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Abstract

We consider a Markov control model with Borel state space, metric compact action
space, and transitions assumed to have a density function with respect to some probabil-
ity measure satisfying some continuity conditions. We study the optimization problem
of maximizing the probability of visiting some subset of the state space infinitely often,
and we show that there exists an optimal stationary Markov policy for this problem. We
endow the set of stationary Markov policies and the family of strategic probability mea-
sures with adequate topologies (namely, the narrow topology for Young measures and
the ws∞-topology, respectively) to obtain compactness and continuity properties, which
allow us to obtain our main results.
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1. Introduction

Markov decision processes (MDPs) are a family of controlled stochastic processes which
are suitable for the modeling of several sequential decision-making problems under uncer-
tainty. They arise in many applications, such as engineering, computer science, telecommuni-
cations, finance, etc. Their study started in the late 1950s and the early 1960s with the seminal
works of Bellman, Blackwell, Howard, and Veinott, to name just a few authors; see, e.g.,
[8, 21]. Both the theoretical foundations and applications of MDPs continue to be areas of
active research. From a theoretical point of view, there are several techniques which allow one
to establish the existence of optimal controls, as well as to analyze the main features of the opti-
mal value function. Roughly speaking, there exist two families of such techniques. The first is
related to the dynamic programming principle established by Bellman, and is also known as
the backward induction principle for the finite-horizon case. In this framework, the optimality
equation states that the value function is the fixed point of an operator (the so-called Bellman
operator) which incorporates the current cost plus an expected value related to future costs.
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Maximizing the probability of visiting a set infinitely often 1425

This approach and its various extensions, such as the value iteration and policy iteration algo-
rithms, are studied in detail in the references [6, 9, 16, 18–20, 26, 32] (this is a non-exhaustive
list). The second family of methods is based on an equivalent formulation of MDPs in a lin-
ear programming context. The key idea is to transform the original dynamic control problem
into an infinite-dimensional static optimization problem over a space of finite measures. In
this setting, the underlying variables of the linear program are given by the occupation mea-
sures of the controlled process, satisfying the so-called characteristic equation, and the value
of the linear program is the integral of the one-step cost function with respect to an occupa-
tion measure. This last technique is particularly well adapted to problems with constraints; see
the references [10, 18, 24–26], among others, for a detailed presentation and analysis of this
approach. Although different, these two approaches share a common characteristic: namely,
they are well adapted to additive-type performance criteria, but they do not allow for the study
of non-additive performance criteria.

It must be emphasized that the non-additive type of criterion has undergone significant
development in recent years; see for example the risk-sensitive optimality criterion [7, 12, 34]
and the so-called gambling houses [33]. The distinctive feature of these non-additive criteria is
that the criterion to be optimized cannot be decomposed as the sum of individual contributions
(typically, the rewards earned at each single transition), nor is it linearly related to such sums (as
for the classical long-run average-reward optimality criterion). Non-additive criteria introduce
some nonlinearity in the objective function via, e.g., a utility function. For instance, in risk-
sensitive models, the criterion to be maximized is the expected utility of the total rewards over
a finite time horizon or the total discounted rewards over an infinite time horizon. Nonlinearity
is introduced precisely by the utility function, which often takes the form of a power function
or a logarithmic function. The usual technique for dealing with such problems is to develop
an ad hoc dynamic-programming-like approach by introducing an operator which is nonlinear
in the reward function. In gambling house problems, the expectation of a long-run average
reward is maximized, making this again a nonlinear problem. Conditions under which this
problem corresponds, in fact, to an average-reward MDP are studied. In summary, non-additive
problems are usually tackled by relating them to other standard additive problems or by using
operators resembling the Bellman principle. For the problem we are interested in, which is also
of a non-additive nature, Schäl [31] developed a ‘vanishing discount factor’ approach based on
total-expected-reward MDPs (details are given in the next paragraph).

In this paper, we study another non-additive optimality criterion which aims at maximizing
the probability of visiting a certain subset of the state space infinitely often. This criterion is
also asymptotic; more precisely, the performance function cannot be approximated by finite-
horizon criteria, since the distribution of the state process over a finite horizon does not allow
one to characterize the whole history of the process (or at least its tails) and contains no rel-
evant information about whether a subset of the state space has been reached infinitely often.
It is important to emphasize that this optimality criterion has been very little studied in the
literature. To the best of our knowledge, it was first studied by Schäl in [31], who showed the
existence of an optimal deterministic stationary policy in the context of an MDP with finite
state space. More recently, in [15], this existence result has been generalized to models with
countable state space. The approach proposed by Schäl in [31] uses properties of continuity
of matrix inversion and of fundamental matrices of finite-state Markov chains and is therefore
restricted to the finite-state framework. The results obtained in [15] rely heavily on the fact
that the state space is countable. It should be noted that in this particular context the space of
deterministic stationary policies is compact with respect to pointwise convergence.
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1426 F. DUFOUR AND T. PRIETO-RUMEAU

The objective of the present paper is to extend these results to a model with a general Borel
state space and to show the existence of an optimal randomized stationary policy. This is a
continuation of the results presented in [15], in the sense that we take up the idea of introducing
an auxiliary control model as a means of analyzing the original control model. This auxiliary
model is an MDP with total expected reward that, roughly speaking, can be studied by finding
a suitable topology on the set of strategic probability measures to ensure that this set is compact
and the expected reward functional is semicontinuous.

In relation to [15], an important difficulty in our paper is to show, in the context of a gen-
eral state space, the compactness of the space of strategic measures induced by randomized
stationary policies; this is unlike the case of a countable state space, for which the proof was
straightforward. Our approach relies on the introduction of Young measures to model random-
ized stationary policies and thus endow this space with a topology. In this framework, the space
of stationary strategic measures can be seen as the image of the space of Young measures under
a certain map. The difficulty is to show the continuity of this map. Another delicate point is to
provide a sufficient condition to ensure the continuity of the criterion for the auxiliary model
that is written as a function on the space of strategic measures. In [15], a condition is formu-
lated in terms of the entrance time to the set of recurrent states. This condition is based on the
fact that the countable state space of a Markov chain can be split into two classes: recurrent
and transient states. In the context of a general state space, this structural property is not that
simple. To overcome this difficulty, we introduce a general condition imposing a drift condi-
tion by using standard Foster–Lyapunov criteria. Under these conditions, we are able to prove
that the problem of maximizing the probability of visiting a set infinitely often has an optimal
policy which is Markov stationary. It is worth stressing that the result on the compactness of
strategic probability measures for stationary Markov policies (Theorem 2.1) is a new result and
is interesting in itself, not just in the context of the specific control model in this paper.

The problem studied in this paper (that of maximizing the probability of visiting a subset
of the state space infinitely often) can be applied in population dynamics problems in which
the population is controlled so as to be driven to some target set or to avoid some set. Indeed,
the symmetric problem of minimizing the probability of being absorbed by some subset of the
state space can be interpreted as the problem of preventing the population from being trapped in
some region of the state space. Research is currently in progress on a game-theoretic approach
to this problem, in which two competing species try to drive each other out of some region of
the state space by maximizing or minimizing the probabilities of remaining in that region from
some time onward.

Notation. We now introduce some notation used throughout the paper. We will write N=
{0, 1, 2, . . .}. On a measurable space (�,F ) we will write P(�) for the set of probability
measures, assuming that there is no risk of confusion regarding the σ -algebra on �. If (�′,F ′)
is another measurable space, a stochastic kernel on �′ given � is a mapping Q : � ×F ′ →
[0, 1] such that ω �→ Q(B|ω) is measurable on (�,F ) for every B ∈F ′, and B �→ Q(B|ω) is
in P(�′) for every ω ∈ �. We denote by B(�) the family of bounded measurable functions
f : � →R (here, R is endowed with its Borel σ -algebra). If Q is a stochastic kernel on �′
given � and f is a real-valued measurable function on �′, allowed to take infinite values,
we will denote by Qf the F -measurable function defined by the following (provided that the
integral is well defined):

Qf (ω) =
∫

�
′ f (z)Q(dz|ω) for ω ∈ �.
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Maximizing the probability of visiting a set infinitely often 1427

In general, for a product of measurable spaces we will always consider the product σ -algebra.
The indicator function of a set C ∈F is written IC.

Throughout this paper, any metric space S will be endowed with its Borel σ -algebra B(S).
Also, when considering the product of a finite family of metric spaces, we will consider the
product topology (which makes the product again a metric space). By C(S) we will denote the
family of bounded continuous functions f : S →R. Let (�,F ) be a measurable space and S
a metric space. We say that f : � × S →R is a Carathéodory function if f (ω, ·) is continuous
on S for every ω ∈ �, and f (·, s) is an F -measurable function for every s ∈ S. The family of
Carathéodory functions thus defined is denoted by Car (� × S). The family of Carathéodory
functions which, in addition, are bounded is denoted by Car b(� × S). When the metric space
S is separable, any f ∈ Car (� × S) is a jointly measurable function on (� × S,F ⊗B(S)).
The Dirac probability measure δs ∈P(S) concentrated at some s ∈ S is given by B �→ IB(s) for
B ∈B(S).

Given λ ∈P(S), let L1(S,B(S), λ) be the family of real-valued measurable functions on
S which are λ-integrable (as usual, functions which are equal λ-almost everywhere are identi-
fied). With the usual definition of the 1-norm, we have that L1(S,B(S), λ) is a Banach space
and convergence in norm is

fn
L1−→ f if and only if

∫
S

|fn − f |dλ → 0.

The family of λ-essentially bounded measurable functions is L∞(S,B(S), λ), and the essential
supremum norm in L∞ is denoted by ‖ · ‖. The weak∗ topology on the space L∞(S,B(S), λ),
denoted by σ (L∞(S,B(S), λ), L1(S,B(S), λ)), is the coarsest topology for which the
mappings

f �→
∫

S
fhdλ for h ∈ L1(S,B(S), λ)

are continuous. We will write fn
∗
⇀ f when∫

S
fnhdλ →

∫
S

fhdλ for every h ∈ L1(S,B(S), λ).

The rest of the paper is organized as follows. In Section 2, we define the original con-
trol model M and state some important preliminary results, the proof of one of these results
being postponed to Appendix A, at the end of the paper. A family of auxiliary MDPs Mβ ,
parametrized by 0 < β < 1, is introduced in Section 3. The main results of the paper are given
in Section 4.

2. Definition of the control model M
Elements of the control model M.

The MDP under consideration consists of the following elements:

• The state space X and the action space A are both Borel spaces endowed with their
respective Borel σ -algebras B(X) and B(A).

• For each x ∈ X, the nonempty measurable set A(x) ⊆ A stands for the set of available
actions in state x. Let K = {(x, a) ∈ X × A : a ∈ A(x)} be the family of feasible state–
action pairs. Assumption (A.1) below will ensure that K ∈B(X) ⊗B(A).
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1428 F. DUFOUR AND T. PRIETO-RUMEAU

• The initial distribution of the system is the probability measure ν ∈P(X), and the
transitions of the system are given by a stochastic kernel Q on X given K.

• Finally, regarding the performance criterion to be optimized (which we will define later),
a nontrivial measurable subset of the state space G ⊆ X is given.

Our main conditions on the control model M are stated next. In Assumption (A.2) we
introduce a reference probability measure λ ∈P(X).

Assumption A.

(A.1) The action set A is compact, and the correspondence from X to subsets of
A defined by x �→ A(x) is weakly measurable with nonempty compact values (see
Definition 18.1 in [1]).
(A.2) There exist a reference probability measure λ ∈P(X) and a measurable function
q : K × X →R

+ such that for every D ∈B(X) and every (x, a) ∈ K,

Q(D|x, a) =
∫

D
q(x, a, y)λ(dy). (2.1)

Also, for every x ∈ X we have the following continuity condition:

lim
k→∞

∫
X

|q(x, bk, y) − q(x, b, y)|λ(dy) = 0 whenever bk → b in A(x).

(A.3) The initial distribution ν is absolutely continuous with respect to λ in
Assumption (A.2).

Remark 2.1.

(a) Under Assumption (A.1), and as a consequence of Theorem 18.6 in [1], we have that K
is indeed a measurable subset of X × A.

(b) The continuity condition in Assumption (A.2) can equivalently be written as

q(x, bk, ·) L1−→ q(x, b, ·) for any x ∈ X when bk → b in A(x).

(c) The condition in Assumption (A.3) is not restrictive at all. Indeed, if it were not true
that ν � λ, then we would consider the reference probability measure η = 1

2 (ν + λ) in
Assumption (A.2), so that (2.1) would become

Q(D|x, a) =
∫

D
q(x, a, y)

dλ

dη
(y) η(dy)

and the continuity condition would be satisfied as well.

(d) The fact that X is a Borel space will be used to ensure that the ws∞-topology on the set of
strategic measures (details will be given below) coincides with the weak topology—see
[3, 23]—and that the set of strategic probability measures is compact with this topology.
Otherwise, no topological properties of X will be used.

Control policies. The space of admissible histories up to time n for the controlled process
is denoted by Hn for n ∈N. It is defined recursively by H0 = X and Hn = K × Hn−1 for any
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n ≥ 1, and it is endowed with the corresponding product σ -algebra. A control policy π is a
sequence {πn}n≥0 of stochastic kernels on A given Hn, denoted by πn(da|hn), such that for
each n ≥ 0 and hn = (x0, a0, . . . , xn) ∈ Hn we have πn(A(xn)|hn) = 1. The set of all policies is
denoted by �.

Dynamics of the control model. The canonical sample space of all possible state and actions
is � = (X × A)∞, and it is endowed with the product σ -algebra F . Thus, a generic element
ω ∈ � consists of a sequence of the form (x0, a0, x1, a1, . . . ), where xn ∈ X and an ∈ A for
any n ∈N. For n ∈N, the projection functions Xn and An from � to X and A respectively are
defined by Xn(ω) = xn and An(ω) = an for ω = (x0, a0, . . . , xn, an, . . . ), and they are called
the state and control variables at time n. The history process up to time n is denoted by Hn =
(X0, A0, . . . , Xn).

For any policy π ∈ �, there exists a unique probability measure P
π
ν on (�,F ) supported

on K∞ (that is, Pπ
ν (K∞) = 1) which satisfies the following conditions:

(i) We have P
π
ν {X0 ∈ D} = ν(D) for any D ∈B(X).

(ii) For any n ≥ 0 and C ∈B(A) we have P
π
ν {An ∈ C|Hn} = πn(C|Hn).

(iii) For any n ≥ 0 and D ∈B(X) we have P
π
ν {Xn+1 ∈ D|Hn, An} = Q(D|Xn, An).

The probability measure P
π
ν is usually referred to as a strategic probability measure.

The corresponding expectation operator is E
π
ν . The set of all strategic probability measures

{Pπ
ν }π∈� is denoted by Sν ⊆P(�).
We will also denote by P

π
ν,n the distribution of the random variable Hn; more formally, for

any n ≥ 0 we define P
π
ν,n as the pushforward probability measure on (X × A)n × X given by

P
π
ν ◦ H−1

n . Consequently, we have P
π
ν,n(Hn) = 1; note also that Pπ

ν,0 = ν.

Optimality criterion. The performance criterion that we want to maximize is the probability
of visiting the set G infinitely often. Let us denote by NG : � →N∪ {∞} the integer-valued
process that counts the total number of visits of the state process to the set G; that is,

NG(ω) =
∞∑

n=0

IG(Xn(ω)).

For notational convenience, if I ⊆N is a set of decision epochs, we let NG(I) = ∑
n∈I IG(Xn),

which stands for the number of visits to G at times in I.
For the initial distribution ν, the value function of the control model M is given by

V∗(ν) = sup
π∈�

P
π
ν {NG = ∞}. (2.2)

A policy attaining the above supremum is said to be optimal. In the sequel, the model M
introduced in this section will be referred to as the primary or original control problem.

Stationary Markov policies. Let �s be the set of stochastic kernels π on A given X such
that π (A(x)|x) = 1 for each x ∈ X. We have that �s is nonempty as a consequence of our
hypotheses. Indeed, from the Kuratowski–Ryll-Nardzewski selection theorem [1, Theorem
18.13] we derive the existence of a measurable selector for the correspondence x �→ A(x); that
is, there exists a measurable f : X → A such that f (x) ∈ A(x) for every x ∈ X. Then we have that
π (da|x) = δf (x)(da) indeed belongs to �s.
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1430 F. DUFOUR AND T. PRIETO-RUMEAU

We say that {πn}n∈N ∈ � is a stationary Markov policy if there is some π ∈ �s such that

πn( · |x0, a0, b0, . . . , xn) = π ( · |xn) for all n ≥ 0 and hn = (x0, a0, . . . , xn) ∈ Hn.

Without risk of confusion, we will identify the set of all stationary Markov policies with �s

itself. The set of all strategic probability measures for the stationary Markov policies {Pπ
ν }π∈�s

is denoted by Ss
ν .

Lemma 2.1. If π, π ′ ∈ �s coincide λ-almost everywhere (that is, π (da|x) = π ′(da|x) for all x

in a set of λ-probability one), then P
π
ν = P

π
′

ν .

Proof. Suppose that Y ∈B(X) with λ(Y) = 1 is such that π (da|x) = π ′(da|x) for every x ∈ Y .
We will prove by induction on n ≥ 0 that (X0, A0, . . . , Xn, An) has the same distribution under

P
π
ν and under Pπ

′
ν . Letting n = 0, and given D ∈B(X) and C ∈B(A), we have

P
π
ν {X0 ∈ D, A0 ∈ C}=

∫
D

π (C|x)
dν

dλ
(x) λ(dx) =

∫
D∩Y

π (C|x)
dν

dλ
(x) λ(dx)

=
∫

D
π ′(C|x)

dν

dλ
(x) λ(dx) = P

π
′

ν {X0 ∈ D, A0 ∈ C}.

Assuming the result is true for n ≥ 0, and again letting D ∈B(X) and C ∈B(A), we have

P
π
ν {Xn+1 ∈ D, An+1 ∈ C | Xn = x, An = a} =

∫
D

π (C|y)q(x, a, y)λ(dy),

which, by the same argument, is equal to P
π

′
ν {Xn+1 ∈ D, An+1 ∈ C | Xn = x, An = a}. The con-

ditional distributions and the distribution of (Xn, An) being the same under π and π ′, we
conclude the result. �

Remark 2.2. It turns out that two stationary Markov policies under the conditions of
Lemma 2.1, i.e., which coincide λ-almost surely, are indistinguishable, since they yield the
same strategic probability measure; in addition, they have the same performance (recall (2.2)),
since the criterion to be maximized depends on the strategic probability measures.

Young measures. Let R⊇ �s be the set of stochastic kernels γ on A given X such that
γ (A(x)|x) = 1 for λ-almost every x ∈ X. On R we consider the equivalence relation ≈ defined
as γ ≈ γ ′ when γ ( · |x) = γ ′( · |x) for λ-almost all x ∈ X. The corresponding quotient space
R / ≈, denoted by Y , is the so-called set of Young measures. As a consequence of Lemma 2.1
and Remark 2.2, there is no loss of generality in identifying the set of stationary Markov
policies �s with Y , since all the elements in the same ≈-equivalence class have the same
strategic probability measure. Thus we will indiscriminately use the symbols �s and Y to
refer to both the stationary Markov policies and the set of Young measures. Hence, we will
write

Ss
ν = {Pπ

ν }π∈Y ⊆Sν .

The set of Young measures Y will be equipped with the narrow (stable) topology. This is
the coarsest topology which makes the following mappings continuous:

π �→
∫

X

∫
A

f (x, a)π (da|x)λ(dx),
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for any f ∈ Car (X × A) such that for some � in L1(X,B(X), λ) we have |f (x, a)| ≤ �(x) for
every (x, a) ∈ X × A; see [2, Theorem 2.2]. By [4, Lemma 1], the set Y endowed with the
narrow topology becomes a compact metric space. We state this result in the next lemma.

Lemma 2.2. Under Assumption A, the sets Y of Young measures and �s of stationary Markov
policies are compact metric spaces when endowed with the narrow topology.

The ws∞-topology. Finally, we introduce the so-called ws∞-topology on Sν . Let

U0 =B(X) and Un = Car b(Xn+1 × An) for n ≥ 1,

where the arguments of g ∈Un will be sorted as (x0, a0, . . . , xn−1, an−1, xn). The ws∞-
topology on the set Sν—see [28]—is the smallest topology that makes the mappings

P �→
∫

�

g(Hn)dP

continuous for any n ≥ 0 and g ∈Un. Therefore, a sequence {Pk}k∈N ⊆Sν converges to P ∈Sν

for the ws∞-topology, denoted by Pk ⇒ P, if and only if

lim
k→∞

∫
�

g(Hn)dPk =
∫

�

g(Hn)dP (2.3)

for any n ∈N and g ∈Un.
The proof of Lemmas 2.3 and Theorem 2.1 below are fairly involved; they are presented in

Appendix A. Note that Lemma 2.3 simply states that the mapping that associates to a Young
measure its corresponding strategic probability measure is continuous.

Lemma 2.3. Suppose that Assumption A holds. If {πk}k∈N and π in Y are such that πk → π ,
then P

πk
ν ⇒ P

π
ν .

Theorem 2.1. Under Assumption A, the sets Sν and Ss
ν are compact metric spaces when

endowed with the ws∞-topology.

It is worth mentioning that compactness of Sν is a known result (see [3] or [28]), whereas
the new result that we establish here is compactness of Ss

ν .

3. The control model Mβ

By its definition, the performance criterion introduced above is of asymptotic type, and it
cannot be written in an additive form. Therefore, it appears difficult to study this type of control
problem directly by using the traditional techniques, such as the dynamic programming or
linear programming approach. To address this difficulty, we introduced in [15], in the particular
context of a countable state space, an auxiliary model Mβ as a tool for analyzing the original
control problem.

Elements of the control model Mβ . Given 0 < β < 1, the auxiliary control model Mβ , which
is based on the primary control model M, is a ‘total-expected-reward’ MDP defined as follows:

• The state and action spaces are augmented with isolated points,

X̂ = X ∪ {
} and Â = A ∪ {a
},
so that X̂ and Â are again Borel spaces.
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1432 F. DUFOUR AND T. PRIETO-RUMEAU

• The set of available actions when the state variable is x ∈ X̂ is the set Â(x) ⊆ Â, where

Â(x) = A(x) for x ∈ X and Â(
) = {a
}.

Let K̂ ⊆ X̂ × Â be the set of feasible state–action pairs; hence K̂ = K ∪ {(
, a
)}.
• The dynamics of this model is governed by the stochastic kernel Qβ defined by

Qβ (�|x, a) = IG(x)
[
βQ(� ∩ X|x, a) + (1 − β)δ
(�)

]
+ IX−G(x)Q(� ∩ X|x, a) + I{
}(x)δ
(�)

for any � ∈B(X̂) and (x, a) ∈ K̂.
The initial probability distribution is the same as for M, that is, ν ∈P(X). With a slight
abuse of notation, we will also denote by ν the measure ν( · ∩X) on X̂.

• The reward function is IG(x) for (x, a) ∈ K̂, where G ⊆ X is the measurable set given in
the definition of M.

Hence, the model Mβ is indeed a standard total-expected-reward MDP parametrized by
0 < β < 1. The transitions generated by Qβ can be interpreted very simply as follows. If the
state process is in X − G, then the transition is made according to Q, the stochastic kernel of
the original model. If the state process is in G, then either the transition is made according to
the original model M (with probability β), or the state process moves to 
 (with probability
1 − β). Finally, it is easy to see that 
 is an absorbing state under a
, the unique action avail-
able at 
. However, it should be observed that Mβ is not necessarily an absorbing MDP in
the terminology of [17, Section 2], because absorption in 
 may not occur in a finite expected
time.

The definition of Mβ is somewhat inspired by the well-known equivalent formulation of
a discounted MDP, with discount factor β, as a total-reward MDP in which the transition
probabilities are multiplied by the discount factor β, while 1 − β is the probability of killing
the process at each transition; see, e.g., [17, p. 132]. In our case, however, the β factor is
incorporated only when the process is in G.

Control policies. The construction and definition of the control policies for Mβ is very similar
to what was presented for the original model in Section 2. Therefore, we will just present the
key elements and will skip some details. Letting Ĥ0 = X̂, for n ≥ 1 we have

Ĥn = Hn ∪
n⋃

j=0

(
Kj × {(
, a
)}n−j × {
}),

which includes the histories of the original control model, plus those paths reaching 
 at time
0 ≤ j ≤ n and remaining in 
 thereafter. The set of all admissible histories is given by

K∞ ∪
∞⋃

n=0

(
Kn × {(
, a
)}∞)

. (3.1)

The family of control policies for Mβ is denoted by �̂, and the family of stationary Markov
policies is �̂s. These are defined similarly to those of M, where we replace X, A, and Hn with
X̂, Â, and Ĥn, respectively.

https://doi.org/10.1017/jpr.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.25


Maximizing the probability of visiting a set infinitely often 1433

Dynamics of the control model. Let �̂ = (X̂ × Â)∞ be the state–action canonical sample
space endowed with its product σ -algebra F̂ . The state, action, and history process projections
are denoted by X̂n, Ân, and Ĥn, and they are defined as in Section 2. The counting processes
associated to the visits of the state process to the set G are N̂G = ∑∞

n=0 IG(X̂n) and N̂G(I) =∑
n∈I IG(X̂k) for I ⊆N.
Recall that we were considering a reference probability measure λ ∈P(X) for the control

model M. For the auxiliary control model, we will use the reference probability measure
λ̂ ∈P(X̂) defined by

λ̂(�) = 1

2

(
λ(� ∩ X) + δ
(�)

)
for � ∈B(X̂).

Given π̂ ∈ �̂ and the initial distribution ν, there exists a unique probability measure P
β,π̂
ν

on (�̂, F̂ ) supported on the set (3.1) of histories that models the dynamics of Mβ . The

corresponding expectation operator is denoted by E
β,π̂
ν .

Optimality criterion. For the model Mβ , the objective is the maximization of the total-
expected-reward criterion given by the expected number of visits to the set G: for any
π̂ ∈ �̂,

E
β,π̂
ν

[ ∞∑
n=0

IG(X̂n)
]
=E

β,π̂
ν [N̂G],

and we let

V∗
β (ν) = sup

π̂∈�̂

E
β,π̂
ν [N̂G]

be the value function. A policy π∗ ∈ �̂ satisfying E
β,π∗
ν [N̂G] = V∗

β (ν) is said to be optimal.

Remark 3.1. Given π = {πn}n∈N in �, we can define π
 = {π

n }n∈N in �̂ by setting

π

n ( · |hn) = πn( · |hn) whenever hn ∈ Hn and π


n ( · |hn) = δa
( · ) for hn = (x0, a0, . . . , 
) ∈
Ĥn − Hn. Conversely, given a control policy π̂ = {π̂n}n∈N in �̂, we can restrict it to the sample
paths in Hn to define a control policy π̂ |X = {π̂ |X

n }n∈N in � given by π̂ |X( · |hn) = π̂n( · |hn)
when hn ∈ Hn.

Hence, there is a bijection between �̂ and �. Note that this establishes a bijection between
�s and �̂s as well.

For a complete overview of techniques for solving total-expected-reward MDPs, we refer to
[19, Chapter 9]. In that reference, the value iteration algorithm, the policy iteration algorithm,
and the linear programming approach are discussed. Other related results on value iteration are
described in Theorems 3.5 and 3.7 in [15], and the linear programming (or convex analytic)
approach is also studied in [13, 14].

The relation between M and Mβ . Next we state a result that allows us to establish a corre-
spondence between the performance functions of the two models M and Mβ . Roughly, this
will imply that for any pair of control policies on correspondence (recall Remark 3.1), the
performance criterion of the model Mβ multiplied by 1 − β will converge, as the parameter β

tends towards 1, to the performance criterion of the original model M. This very important fact
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establishes the link from M to a criterion of an additive nature, for which it will be possible
to use standard methods of analysis. In our paper, we use the so-called direct approach, along
the lines developed in [3, 5, 23, 28, 29]; roughly speaking, this consists in finding a suitable
topology on the set of strategic probability measures to ensure that it is compact and that the
reward functional is semicontinuous.

The next result is proved in [15] in the context of a countable state space. It can easily be
generalized to the framework of our paper, namely, a general state space of Borel type. In order
to avoid unnecessary repetition we will omit the proof here; we refer the reader to Section 3 of
[15]. In the sequel we make the convention that β∞ = 0 for β ∈ (0, 1).

Proposition 3.1. For every 0 < β < 1, π ∈ �, and n ∈N we have

1

1 − β
·Eπ

ν [1 − βNG([0,n])] =E
β,π


ν [N̂G([0, n])] and
1

1 − β
·Eπ

ν [1 − βNG ] =E
β,π


ν [N̂G].

Remark 3.2.

(a) Since �̂ = {
π
 : π ∈ �

}
, for every 0 < β < 1, π̂ ∈ �̂, and n ∈N we have

E
β,π̂
ν [N̂G([0, n])] = 1

1 − β
·Eπ̂ |X

ν [1 − βNG([0,n])]

and

E
β,π̂
ν [N̂G] = 1

1 − β
·Eπ̂ |X

ν [1 − βNG ].

(b) Since 1 − βNG decreases to I{NG=∞} as β increases to 1, by dominated convergence we
have for any π ∈ �

lim
β↑1

(1 − β)Eβ,π


ν [N̂G] = lim
β↑1

E
π
ν [1 − βNG ] = P

π
ν {NG = ∞}.

So the performance criterion of Mβ multiplied by 1 − β converges as β ↑ 1 to that of
M for each single control policy.

Assumptions on Mβ . We define the time of entrance of the state process {X̂n}n∈N into a subset
C ∈B(X̂) of the state space as the random variable τC defined on �̂ by

τC(ω) = min{n ∈N : X̂n(ω) ∈ C},
with the usual convention that the minimum over the empty set is ∞.

For a stationary Markov policy π ∈ �s, we define the stochastic kernel Qπ on X given
X as

Qπ (�|x) =
∫

X
Q(�|x, a)π (da|x) for x ∈ X and � ∈B(X).

For n ≥ 1, we denote by Qn
π the nth composition of Qπ with itself, and we make the convention

that Q0
π ( · |x) = δx( · ). Similarly, for a stationary Markov policy π̂ ∈ �̂s of the auxiliary control

model, we define the stochastic kernel Qβ,π̂ on X̂ given X̂ and Qn
β,π̂

for n ≥ 0.
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Assumption B. For each 0 < β < 1 and π̂ ∈ �̂s, there exists a measurable set Cβ,π̂ ⊆ X̂ satis-
fying λ̂(G ∩ Cβ,π̂ ) = 0 and Qβ,π̂ (Cβ,π̂ |x) = 1 for λ̂-almost all x ∈ Cβ,π̂ . In addition, there exists

a finite constant Kβ such that for every π̂ ∈ �̂s,

E
β,π̂
x [τCβ,π̂ ] ≤ Kβ for λ̂-almost all x ∈ X̂ − Cβ,π̂ . (3.2)

Observe that, under Assumption B, the control model Mβ is not necessarily an absorbing
MDP in the terminology of [17, Section 2], since the set Cβ,π̂ depends on the control policy.
The stability Assumption B can be informally and very loosely explained as follows. Given
any fixed 0 < β < 1, for each stationary Markov policy π̂ ∈ �̂s there exists a set Cβ,π̂ which is
closed (not in the topological sense, but in the terminology of Markov chains) and disjoint from
G, and which is reached in a bounded expected time when starting from outside it (formally,
all these statements hold almost surely with respect to the reference measure λ̂).

We now state some consequences of Assumption B.

Lemma 3.1. Let Assumption B be satisfied. Then for any x ∈ X̂, π̂ ∈ �̂s, and n ≥ 1 we have

Qn
β,π̂

( · |x) � λ̂. In particular, the distribution of X̂n under Pβ,π̂
ν is absolutely continuous with

respect to λ̂ for any n ∈N.

Proof. Indeed, if � ∈B(X̂) is such that λ̂(�) = 0, then necessarily � ⊆ X with λ(�) = 0. By
definition of the stochastic kernel Qβ , and recalling (2.1), it is then clear that Qβ,π̂ (�|x) = 0

for every x ∈ X̂. Now, supposing again that � ∈B(X̂) is such that λ̂(�) = 0, and letting n ≥ 1
and x ∈ X, we have

Qn+1
β,π̂

(�|x) =
∫

X̂
Qβ,π̂ (�|y)Qn

β,π̂
(dy|x),

which indeed equals 0 because Qβ,π̂ (�|y) = 0.
The second statement is a straightforward consequence of the above results except for the

case n = 0. In that case, however, the distribution of X̂0 is ν � λ. �

The fact that Cβ,π̂ is closed λ̂-almost surely under π̂ is extended to further transitions.

Lemma 3.2. Suppose that Assumption B holds. Given arbitrary π̂ ∈ �̂s and n ≥ 1, we have
that Qn

β,π̂
(Cβ,π̂ |x) = 1 for λ̂-almost all x ∈ Cβ,π̂ .

Proof. Let us prove the result by induction. By Assumption B, it holds for n = 1. Now
assume that the claim holds for some n ≥ 1. Let Cn ⊆ Cβ,π̂ , with λ̂(Cβ,π̂ − Cn) = 0, be the set
of x ∈ X̂ for which Qβ,π̂ (Cβ,π̂ |x) = 1 and Qn

β,π̂
(Cβ,π̂ |x) = 1. If x ∈ Cn we have

Qn+1
β,π̂

(Cβ,π̂ |x) ≥
∫

Cn

Qn
β,π̂

(Cβ,π̂ |y)Qβ,π̂ (dy|x) = Qβ,π̂ (Cn|x).

Since Qβ,π̂ ( · |x) � λ̂ (recall Lemma 3.1), it follows that

1 = Qβ,π̂ (Cn|x) + Qβ,π̂ (Cβ,π̂ − Cn|x) = Qβ,π̂ (Cn|x),

giving the result. �

We conclude this section by proposing a sufficient condition for Assumption B. It imposes
a drift towards a closed set with λ̂-null intersection with G by using some standard Foster–
Lyapunov criteria. Such conditions are well known in the field of Markov chains. They provide
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easily verifiable conditions for testing stability (existence of invariant measure, recurrence,
ergodicity, etc.).

Proposition 3.2. Suppose that for each 0 < β < 1 and π̂ ∈ �̂s there exist a constant γ β,π̂ ≥ 0
and the following:

• a measurable function Wβ,π̂ : X̂ → [0, +∞] satisfying

Qβ,π̂ Wβ,π̂ (x) ≤ Wβ,π̂ (x) + γ β,π̂ for λ̂ − almost all x ∈ X̂ (3.3)

and such that the set Cβ,π̂ defined as Cβ,π̂ = {x ∈ X̂ : Wβ,π̂ (x) < +∞} satisfies λ̂(Cβ,π̂ ) >

0 and λ̂(G ∩ Cβ,π̂ ) = 0;

• a measurable function Vβ,π̂ : X̂ → [0, +∞] and a constant Kβ < +∞ satisfying

Vβ,π̂ (x) ≤ Kβ for λ̂ − almost all x ∈ X̂ − Cβ,π̂ (3.4)

and

Qβ,π̂ Vβ,π̂ (x) ≤ Vβ,π̂ (x) − 1 + γ β,π̂ ICβ,π̂ (x) for λ̂ − almost all x ∈ X̂. (3.5)

Under these conditions, Assumption B is satisfied.

Proof. Let 0 < β < 1 and π̂ ∈ �̂s. The inequality (3.3) implies that
∫

X̂−Cβ,π̂

Wβ,π̂ (y)Qβ,π̂ (dy|x) ≤ Wβ,π̂ (x) + γ β,π̂ for λ̂-almost all x ∈ X̂.

But since Wβ,π̂ (y) is infinite when y /∈ Cβ,π̂ and Wβ,π̂ (x) is finite on Cβ,π̂ , this implies that
Qβ,π̂ (X̂ − Cβ,π̂ |x) = 0 and so Qβ,π̂ (Cβ,π̂ |x) = 1 for λ̂-almost all x ∈ Cβ,π̂ . This establishes the
first part of Assumption B. Now, following the proof of Lemma 11.3.6 in [22] and combining

(2.1) and (3.5), we get Eβ,π̂
x [τCβ,π̂ ] ≤ Vβ,π̂ (x) for λ̂-almost all x ∈ X̂ − Cβ,π̂ . The stated result

follows from (3.4). �

We note that the sufficient conditions given in Proposition 3.2 above are, in general, more
easily verifiable than Assumption B. Indeed, Proposition 3.2 involves just the one-step transi-
tions of the system (see (3.3) and (3.5)). On the other hand, checking Assumption B directly
requires one to compute the expected hitting time of the set Cβ,π̂ , which in principle requires
knowledge of the distribution of the Markov chain over the whole time horizon, and then check
that these expected hitting times are bounded uniformly in the initial state of the system.

It is worth mentioning that the condition (3.3) yields, loosely, the partition between recurrent
and transient states of the Markov chain, while (3.5) is closely related to the computation of
the expected absorption time by the set of recurrent states of the Markov chain.

Next, in Example 3.1, we illustrate the verification of the conditions in Proposition 3.2; see
also Example 4.1 below.

Example 3.1. (Taken from [15, Example 4.6].) Consider the state space X = {0, 1, 2} with
no actions at states 0 and 2, and A(1) = {a1, a2}. The transition probabilities from state
0 are q(0, 0) = q(0, 2) = 1/2, and from state 2 they are q(2, 2) = 1 (we do not make any
action explicit in this notation, since there are no actions at 0 and 2). The transitions from
state 1 are q(1, a1, 0) = 2/3 and q(1, a1, 1) = 1/3 under a1, and q(1, a2, 0) = q(1, a2, 1) =
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q(1, a2, 2) = 1/3 under a2. We let G = {0}. We can identify �̂s with the interval [0, 1], where
a ∈ [0, 1] is the probability of selecting a1 and 1 − a is the probability of choosing action a2.
Let 1 be the initial state of the system.

In order to verify Assumption B, we will use the sufficient conditions in Proposition 3.2.
After adding the cemetery state 
, the transition matrix for the stationary policy a ∈ [0, 1] in
the model Mβ is ⎛

⎜⎜⎝
β/2 0 β/2 1 − β

(1 + a)/3 1/3 (1 − a)/3 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

where the states are ordered 0, 1, 2, 
.
Letting Wβ,a = ( + ∞, +∞, 1, 1) and γ β,a = 1, we observe that (3.3) in Proposition 3.2

holds with, therefore, Cβ,a = {2, 
} (roughly, W equals 1 on the recurrent states of the Markov
chain, and it is infinite on the transient states). Regarding the inequalities (3.5), we obtain their
minimal nonnegative solution, which is

Vβ,a(0) = 2

2 − β
, Vβ,a(1) = (1 + a)

2 − β
+ 3

2
, Vβ,a(2) = Vβ,a(
) = 0.

This minimal nonnegative solution is precisely the expected time the Markov chain spends in
the transient states.

Solving the total-expected-reward MDP model Mβ yields the optimal policy π̂∗
β = 1 with

V∗
β (1) = 2

2−β
+ 3

2 for every 0 < β < 1.

4. Main results

In this section we prove our results on the solution of the control model M.

Proposition 4.1. Under Assumptions A and B, for each 0 < β < 1 the mapping

P �→
∫

�

(1 − βNG )dP

is lower semicontinuous on Sν and continuous on Ss
ν .

Proof. First we prove the following preliminary fact:

lim
n→∞ sup

π̂∈�̂s

E
β,π̂
ν [N̂G([n, ∞))] = 0 (4.1)

for any 0 < β < 1. Observe that for arbitrary π̂ ∈ �̂s and m ≥ n ≥ 0,

P
β,π̂
ν {τCβ,π̂ = n, X̂m ∈ G} ≤ P

β,π̂
ν {X̂n ∈ Cβ,π̂ , X̂m ∈ G}

= E
β,π̂
ν [Qm−n

β,π̂
(G|X̂n)ICβ,π̂ (X̂n)].

Recalling that λ̂(G ∩ Cβ,π̂ ) = 0, Lemmas 3.1 and 3.2 imply that the above expectation vanishes,

and so P
β,π̂
ν {τCβ,π̂ = n, X̂m ∈ G} = 0. Therefore, we have

N̂G([n, ∞)) = I{τCβ,π̂ >n}
τCβ,π̂ −1∑

m=n

IG(X̂m) ≤ (τCβ,π̂ − n)+ P
β,π̂
ν -almost surely,
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and so

E
β,π̂
ν [N̂G([n, ∞))] ≤

∞∑
m>n

(m − n)Pβ,π̂
ν {τCβ,π̂ = m}

=
∞∑

m>n

(m − n)Eβ,π̂
ν

[
IX̂−Cβ,π̂ (X̂n) Pβ,π̂

X̂n
{τCβ,π̂ = m − n}]

by the Markov property. Then it follows that

E
β,π̂
ν [N̂G([n, ∞))] ≤E

β,π̂
ν

[
IX̂−Cβ,π̂ (X̂n) ·

∞∑
m>n

(m − n)Pβ,π̂

X̂n
{τCβ,π̂ = m − n}]

= E
β,π̂
ν

[
IX̂−Cβ,π̂ (X̂n) ·Eβ,π̂

X̂n
[τCβ,π̂ ]

]
≤ E

β,π̂
ν

[
IX̂−Cβ,π̂ (X̂n) · Kβ

]
,

where the last inequality is obtained because E
β,π̂
x [τCβ,π̂ ] ≤ Kβ for λ̂-almost every x ∈ X̂ −

Cβ,π̂ —recall (3.2)—and because the distribution of X̂n is absolutely continuous with respect
to λ̂—see Lemma 3.1. From the Markov inequality we derive that

E
β,π̂
ν [N̂G([n, ∞))] ≤ Kβ · Pβ,π̂

ν {τCβ,π̂ > n} ≤ K2
β/n;

note that this bound does not depend on π̂ ∈ �̂s. This shows (4.1).
We now proceed with the proof. For each fixed n ≥ 0, the mapping on (X × A)n−1 × X

given by

(x0, a0, . . . , xn) �→
∏

0≤j≤n

βIG(xj) = βNG([0,n])

is in Un. Therefore, by the definition of the ws∞-topology, the function

P �→
∫

�

(1 − βNG([0,n]))dP (4.2)

is continuous on Sν , and so the function P �→ ∫
� (1 − βNG )dP is lower semicontinuous on Sν ,

since it is the increasing limit as n → ∞ of continuous functions.
Now we prove upper semicontinuity on Ss

ν . Fix arbitrary 0 ≤ n ≤ m and P ∈Ss
ν such that

P = P
π
ν for some π ∈ �s. Using Proposition 3.1,∫

�

(1 − βNG([0,m]))dPπ
ν = (1 − β)Eβ,π


ν [N̂G([0, m])]

≤ (1 − β)Eβ,π


ν [N̂G([0, n])]

+ (1 − β) sup
π̂∈�̂s

E
β,π̂
ν [N̂G([n + 1, ∞))]

=
∫

�

(1 − βNG([0,n]))dPπ
ν + εn,

where we have defined

εn = (1 − β) sup
π̂∈�̂s

E
β,π̂
ν [N̂G([n + 1, ∞))],
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with εn → 0 as a consequence of (4.1). By the result in [27, Proposition 10.1], it follows that the
limit as n → ∞ of the function (4.2) is an upper semicontinous function on Ss

ν . This completes
the proof of the continuity statement on Ss

ν . �

Proposition 4.2. Suppose that Assumptions A and B are satisfied and fix 0 < β < 1. There
exists a stationary policy π̂∗ in �̂s that is optimal for the control model Mβ , i.e.,

V∗
β (ν) = sup

π̂∈�̂

E
β,π̂
ν [N̂G] =E

β,π̂∗
ν [N̂G].

Proof. Using the result in [30, p. 368], we have

sup
π̂∈�̂

E
β,π̂
ν [N̂G] = sup

π̂∈�̂s

E
β,π̂
ν [N̂G].

Consequently, from Proposition 3.1 we obtain

sup
π∈�

E
π
ν [1 − βNG ] = sup

π∈�s

E
π
ν [1 − βNG ] = sup

P∈Ss
ν

∫
(1 − βNG )dP.

But the latter supremum is attained at some P∗ ∈Ss
ν , because it is the maximum of a continuous

function (Proposition 4.1) on a compact set (Theorem 2.1). If P∗ = P
π∗
ν for some π∗ ∈ �s, then

we have that π
∗ ∈ �̂s is an optimal stationary Markov policy for the control problem Mβ . �

We are now in position to prove the main result of this paper, on maximizing the probability
of visiting the set G infinitely often.

Theorem 4.1. Suppose that Assumptions A and B hold.

(i) There is some π ∈ �s that is optimal for the control model M, that is,

P
π
ν {NG = ∞} = sup

γ∈�

P
γ
ν {NG = ∞} = V∗(ν).

(ii) Consider a sequence {βk}k∈N increasing to 1 and let π̂k ∈ �̂s be an optimal policy for
the model Mβk . If π̂

|X
k → π ∈ �s in the narrow topology, then π is optimal for M.

(iii) We have limβ↑1 (1 − β)V∗
β (ν) = V∗(ν).

Proof. (i) Let {βk}k∈N be a sequence in (0, 1) with βk ↑ 1, and let the policy π̂k ∈ �̂s be
optimal for Mβk . Such a policy exists by Proposition 4.2. Consider now the sequence {πk}k∈N
in �s where πk = π̂

|X
k for k ∈N. The set �s being compact (Lemma 2.2), we have that {πk}k∈N

has a convergent subsequence, and we can assume without loss of generality that the whole
sequence {πk}k∈N converges to some π ∈ �s. In particular, by Lemma 2.3, we also have
P

πk
ν ⇒ P

π
ν .

By Proposition 3.1 it follows that for arbitrary γ ∈ �,

E
πk
ν [1 − β

NG
k ]= (1 − βk)Eβk,π̂k

ν [N̂G] = (1 − βk)V∗
βk

(ν)

≥(1 − βk)Eβk,γ



ν [N̂G] = E
γ
ν [1 − β

NG
k ].

Now, by the first statement in Remark 3.2(b), observe that

E
γ
ν [1 − β

NG
k ] ≥ P

γ
ν {NG = ∞},
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and so for any j ≤ k in N we obtain the inequalities

E
πk
ν [1 − β

NG
j ] ≥E

πk
ν [1 − β

NG
k ] = (1 − βk)V∗

βk
(ν) ≥ P

γ
ν {NG = ∞}.

Taking the limit as k → ∞ with j fixed in the previous inequalities, we get from Proposition 4.1
that

E
π
ν [1 − β

NG
j ] ≥ lim sup

k→∞
(1 − βk)V∗

βk
(ν) ≥ lim inf

k→∞ (1 − βk)V∗
βk

(ν) ≥ P
γ
ν {NG = ∞}.

In these inequalities, we take the limit as j → ∞ and the supremum in γ ∈ � to obtain

P
π
ν {NG = ∞} ≥ lim sup

k→∞
(1 − βk)V∗

βk
(ν) ≥ lim inf

k→∞ (1 − βk)V∗
βk

(ν) ≥ sup
γ∈�

P
γ
ν {NG = ∞}.

Consequently, the above inequalities are all, in fact, equalities:

P
π
ν {NG = ∞} = V∗(ν) = lim

k→∞ (1 − βk)V∗
βk

(ν). (4.3)

This establishes that the stationary Markov policy π ∈ �s is optimal for the control model M
and that (1 − βk)V∗

βk
(ν) → V∗(ν).

(ii) We can obtain the proof of this statement from the proof of (i), just by assuming that the
whole sequence {πk} converges (and not invoking a convergent subsequence).

(iii) Using Proposition 3.1 we obtain that

(1 − β)V∗
β (ν) = sup

γ∈�

E
γ
ν [1 − βNG ].

This implies that (1 − β)V∗
β (ν) decreases as β ↑ 1, and so limβ↑1 (1 − β)V∗

β (ν) exists. Since
we have convergence through some sequence of βk ↑ 1 (recall (4.3)), the stated result
follows. �

Summarizing, there indeed exists a stationary Markov policy in �s that maximizes the prob-
ability of visiting the set G infinitely often. This policy is obtained as an accumulation/limit
point as β ↑ 1 in the sense of convergence of Young measures of optimal stationary Markov

policies for the total-expected-reward problem sup
π̂∈�̂

E
β,π̂
ν [N̂G] of the control model Mβ .

Example 4.1. Consider a control model with state space X = {0, c, g, g0, g1, g2, . . .}. There
are two actions available at state 0, i.e. A(0) = {a1, a2}, and there are no actions at the other
states. The transition probabilities are q(0, a1, g0) = 1, q(0, a2, c) = q(0, a2, g) = 1/2. From
state gi, the transition probabilities are

q(gi, gi+1) = 1

i + 1
and q(gi, c) = i

i + 1
for i ≥ 0,

while c and g are absorbing. Let G = {g, g0, g1, . . .} and let 0 be the initial state of the system.
It should be clear that Assumption A holds.

Consider now the control model Mβ . We identify �̂s with the interval [0, 1], where 0 ≤
a ≤ 1 stands for the probability of choosing action a1 at state 0. Let us verify the conditions in
Proposition 3.2. Concerning (3.3), we put Wβ,a(c) = Wβ,a(
) = 1 and we let Wβ,a be +∞ in
the remaining states, thus obtaining Cβ,a = {c, 
}, with γ β,a = 1. This identifies the transient
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and recurrent states of the Markov chain. For (3.5), we let Vβ,a(c) = Vβ,a(
) = 0, and we try
to find the minimal solution of (3.5). These inequalities become

1

2
(1 − a)Vβ,a(g) + aVβ,a(g0) ≤ Vβ,a(0) − 1, βVβ,a(g) ≤ Vβ,a(g) − 1,

and

β

i + 1
Vβ,a(gi+1) ≤ Vβ,a(gi) − 1 for i ≥ 0.

By iteration of the latter inequalities we obtain

β i+1

(i + 1)!Vβ,a(gi+1) ≤ Vβ,a(g0) −
i∑

j=0

β j

j! .

The minimal solution is attained when Vβ,a(0) = eβ , and thus for any i ≥ 0

Vβ,a(gi) = 1 + β

k + 1
+ β2

(k + 2)(k + 1)
+ β3

(k + 3)(k + 2)(k + 1)
+ . . . ,

Vβ,a(g) = 1
1−β

, and

Vβ,a(0) = 1 + 1 − a

2(1 − β)
+ aeβ .

We note that this minimal solution Vβ,a(x) is precisely the expected time the process spends in
the transient states of the chain when starting from x ∈ X. We also note that Vβ,a(x) is bounded
in x (recall (3.4)): to see this, observe that Vβ,a(gi) ≤ eβ for every i ≥ 0. It should be clear that
the optimal value function of the control model Mβ for the initial state 0 is

V∗
β (0) = max

{ 1

2(1 − β)
, eβ

}

and that the optimal policy is π̂∗
β = 1 for 0 < β ≤ β̂ and π̂∗

β = 0 for β̂ ≤ β < 1, where β̂ �
0.76804 is the unique solution in (0, 1) of 1

2(1−z) = ez. The interesting feature of this example
is that the optimal policy π∗

β of Mβ varies with β (cf. Example 3.1).
From Theorem 4.1(ii)–(iii) we obtain that

0 = π∗ = lim
β↑1

π̂
∗|X
β

is an optimal policy for M and that V∗(1) = limβ↑1 (1 − β)V∗
β (1) = 1/2.

Appendix A. Proof of Theorem 2.1

This section is mainly devoted to proving the compactness of Ss
ν , the compactness of Sν

being a known result (see the proof of Theorem 2.1 below). In what follows, we suppose that
Assumption A holds.
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Lemma A.1. Suppose that Z is a Borel space, and let f : Z × X × A × X →R be bounded,
measurable, and continuous on A when the remaining variables z ∈ Z and x, y ∈ X are fixed.
Define the real-valued functions g and h on X × K and Z × X respectively by

g(z, x, a) =
∫

X
f (z, x, a, y)q(x, a, y)λ(dy) and h(z, x) = max

a∈A(x)
g(z, x, a).

Under these conditions, the following hold:

(i) The function g is bounded and measurable on Z × K, and g(z, x, ·) is continuous on
A(x) for fixed (z, x) ∈ Z × X.

(ii) The function h is bounded and measurable on Z × X.

Proof. (i) It is clear that g is bounded and measurable. To establish the continuity
property, we fix (z, x) ∈ Z × X and consider a converging sequence an → a in A. By the

dominated convergence theorem, we have f (z, x, an, ·) ∗
⇀ f (z, x, a, ·) in the weak∗ topology

σ (L∞(X,B(X), λ), L1(X,B(X), λ)). We also have (recall Remark 2.1(b)) the convergence

q(x, an, ·) L1−→ q(x, a, ·) in norm in L1(X,B(X), λ). Using the result in, e.g., [11, Proposition
3.13.iv], we conclude that

g(z, x, an) =
∫

X
f (z, x, an, y)q(x, an, y)λ(dy) → g(z, x, a).

This completes the proof of the statement (i).

(iii) By Assumption (A.1) and the maximum measurable theorem [1, Theorem 18.19], we
conclude that h is measurable. �

Given k ≥ 1, we say a function f : (X × A)k × X →R is in Rk if it is of the form

f (x0, a0, . . . , xk−1, ak−1, xk) = f̄ (x0, . . . , xk)f̄ (0)(a0) · · · f̄ (k−1)(ak−1),

where f̄ ∈B(Xk+1) and f̄ (i) ∈ C(A) for 0 ≤ i < k. For k = 0 we simply let R0 =B(X). Clearly,
Rk ⊆U k. For any integer k ≥ 1, define the operator Ak : Rk →Rk−1 as follows. If f ∈Rk

then Akf is given by

(Akf )(x0, a0, . . . , xk−1) = max
a∈A(xk−1)

∫
X

f (x0, a0, . . . , xk−1, a, y)q(xk−1, a, y)λ(dy)

=
k−2∏
j=0

f̄ (j)(aj) max
a∈A(xk−1)

∫
X

f̄ (x0, . . . , xk−1, y)f̄ (k−1)(a)q(xk−1, a, y)λ(dy) (A.1)

for (x0, a0, . . . , xk−1) ∈ (X × A)k−1 × X, where by convention
∏−1

j=0 f̄ (j)(aj) = 1. Note that
Lemma A.1(ii) ensures that Ak indeed maps Rk into Rk−1 because the max in the right-
hand-side of (A.1) is a measurable function of the variables (x0, . . . , xk−1) ∈ Xk. In addition,
we have that ‖Akf ‖ ≤ ‖f ‖ in their respective norms in L∞. The successive composition of these
operators is defined as

Tk =A1 ◦ . . . ◦Ak−1 ◦Ak for k ≥ 1,

so that Tk : Rk →R0. By convention, T0 will be the identity operator on R0.
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Lemma A.2. Given any k ≥ 0, and arbitrary f ∈Rk and π ∈ �, we have
∫

(X×A)k×X
f (hk)Pπ

ν,k(dhk) ≤
∫

X
(Tkf )(x0)ν(dx0).

Proof. The stated result is trivial for k = 0. If k ≥ 1, observe that we can write
∫

(X×A)k×X
f (hk)Pπ

ν,k(hk) =
∫

Hk

f (hk)Pπ
ν,k(hk)

=
∫

Hk−1

∫
A(xk−1)

∫
X

f (hk−1, a, y)q(xk−1, a, y)λ(dy)πk−1(da|hk−1)Pπ
ν,k−1(dhk−1)

≤
∫

Hk−1

Akf (hk−1)Pπ
ν,k−1(dhk−1).

By iterating this inequality and noting that Pπ
ν,0 = ν, we obtain the desired result. �

Lemma A.3. For k ≥ 1, suppose that we are given a sequence {vn}n∈N in Rk which is of the
form

vn(x0, a0, . . . , xk) = v̄n(x0, . . . , xk) · v̄(0)(a0) · · · v̄(k−1)(ak−1),

where v̄n ∈B(Xk+1) satisfies supn ‖v̄n‖ < ∞ in L∞ and

v̄n(x0, . . . , xk−1, ·) ∗
⇀ 0 for each (x0, . . . , xk−1) ∈ Xk,

and the functions v̄(i) ∈ C(A) for 0 ≤ i < k do not depend on n. Under these conditions, gn =
Akvn ∈Rk−1 can be written as

gn(x0, a0, . . . , xk−1) = ḡn(x0, . . . , xk−1) · v̄(0)(a0) · · · v̄(k−2)(ak−2),

where {ḡn}n∈N is a sequence of functions in B(Xk) with supn ‖ḡn‖ < ∞ which satisfy that
ḡn(x0, . . . , xk−1) → 0 for any (x0, . . . , xk−1) ∈ Xk as n → ∞ and, in particular,

ḡn(x0, . . . , xk−2, ·) ∗
⇀ 0 for any (x0, . . . , xk−2) ∈ Xk−1.

Proof. The expression given for gn is easily deduced from (A.1). Moreover, the fact that {ḡn}
is bounded in the L∞ norm is also straightforward. To prove the limit property, we proceed by
contradiction: we suppose that for some (x0, . . . , xk−1) and some subsequence {n′} there exists
ε > 0 with ∣∣∣∣ max

a∈A(xk−1)

∫
X

v̄n′ (x0, . . . , xk−1, y)v̄(k−1)(a)q(xk−1, a, y)λ(dy)

∣∣∣∣ ≥ ε.

Assuming that the above maximum is attained (recall Lemma A.1(ii)) at some a∗
n′ ∈ A(xk−1),

we may also suppose that a∗
n′ → a∗ for some a∗ ∈ A(xk−1). Then we have the following

convergences:

v̄n′ (x0, . . . , xk−1, ·) ∗
⇀ 0 and v̄(k−1)(a∗

n′ )q(xk−1, a∗
n′ , ·) L1−→ v̄(k−1)(a∗)q(xk−1, a∗, ·).
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To check the latter convergence, just note that∫
X

∣∣v̄(k−1)(a∗
n′ )q(xk−1, a∗

n′ , y) − v̄(k−1)(a∗)q(xk−1, a∗, y)
∣∣λ(dy)

≤ ∣∣v̄(k−1)(a∗
n′) − v̄(k−1)(a∗)

∣∣ ∫
X

q(xk−1, a∗
n′, y)λ(dy)

+ ∣∣v̄(k−1)(a∗)
∣∣ ∫

X
|q(xk−1, a∗

n′ , y) − q(xk−1, a∗, y)|λ(dy),

which indeed converges to 0 as n′ → ∞. Applying [11, Proposition 3.13.iv], we obtain∫
X

v̄n′ (x0, . . . , xk−1, y)v̄(k−1)(a∗
n′ )q(xk−1, a∗

n′ , y)λ(dy) → 0,

which is a contradiction. The last statement concerning the weak∗ convergence follows easily
from dominated convergence, since {v̄n} is uniformly bounded in the L∞ norm. This completes
the proof. �

To summarize this lemma informally, note that if we have a sequence of the form

vn = v̄n · v̄(0) · · · v̄(k−1) ∈Rk

with {v̄n} bounded and vn(x0, . . . , xk−1, ·) ∗
⇀ 0, then gn =Akvn again satisfies the same

properties, since

gn = ḡn · v̄(0) · · · v̄(k−2) ∈Rk−1

with {ḡn} bounded and gn(x0, . . . , xk−2, ·) ∗
⇀ 0.

Proof of Lemma 2.3. Suppose that we have a sequence {γn}n∈N in Y converging to some
γ ∈Y . We will show that Pγn

ν ⇒ P
γ
ν . To prove this result, it suffices to show that for any k ≥ 0

and f ∈U k, we have (recall (2.3))

lim
n→∞

∫
Hk

f (hk)Pγn
ν,k(dhk) =

∫
Hk

f (hk)Pγ

ν,k(dhk). (A.2)

Also, by [28, Theorem 3.7(ii)], it suffices to show (A.2) for functions f which are of the form

f (x0, a0, . . . , xk−1, ak−1, xk) = f̄ (x0, . . . , xk−1, xk)f̂ (a0, . . . , ak−1) (A.3)

for f̄ ∈B(Xk+1) and f̂ ∈ C(Ak). As a preliminary step, we will establish the limit (A.2) for
functions in Rk, that is, those for which, in addition, the function f̂ in (A.3) is the product of k
functions in C(A), denoted by f̄ (i) for 0 ≤ i ≤ k − 1.

We will prove the statement by induction. The limit in (A.2) trivially holds for k = 0 because
P

π
ν,0 = ν for any π ∈ �. Suppose that (A.2) is satisfied for some k ≥ 0 and every function in

Rk, and let us prove it for k + 1 and any f ∈Rk+1. We have∫
Hk+1

f (hk+1)Pγn
ν,k+1(dhk+1)

=
∫

Hk

[ ∫
A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)γ (da|xk)
]
P

γn
ν,k(dhk)

+
∫

Hk

∫
A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)
[
γn(da|xk) − γ (da|xk)

]
P

γn
ν,k(dhk). (A.4)

https://doi.org/10.1017/jpr.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.25


Maximizing the probability of visiting a set infinitely often 1445

We study the limit of the first term in the right-hand-side of (A.4) as n → ∞. Since f ∈Rk+1,
we deduce from Lemma A.1(i) that the mapping defined on (X × A)k × X by

(x0, a0, . . . , xk) �→
∫

A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)γ (da|xk)

is in Rk. By the induction hypothesis, we can take the limit as n → ∞ and so obtain

lim
n→∞

∫
Hk

[ ∫
A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)γ (da|xk)
]
P

γn
ν,k(dhk)

=
∫

Hk

[ ∫
A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)γ (da|xk)
]
P

γ

ν,k(dhk)

=
∫

Hk+1

f (hk+1)Pγ

ν,k+1(dhk+1).

Our goal now is to show that the second term in the right-hand-side of (A.4) converges to zero
as n → ∞. Observe that the function vn on (X × A)k × X defined as

vn(hk) =
∫

A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)
[
γn(da|xk) − γ (da|xk)

]

takes the particular form

f̄ (0)(a0) · · · f̄ k−1(ak−1) · v̄n(x0, . . . , xk)

(here, recall that f = f̄ · f̄ (0) · · · f̄ (k) ∈Rk+1), with

v̄n(x0, . . . , xk) =
∫

A

∫
X

f̄ (x0, . . . , xk, y)f̄ (k)(a)q(xk, a, y)λ(dy)
[
γn(da|xk) − γ (da|xk)

]
.

Then {v̄n}n∈N is a bounded sequence in B(Xk+1), and also v̄n(x0, . . . , xk−1, ·) ∗
⇀ 0 for any

(x0, . . . , xk−1) ∈ Xk. Indeed, given arbitrary � ∈ L1(X,B(X), λ) we have
∫

X
v̄n(x0, . . . , xk−1, z)�(z)λ(dz)

=
∫

X

∫
A

�(z)
[ ∫

X
f̄ (x0, . . . , z, y)f̄ (k)(a)q(z, a, y)λ(dy)

][
γn(da|z) − γ (da|z)

]
λ(dz).

Noting that the integral within brackets is a bounded Carathéodory function in z ∈ X and a ∈ A
(recall Lemma A.1(i)), convergence to zero of the above integral follows from the definition of
γn → γ in Y .

We can therefore apply Lemma A.3 repeatedly to obtain that {Tkvn}n∈N is a bounded
sequence in B(X) such that Tkvn(x0) → 0 for every x0 ∈ X. By Lemma A.2 we obtain that
the expression (A.4) satisfies the inequality

∫
Hk

∫
A

∫
X

f (hk, a, y)q(xk, a, y)λ(dy)
[
γn(da|xk) − γ (da|xk)

]
P

γn
ν,k(dhk)

=
∫

Hk

vn(hk)Pγn
ν,k(dhk) ≤

∫
X
Tkvndν,
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where the right-hand term converges to 0 as n → ∞. Using a symmetric argument for the
function −f , we obtain that the above left-hand term converges to zero, and so (A.4) indeed
tends to zero.

So far, we have established the limit (A.2) for functions in Rk. Note, however, that we can
apply the Stone–Weierstrass theorem to the vector space spanned by the functions of the form
f̂ (a0, . . . , ak−1) = f̄ (0)(a0) · · · f̄ (k−1)(ak−1), which indeed separates points in Ak, to obtain that
the functions in C(Ak) can be uniformly approximated by functions in the above-mentioned
vector space. Hence it is easy to establish that the limit in (A.2) holds for any function of the
form (A.3). This completes the proof of Lemma 2.3.

Proof of Theorem 2.1. By virtue of Assumption A, the control model M satisfies the condi-
tions (S1) and (S2) in [3]. Therefore, combining Theorem 2.2, Lemma 2.4, and the proof of
Proposition 3.2 in [3], it can be shown that the w-topology and the ws∞-topology are identical
on Sν . Consequently, the set Sν is compact for the ws∞-topology by Theorem 2.1 in [3], and
it is metrizable in this topology.

To prove compactness of Ss
ν ⊆Sν , we show that it is a closed subset of Sν . Suppose that

we have a sequence {Pγn
ν }n∈N ⊆Ss

ν , where γn ∈Y for each n ∈N, converging to some proba-
bility measure P

π
ν ∈Sν for some π ∈ �. But Y being a compact metric space, there exists a

subsequence {n′} of {γn} converging to some γ ∈Y . Since P
γ

n
′

ν ⇒ P
γ
ν (Lemma 2.3), it follows

that the limiting strategic probability measure P
γ
ν = P

π
ν is in Ss

ν . This completes the proof of
Theorem 2.1.
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