get a shorter and (on our mind)

more conceptual proof of the following formula, obtained for the first time by Szántó
(Theorem 4.3 in [40]).

THEOREM 5.4. In the Hall algebra of the Kronecker quiver
−→
Q we have for any

m, n ∈ �≥0:

[Im] · [Pn] − v2[Pn] · [Im] = v−(m+n+1)

v−1 − v

∑
π1,...,πl∈Q; πi �=πj 1≤i �=j≤l

t1,...,tl :
∑l

i=1 ti deg(πi)=m+n+1

l∏
i=1

(
1 − v2 deg(πi)

)[
Tti,πi

]
,

where we sum over the set Q of all homogeneous prime ideals of height one in the ring
k[x, y]. In particular, the left-hand side of this formula depends only on the sum m + n.

Proof. Let m and n be non-negative integers such that m + n + 1 = r. Then, we
have the following identity in the reduced Drinfeld double DU(�1):

L−
−m−1L+

n − L+
n L−

−m−1 = 1
q − 1

�+
r KC−m−1.

Note that the algebra homomorphism � : DU(�1) → DC(
−→
Q ) acts as follows:

L−
−m−1 �→ v[Im]+K−m−1

1 K−m
2 , L+

n �→ [Pn]+, K(1,−t) = KC−t �→ K−t
1 K−t+1

2 ,

https://doi.org/10.1017/S0017089511000607 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000607


TWO DESCRIPTIONS OF Uv(ŝl2) 301

where m, n ∈ �≥0. It remains to observe that by Remark 4.6 we have:

�r := �(�r) = v−r
∑

t1,...,tl :
∑l

i=1 ti deg(πi)=r
π1,...,πl∈Q; πi �=πj1≤i �=j≤l

l∏
i=1

(
1 − v2 deg(πi)

)[
Tti,πi

]
.

In particular, we get the equality:

v[Im]K−m−1
1 K−m

2 [Pn] − v[Pn][Im]K−m−1
1 K−m

2 = 1
q − 1

�rK−m−1
1 K−m

2 .

Taking into account the fact that K1K2 is central and K−1
1 [Pn] = v−2[Pn]K−1

1 , we end
up precisely with Szántó’s formula. Our proof explains the conceptional meaning of
this equality: This formula in the composition subalgebra of Rep(

−→
Q ) is a translation

of a ‘canonical’ relation in the reduced Drinfeld double of U(�1). �
Another application of our approach is the following important result, which was

stated by Drinfeld [16] and proven by Beck [3], see also [14] and [23].

THEOREM 5.5. We have an injective homomorphism of R–algebras � : Uv(ŝl2) −→
Uv(Lsl2) given by the following formulae:

E1
�−→ v−1X−

1 KC−1, E2
�−→ X+

0 , F1
�−→ v−1X+

−1K−1C , F2
�−→ X−

0 ,

K1
�−→ K−1C, K2

�−→ K.

Its image is the subalgebra of Uv(Lsl2) generated by the elements X±
n , Tr, C± and K±.

Moreover, the following diagram is commutative for any m ∈ �:

Uv(ŝl2)

m

��

�

��

Uv(ŝl2)

�

��
Uv(Lsl2) 
m

�� Uv(Lsl2).

Proof. This result follows directly from the commutativity of the following diagram:

Uv(ŝl2)

±

��

�

��

ev ������������ Uv(ŝl2)

�

��

ev		����������

DCgen(
−→
Q )


±
��

�

��

DCgen(
−→
Q )

�

��
D̃Ugen(�1)


±
�� D̃Ugen(�1)

Uv(Lsl2) 
±
��

ev


����������

Uv(Lsl2),

ev
������������
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which is obtained by patching together the diagrams, constructed in Corollary 3.12,
Remark 4.14 and Theorem 5.3. �

REMARK 5.6. The algebra homomorphism � : Uv(ŝl2) → Uv(Lsl2) is not surjective
because the elements C± 1

2 do not belong to the image of �.

REMARK 5.7. In order to pass to the ‘conventional form’ of the Drinfeld–Beck
(iso)morphism, one has to apply the automorphisms of Uv(ŝl2) and Uv(Lsl2) described
in Remarks 3.13 and 4.10. In that terms the ‘categorical isomorphism’ � of Theorem
5.5 is equal to the composition of the conventional one (as can be found, for instance,
in [22]) combined with the automorphism of Uv(ŝl2) given by the rule E1 �→ −E1,
F1 �→ −F1 and leaving the remaining generators unchanged.

As a final application of the technique of Hall algebras to the study of the quantum
affine algebra Uv(ŝl2), we shall reprove several known results on its integral form.

DEFINITION 5.8. The integral form U int
v (ŝl2) of the quantum affine algebra Uv(ŝl2)

is the �[v, v−1] subalgebra of Uv(ŝl2) generated by E(n)
i = En

i
[n]! , F (n)

i = Fn
i

[n]! for all n ∈ �≥0,
i = 1, 2, K1 and K2.

The following result is well known, see for example [27].

THEOREM 5.9. The algebra U int
v (ŝl2) is a Hopf algebra over �[v, v−1] and we have:

U int
v (ŝl2) ⊗�[v,v−1] R = Uv(ŝl2).

Let U int
v (Lsl2) := �(U int

v (ŝl2)). As an application of our approach, we show that
certain elements of Uv(Lsl2) actually belong to U int

v (Lsl2). First note the following
well-known fact, see for example [11].

LEMMA 5.10. The elements X±(m)
n ∈ Uv(Lsl2) belong to the integral form U int

v (Lsl2)
for all n ∈ � and m ∈ �>0.

Proof. Let A = Rep(
−→
Q ) and X ∈ Ob(A) be an object such that EndA(X) = k and

Ext1A(X, X) = 0. Then, for any n ∈ �≥0 we have the following equality in the Hall
algebra H(A): [

X⊕n] = vn(n−1) [X ]n

[n]!
= vn(n−1)[X ](n).

In particular, for any i ∈ {1, 2}, n ∈ �>0 and and q ∈ P we have evq(E(n)
i ) = vn(1−n)[S⊕n

i ].
Our next aim is to show the automorphisms �± of the algebra Uv(ŝl2) preserve the
subalgebra U int

v (ŝl2). By Corollary 3.12 it is sufficient to check that for any n ∈ �>0

we have ev−1
q ([P⊕n

1 ]) and ev−1
q ([I⊕n

1 ]) belong to the subalgebra U int,+
v (ŝl2). To show

this, we use the following trick. For a representation X = U
A

��

B

�� V of the

Kronecker quiver
−→
Q we denote r(X) := dimk(Im(A) + Im(B)). For any n ∈ �>0 and

0 ≤ r ≤ 2n consider

1̃(r)
(n,2n) :=

∑
[X ]∈J: dim(X)=(n,2n)

r(X)=r

[X ] ∈ H(A).
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Then [P⊕n
1 ] = 1̃(2n)

(n,2n) and for all a, b ∈ �≥0 such that a + b = 2n we have the following
identity:

[S⊕a
2 ] ◦ [S⊕n

1 ] ◦ [S⊕b
2 ] = v−ab+2nb

b∑
r=0

∣∣∣Grk
(
b − r, 2n − r

)∣∣∣ 1̃(r)
(n,2n),

where |Grk(b − r, 2n − r)| = v(b−2n)(b−r) [2n−r]!
[b−r]![2n−b]! is the number of points of the

Grassmanian Grk(b − r, 2n − r). From this formula one can deduce that

[P1](n) =
∑

a+b=2n

(−1)av−b[S2](a) ◦ [S1](n) ◦ [S2](b).

In a similar way, one can show that

[I1](n) =
∑

a+b=2n

(−1)av−b[S1](a) ◦ [S2](n) ◦ [S1](b).

From the invariance of U int
v (ŝl2) under the action of �± it also follows that for any

indecomposable pre-projective or pre-injective object X ∈ Ob(A) and n ∈ �>0, the
element [X⊕n] belongs to Cgen(

−→
Q ) and lies in the image of the homomorphism ev :

U int,+
v (ŝl2) → Cgen(

−→
Q ). Since for any c ∈ � and n ∈ �≥0 the vector bundle O�1 (c)⊕n is

isomorphic to �(X⊕n) for an appropriate shift of an indecomposable pre-projective or
pre-injective module X , Theorem 5.5 yields the claim. �

LEMMA 5.11. For any pair of non-negative integers (a, b), the element

1(a,b) =
∑

[X ]∈J : X̄=(a,b)

[X ] ∈ H(
−→
Q )

belongs to the composition subalgebra C(
−→
Q ).

Proof. It follows from the equality 1(a,b) = v−2ab[S⊕a
1 ] ◦ [S⊕b

2 ]. �

COROLLARY 5.12. For any pair of non-negative integers (a, b) we have a well-defined
element 1(a,b) ∈ Cgen(

−→
Q ) belonging to the image of ev : U int,+

v (ŝl2) → Cgen(
−→
Q ).

LEMMA 5.13. Let A = Rep(
−→
Q ), � = {a ∈ 
 | Im(a) > 0} and Z : K0(A) → 
 be

any additive group homomorphism such that for any non-zero object X of A we have:
Z(X̄) ∈ �. For any α ∈ K0(A) denote

1ss
α = 1ss

α,Z :=
∑

[X ]∈J: X∈Ass
α

[X ],

where Ass
α is the category of semi-stable objects of class α with respect to the stability

condition Z, see [36] for the definition. Then we have: 1ss
α ∈ C(

−→
Q ).

Proof. First note that the existence and uniqueness of the Harder–Narasimhan
filtration [36] of an object of our abelian category A implies the following identity for
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an arbitrary class α ∈ K0(A) and a given stability condition Z:

1α = 1ss
α +

∑
t≥2

∑
α1+···+αt=α

μ(α1)≥···≥μ(αt)

v
∑

i<j〈αiαj〉1ss
α1

◦ · · · ◦ 1ss
αt

.

Since the expression on the right-hand side is a finite sum, by induction we obtain that
for all classes α ∈ K0(A) the element 1ss

α belongs to the subalgebra of H(
−→
Q ) generated

by all the elements {1β}β∈K0(A). According to Lemma 5.11, this algebra coincides with

the composition subalgebra C(
−→
Q ), which implies the claim. �

REMARK 5.14. A result of Reineke (Theorem 5.1 in [30]) provides an explicit
formula expressing the elements {1ss

α } via {1β} for an arbitrary stability function Z:

1ss
α,Z = 1α +

∑
t≥2

(−1)t−1
∑

α1+···+αt=α: ∀ 1≤s≤t−1
μ(α1+···+αs)>μ(α)

v
∑

i<j〈αiαj〉1α1 ◦ · · · ◦ 1αt .

Hence, the element 1ss
α = 1ss

α,Z ∈ Cgen(
−→
Q ) belongs to the image of the algebra

homomorphism ev : U int,+
v (ŝl2) → Cgen(

−→
Q ) for any class α ∈ K0(A) and a given

stability condition Z : K0(A) → �.

LEMMA 5.15. For any r ∈ �>0 the following element of the Hall algebra H(
−→
Q )

1̃(r,r) =
∑

X∈Tub(
−→
Q ) : X̄=(r,r)

[X ]

belongs to the composition algebra C(
−→
Q ). Moreover, it determines an element of Cgen(

−→
Q )

belonging to the image of the homomorphism ev : U int,+
v (ŝl2) → Cgen(

−→
Q ).

Proof. Consider the stability condition on the category Rep(
−→
Q ) defined by the

function Z : K0(Rep(
−→
Q )) → �2 given by the rule Z(mS̄1 + nS̄2) = (m − n, m + n).

Then the class of a pre-projective objects has the form (−1, l), l ∈ �>0, the class
of a pre-injective representations has the form (1, l), l ∈ �>0, whereas the classes of the
tubes have the form (0, l), l ∈ �>0. Recall that
� an object of an abelian category is semi-stable if and only if all its direct summands

are semi-stable with the same slope;
� any non-semi-stable object can be destabilised by an indecomposable one;
� there are no morphisms from a pre-injective object of Rep(

−→
Q ) to an object from a

tube.
Hence, 1̃(r,r) = 1ss

(r,r) for all r ∈ �>0. Applying Lemma 5.13 and Remark 5.14 we get the
claim. �

REMARK 5.16. Consider the standard stability condition on the category Coh(�1)
given by the function Z = (rk,− deg). Then it determines a stability condition on
the derived category Db(Coh(�1)) in the sense of Bridgeland [8] such that any
indecomposable object of Db(Coh(�1)) is Z-semi-stable. In particular, all objects of
the category Tor(�1) are semi-stable of slope 0. The stability condition on Rep(

−→
Q )

used in the proof of Lemma 5.15 induces a stability condition on the derived category
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Db(Rep(
−→
Q )). In the notations of [8], this stability condition is G̃L(2, �)+-equivalent

to the standard stability condition on Db(Coh(�1)).
The technique of stability conditions also plays a key role in our subsequent paper

[10] on the composition Hall algebra of a weighted projective line.

We conclude this section with a new proof of the following proposition, which was
obtained for the first time by Chari and Pressley in [11].

PROPOSITION 5.17. Consider the family of elements {Pr}r≥1 of Uv(Lsl2) defined by
the following generating series:

1 +
∞∑

r=1

PrC− r
2 tr = exp

( ∞∑
r=1


r

[r]
tr
)
.

Then Pr belong to the algebra U int
v (Lsl2) for all r ∈ �>0.

Proof. The elements Pr have a clear meaning in the language of the Hall algebra
H(�1). Indeed, by Definition 4.2 we have evq(Pr) = 1rδ for any q ∈ P .

On the other side, Theorem 5.1 implies that 1rδ = �(̃1(r,r)) for all r ∈ �>0. By
Lemma 5.15 we know that 1̃(r,r) belongs to the image of the algebra homomorphism

ev : U int,+
v (ŝl2) → DCgen(

−→
Q ). Hence, 1rδ belongs to the image of the algebra

homomorphism ev : U int
v (Lsl2) → DUgen(�1). By Theorem 5.5, the element Pr belongs

to the algebra U int
v (Lsl2) for all r ∈ �>0, too. �
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